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Abstract: A pyridine and thioether co-supported triazole ligand L (L = 2-((4-(3-(cyclopentylthio)propyl)
-1H-1,2,3-triazol-1-yl)methyl)pyridine) has been synthesized using the CuAAC click reaction.
This ligand supports the formation of a thermally stable, one-dimensional coordination polymer
[L2Ag4]n·4n(BF4) (1) possessing a cationic polymeric structure with [Ag4] metallomacrocycles,
in which the ligand L displays chelate/bridging coordination modes using all four potential donors
of nitrogen (N) and thioether (S). The dominant direction of the prism crystals of 1 aligns with the
propagation of the chain in the lattice.

Keywords: hybrid ligand; click reaction; [Ag4] metallomacrocycle; coordination polymer; crystal
morphology

1. Introduction

Coordination polymers are well-defined molecular materials consisting of metal centers and
organic ligands, and have received considerable attention because of their fascinating crystalline
structures and wide range of applications, including as luminescent sensors, catalysts, and porous
and electrochemical materials [1–5]. The formation and dimensionality of coordination polymers
are governed by the coordination number and geometry of the metal centers and the nature and
arrangement of donor atoms on the ligand. Reaction conditions—such as temperature, solvent,
metal-to-ligand ratio, and counter ions—also influence coordination diversity [6,7]. Many synthetic
chemists have dedicated themselves to the construction of new organic ligands and coordination
polymers, from which to discover the principles of controlled self-assembly. Significant effort has been
devoted to the complementarity of metal precursor and rationally designed organic ligands [8–12].
Ag(I) with d10 electronic configuration, multiple coordination geometries and luminescence resulting
from Ag· · ·Ag interactions is especially attractive to crystal engineers [13–17]. Ag(I) is a soft metal
and so favored to N, O, and S donor ligands [18–21]. N-heterocyclic pyridine, pyrazole, imidazole,
triazole, and multidentate ligands have been employed to support Ag(I) ions and clusters. We have a
particular interest in hybrid ligands with different chemical donors that demonstrate hemilability for
the design of new functional materials [22,23]. Schiff-base-, pyrazole-, and thioether-functionalized
pyridines have been used to construct magnetic and luminescent coordination polymers of MnII,
NiII, CuII/I, and ZnII [24–30]. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions
provide access to versatile, multidirectional 1,2,3-triazole ligands and we have used these ligands
to make copper-iodide cluster-based coordination compounds and study the relationship between
lattice weak interactions and crystal growth [31,32]. Different substituents on the ligands can be used
to tune the possible coordination modes and these weak lattice interactions. The distance between
two coordination sites (e.g., thioether (S) and pyridine–triazole NN groups) is also appropriate for
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stabilizing different sized copper-iodide clusters. As a continuation of this work, we herein report
a new pyridine and thioether supported 1,2,3-triazole ligand L synthesized using the click reaction.
This neutral ligand employs pyridine–triazole chelate-bridging and thioether bridging modes to
stabilize Ag(I) centers and form a polymeric, cationic chain with cyclic [Ag4] clusters.

2. Materials and Methods

All reagents were used as received. Infrared spectra were obtained on a PerkinElmer Spectrum
2000 FT-IR spectrometer from a sample in KBr disc. Elemental analyses were performed on a thermo electron
corporation flash EA 1112 series analyzer. Electrospray ionization mass spectrometry (ESI-MS) was recorded
in positive ion mode using a Shimadzu LCMS-IT-TOF mass spectrometer. UV–vis absorption spectrum
was recorded on a Shimadzu UV-2501PC UV–vis recording spectrophotometer. Photoluminescence
spectrum was measured on a Shimadzu RF-5301 PC spectrofluorophotometer. Powder X-ray diffraction
data was collected on a Bruker D8 Advance X-ray diffractometer with Cu-Kα radiation (λ = 1.54056 Å).
Thermogravimetric analysis (TGA) was carried out in an air stream using a TA Instruments TGA Q500
analyzer with a heating rate of 20 ◦C per min.

X-ray Crystallography

Single-crystal X-ray diffraction data were collected using a Bruker AXS SMART APEXII CCD
diffractometer using Mo-Kα radiation (λ = 0.71073 Å). Data integration and scaling were performed
using Bruker SAINT [33]. The empirical absorption correction was performed by SADABS [34].
The space group determination, structure solution, and least-squares refinements on |F|2 were carried
out with the Bruker SHELXL [35]. The structure was solved by direct method to locate the heavy
atoms, followed by difference maps for the light non-hydrogen atoms. Anisotropic thermal parameters
were refined for the rest of the non-hydrogen atoms. Hydrogen atoms were placed geometrically and
refined isotropically. CCDC reference number: 1587041 (1). Crystal Data for C32H44Ag4B4F16N8S2 (M
= 1383.57 g/mol): monoclinic, space group P21/c, a = 15.6371(4) Å, b = 9.1234(3) Å, c = 16.6824(5) Å,
β = 101.648(1)◦, V = 2331.0(1) Å3, Z = 2, T = 296(2) K, Dcalc = 1.971 g/cm3, 39572 reflections measured
(1.33◦ ≤ Θ ≤ 27.12◦), 5147 unique (Rint = 0.0277) which were used in all calculations. The final R1 was
0.0733 (I > 2σ(I)) and wR2 was 0.2093 (all data).

3. Results and Discussion

3.1. Synthesis

Sodium azide is potentially explosive. Only micro-scaled reactions should be performed.
The alkyne precursor (4-pentyn-1-ylthio)-cyclopentane was prepared following literature procedures
for thioether formation [28,32]. The crude alkyne was placed in a round bottom flask containing
2-(chloromethyl)pyridine hydrochloride (328 mg, 2 mmol), Na2CO3 (210 mg, 2 mmol), NaN3 (156 mg,
2.5 mmol), CuI (23 mg, 0.12 mmol), and CH3OH/H2O (1:1 v:v, 6 mL) (Scheme 1). The reaction was
stirred at 50 ◦C for 24 h. The residue was extracted with ethyl acetate (150 mL) and the organic
layer was washed with water (3 × 20 mL), dried (with anhydrous Mg2SO4) and concentrated by
rotary evaporator at 60 ◦C under vacuum. Column chromatography on silica gel with hexane/ethyl
acetate (2:1 v:v) as eluent produced a band at Rf = 0.1 that was collected and the solvent removed
by rotary evaporator at 40 ◦C under vacuum. The product (L) was a pale yellow oil. Yield:
330 mg, 55%. 2-((4-(3-(Cyclopentylthio)propyl)-1H-1,2,3-triazol-1-yl)methyl)pyridine (L), (C16H22N4S,
MW 302.44). ESI-MS (m/z, %): [L+H]+ (303, 100). 1H NMR (CDCl3, 500.2 MHz) δ: 8.56 (s, 1H,
pyridine, NCH), 7.68–7.65(m, 1H), 7.45 (s, 1H, triazole), 7.25–7.23 (m, 1H), 7.16–7.13 (t, 1H), 5.61 (s, 2H,
pyridine–CH2–triazole), 3.06–3.01 (m, 1H, SCH), 2.81–2.78 (m, 2H), 2.56–2.52 (m, 2H), 1.97–1.91 (m,
4H), 1.69 (b, 2H), and 1.53–1.43 (m, 4H). 13C NMR (CDCl3, 125.8 MHz): 154.7, 149.5, 147.9, 137.6, 123.5,
122.5, and 121.6 (C in pyridine and triazole groups), 55.4 (pyridine–CH2–triazole), 43.8 (SCH), 33.9,
31.2, 29.4, and 24.9.
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Scheme 1. Preparation of ligand L. 

Complex 1 was prepared by mixing a methanol solution (5 mL) of ligand L (151 mg, 0.5 mmol) 
and a methanol solution (5 mL) of AgBF4 (195 mg, 1 mmol). Single crystals were obtained by slow 
evaporation of the solvent over one week at room temperature (Scheme 2). The product was collected 
by filtration, washed with methanol and diethyl ether, and dried in vacuum oven for overnight at 60 
°C. Yield: 270 mg, 78%. The powder sample of complex 1 is grey and no obvious solid-state 
luminescence was observed. Single crystals of 1 are prisms with a relative long axis. Anal. Calcd. for 
C32H44Ag4B4F16N8S2 (1383.57): C, 27.78; H, 3.21; N, 8.10%. Found: C, 27.80; H, 3.27; N, 8.08%. Main IR 
bands (cm−1): 3132(m), 3078(m), 2951(s), 2865(m), 1594(m), 1573(m), 1553(m), 1476(m), 1439(m), 
1301(m), 1218(m), 1057(s, b, ν(BF4−), 756(m), 726(m), 596(m), 534(m), and 522(m). ESI-MS (m/z, %): 
[LAg]+ (409, 100), [L2Ag]+ (713, 81). 
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Scheme 2. Formation of cationic coordination polymer 1. 

3.2. UV–Vis and Photoluminescent Spectra of Ligand L 

An ethanol solution of ligand L absorbed UV–vis light at 203 nm and between 240–280 nm with 
a maximum at about 260 nm (Figure 1a) and exhibited a broad emission between 400–500 nm with a 
maximum at 442 nm upon excitation at 358 nm. Neat liquid gave a blue emission under UV 365 nm 
light. (Figure 1b, insert) Coordination polymer 1 was synthesized by the reaction of L and AgBF4 in 
methanol at room temperature (Scheme 2). IR spectroscopy indicated characteristic absorption by the 
BF4− anion. The polymeric structure may be disassociated into small fragments (e.g., [LAg]+ and 
[L2Ag]+) in solution which were detected by ESI-MS.  

 

Figure 1. UV–vis (a) and excitation (dotted line) and emission (solid line) (b) spectra of ligand L in 
ethanol (0.1 M). (The inset images are ligand L in a quartz cuvette under normal and 365 nm lights, 
respectively). 

Scheme 1. Preparation of ligand L.

Complex 1 was prepared by mixing a methanol solution (5 mL) of ligand L (151 mg, 0.5 mmol)
and a methanol solution (5 mL) of AgBF4 (195 mg, 1 mmol). Single crystals were obtained by slow
evaporation of the solvent over one week at room temperature (Scheme 2). The product was collected
by filtration, washed with methanol and diethyl ether, and dried in vacuum oven for overnight at
60 ◦C. Yield: 270 mg, 78%. The powder sample of complex 1 is grey and no obvious solid-state
luminescence was observed. Single crystals of 1 are prisms with a relative long axis. Anal. Calcd. for
C32H44Ag4B4F16N8S2 (1383.57): C, 27.78; H, 3.21; N, 8.10%. Found: C, 27.80; H, 3.27; N, 8.08%. Main IR
bands (cm−1): 3132(m), 3078(m), 2951(s), 2865(m), 1594(m), 1573(m), 1553(m), 1476(m), 1439(m),
1301(m), 1218(m), 1057(s, b, ν(BF4

−), 756(m), 726(m), 596(m), 534(m), and 522(m). ESI-MS (m/z, %):
[LAg]+ (409, 100), [L2Ag]+ (713, 81).
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Scheme 2. Formation of cationic coordination polymer 1.

3.2. UV–Vis and Photoluminescent Spectra of Ligand L

An ethanol solution of ligand L absorbed UV–vis light at 203 nm and between 240–280 nm with
a maximum at about 260 nm (Figure 1a) and exhibited a broad emission between 400–500 nm with
a maximum at 442 nm upon excitation at 358 nm. Neat liquid gave a blue emission under UV 365 nm
light. (Figure 1b, insert) Coordination polymer 1 was synthesized by the reaction of L and AgBF4 in
methanol at room temperature (Scheme 2). IR spectroscopy indicated characteristic absorption by
the BF4

− anion. The polymeric structure may be disassociated into small fragments (e.g., [LAg]+ and
[L2Ag]+) in solution which were detected by ESI-MS.
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Figure 1. UV–vis (a) and excitation (dotted line) and emission (solid line) (b) spectra of ligand L
in ethanol (0.1 M). (The inset images are ligand L in a quartz cuvette under normal and 365 nm
lights, respectively).

3.3. Molecular Structure of Complex 1

Coordination polymer 1 crystallized in a monoclinic crystal system with space group P 21/c. There is
one neutral ligand L, two cationic Ag(I) centers and two lattice BF4

− anions in the crystallographic
asymmetric unit. (Figure 2a) Ag1 and Ag2 possess three-coordinated trigonal planer and two-coordinated
linear geometries, respectively. Ag1 is surrounded by two chelating N donors from pyridine and triazole
of ligand L and one bridging S donor from another ligand L. Ag2 is coordinated by one 3′-Ntriazole of
ligand L and one bridging S donor from another ligand L. These two S donors also bridge neighboring
Ag1-Ag2 centers to form a [Ag4] metallomacrocycle. The cyclic [Ag4] units are further linked by double
ligands and extend along the short b axis, which aligns with the dominant direction of the prism-shaped
single crystals. (Figure 2c,d) The polymeric chains are parallel to each other in the lattice (Figure 2b).
The counterions BF4

− occupy the cavities created by the cationic polymeric chains. The Ag1· · ·Ag2
distances are 4.28 and 4.04 Å in the [Ag4] metallomacrocycle. The shortest Ag· · ·Ag distance of neighboring
[Ag4] units is 6.06 Å. The shortest Ag· · ·Ag distance of neighboring chains is 7.60 Å.
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3.4. Powder XRD and TGA

The experimental powder X-ray diffraction pattern for complex 1 showed good agreement with
its simulated pattern determined from the single-crystal XRD experiment, supporting its phase purity
(Figure 3). Thermogravimetric analysis (TGA) of 1 was conducted from room temperature to 900 ◦C
under an air flow with a heating rate of 20 ◦C per min (Figure 4). Complex 1 is stable to about 230 ◦C.
There are two weight loss stages between 230 and 890 ◦C, which correspond to the removal of ligand
L, decomposition of BF4 anion, and the formation of metallic silver with a residue amount of 31.5%
(calcd. 31.2%).Crystals 2018, 8, 16  5 of 7 
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4. Conclusions

In summary, a pyridine and thioether functionalized 1,2,3-triazole ligand with a relatively long
methylene bridge ((CH2)3) between NN and S donors was synthesized using the CuAAC click reaction.
The reaction of ligand L and AgBF4 afforded a novel, thermally stable polymeric chain structure with
[Ag4] metallomacrocyclics. The propagation of these chains in the lattice aligns with the dominant
growth direction of the prism crystals. The observation of two types of Ag(I) coordination geometries
(linear and trigonal planar) further emphasizes the diversity of Ag(I) coordination chemistry.
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