Perplexing Coordination Behaviour of Potentially Bridging Bipyridyl-Type Ligands in the Coordination Chemistry of Zinc and Cadmium 1,1-Dithiolate Compounds
Abstract
:1. Introduction
2. Methodology and Organisation
3. Discussion
3.1. Zinc Xanthate Structures
3.2. Zinc Dithiophosphate and Related Structures
3.3. Zinc Dithiocarbamate Structures
3.3.1. Zinc Dithiocarbamate Structures Not Capable of Forming Hydrogen Bonds
3.3.2. Zinc Dithiocarbamate Structures Capable of Forming Hydrogen Bonds
3.4. Cadmium Xanthate Structure
3.5. Cadmium Dithiophosphate and Related Structures
3.6. Cadmium Dithiocarbamate Structures
3.6.1. Cadmium Dithiocarbamate Structures Not Capable of Forming Hydrogen Bonds
3.6.2. Cadmium Dithiocarbamate Structures Capable of Forming Hydrogen Bonds
4. Overview and Conclusions
Acknowledgments
Conflicts of Interest
References
- Moghadam, P.Z.; Li, A.; Wiggin, S.B.; Tao, A.; Maloney, A.G.P.; Wood, P.A.; Ward, S.C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database subset: A collection of metal-organic frameworks for past, present, and future. Chem. Mater. 2017, 29, 2618–2625. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Han, Y.Z.; Feng, X.; Zhou, J.W.; Qi, P.F.; Wang, B. Metal-organic frameworks for energy storage: Batteries and supercapacitors. Coord. Chem. Rev. 2016, 307, 361–381. [Google Scholar] [CrossRef]
- Kumar, P.; Kim, K.-H.; Kwon, E.E.; Szulejko, J.E. Metal-organic frameworks for the control and management of air quality: Advances and future direction. J. Mater. Chem. A 2016, 4, 345–361. [Google Scholar] [CrossRef]
- Noh, T.H.; Jung, O.S. Recent advances in various metal-organic channels for photochemistry beyond confined spaces. Acc. Chem. Res. 2016, 49, 1835–1843. [Google Scholar] [CrossRef] [PubMed]
- Rogge, S.M.J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A.I.; Sepulveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184. [Google Scholar] [CrossRef] [PubMed]
- D’Vries, R.F.; Iglesias, M.; Snejko, N.; Gutiérrez-Puebla, E.; Monge, M.A. Lanthanide metal-organic frameworks: Searching for efficient solvent-free catalysts. Inorg. Chem. 2012, 51, 11349–11355. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108. [Google Scholar] [CrossRef] [PubMed]
- Johnstone, T.C.; Suntharalingam, K.; Lippard, S.J. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem. Rev. 2016, 116, 3436–3486. [Google Scholar] [CrossRef] [PubMed]
- Wyszogrodzka, G.; Marszałek, B.; Gil, B.; Dorożyński, P. Metal-organic frameworks: Mechanisms of antibacterial action and potential applications. Drug Discov. Today 2016, 21, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-S. Metal-organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev. 2017, 349, 139–155. [Google Scholar] [CrossRef]
- Anderson, S.L.; Stylianou, K.C. Biologically derived metal organic frameworks. Coord. Chem. Rev. 2017, 349, 102–128. [Google Scholar] [CrossRef]
- Lian, X.; Fang, Y.; Joseph, E.; Wang, Q.; Li, J.L.; Banerjee, S.; Lollar, C.; Wang, X.; Zhou, H.-C. Enzyme-MOF (metal-organic framework) composites. Chem. Soc. Rev. 2017, 46, 3386–3401. [Google Scholar] [CrossRef] [PubMed]
- Inokuma, Y.; Arai, T.; Fujita, M. Networked molecular cages as crystalline sponges for fullerenes and other guests. Nat. Chem. 2010, 2, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, M.; Khutia, A.; Xing, H.Z.; Inokuma, Y.; Fujita, M. The crystalline sponge method updated. IUCrJ 2016, 3, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Eddaoudi, M.; Moler, D.B.; Li, H.; Chen, B.; Reineke, T.M.; O’Keeffe, M.; Yaghi, O.M. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 2001, 34, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 6149. [Google Scholar] [CrossRef] [PubMed]
- Moulton, B.; Zaworotko, M.J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 2001, 101, 1629–1658. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.J.; Perman, J.A.; Zaworotko, M.J. Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 2009, 38, 1400–1417. [Google Scholar] [CrossRef] [PubMed]
- Tiekink, E.R.T.; Haiduc, I. Stereochemical aspects of metal xanthate complexes: Molecular structures and supramolecular self-assembly. Prog. Inorg. Chem. 2005, 54, 127–319. [Google Scholar] [CrossRef]
- Haiduc, I.; Sowerby, D.B. Stereochemical aspects of phosphor-1,1-dithiolato metal complexes: Coordination patterns, molecular structures and supramolecular associations in dithiophosphinates and related compounds. Polyhedron 1996, 15, 2469–2521. [Google Scholar] [CrossRef]
- Van Zyl, W.E.; Woollins, J.D. The coordination chemistry of dithiophosphonates: An emerging and versatile ligand class. Coord. Chem. Rev. 2013, 257, 718–731. [Google Scholar] [CrossRef]
- Heard, P.J. Main Group Dithiocarbamate Complexes. Prog. Inorg. Chem. 2005, 53, 1–69. [Google Scholar] [CrossRef]
- Hogarth, G. Transition Metal Dithiocarbamates: 1978–2003. Prog. Inorg. Chem. 2005, 53, 71–561. [Google Scholar] [CrossRef]
- Tiekink, E.R.T. Molecular architecture and supramolecular association in the zinc-triad 1,1-dithiolates. Steric control as a design element in crystal engineering? CrystEngComm 2003, 5, 101–113. [Google Scholar] [CrossRef]
- Spek, A.L. Structure validation in chemical crystallography. Acta Crystallogr. D Biol. Crystallogr. 2009, 65, 148–155. [Google Scholar] [CrossRef] [PubMed]
- DIAMOND, version 2.1b; K. Brandenburg & M. Berndt GbR: Bonn, Germany, 2006.
- Ara, I.; El Bahij, F.; Lachkar, M. Synthesis, characterization and X-ray crystal structures of new ethylxanthato complexes of zinc(II) with N-donor ligands. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2006, 36, 399–406. [Google Scholar] [CrossRef]
- Klevtsova, R.F.; Leonova, T.G.; Glinskaya, L.A.; Larionov, S.V. Synthesis of heteroligand complexes of zinc(II) alkylxanthates with 4,4′-bipyridine. The crystal and molecular structure of the Zn2(4,4′-Bipy)(i-C3H7OCS2)4·CH2Cl2 solvate. Russ. J. Coord. Chem. 2000, 26, 172–177. [Google Scholar]
- Larionov, S.V.; Glinskaya, L.A.; Leonova, T.G.; Klevtsova, R.F. Polymeric structure of the complex [Zn(4,4′-Bipy)(i-BuOCS2)2]n with monodentate isobutylxanthate ligands. Russ. J. Coord. Chem. 1998, 24, 851–856. [Google Scholar]
- Kang, J.-G.; Shin, J.-S.; Cho, D.-H.; Jeong, Y.-K.; Park, C.; Soh, S.F.; Lai, C.S.; Tiekink, E.R.T. Steric control over supramolecular polymer formation in trans-1,2-bis(4-pyridyl)ethylene adducts of zinc xanthates: Implications for luminescence. Cryst. Growth Des. 2010, 10, 1247–1256. [Google Scholar] [CrossRef]
- Chen, D.; Lai, C.S.; Tiekink, E.R.T. Supramolecular aggregation in diimine adducts of zinc(II) dithiophosphates: Controlling the formation of monomeric, dimeric, polymeric (zig-zag and helical), and 2-D motifs. CrystEngComm 2006, 8, 51–58. [Google Scholar] [CrossRef]
- Zhu, D.-L.; Yu, Y.-P.; Guo, G.-C.; Zhuang, H.-H.; Huang, J.-S.; Liu, Q.; Xu, Z.; You, X.-Z. catena-Poly[bis(O,O′-diethyldithiophosphato-S)zinc(II)-μ-4,4′-bipyridyl-N:N′]. Acta Crystallogr. C Struct. Chem. 1996, 52, 1963–1966. [Google Scholar] [CrossRef]
- Glinskaya, L.A.; Shchukin, V.G.; Klevtsova, R.F.; Mazhara, A.N.; Larionov, S.V. Synthesis and polymer structure of [Zn(4,4′-bipy){(i-PrO)2PS2}2]n and thermal properties of ZnL{(i-PrO)2PS2}2 (L = phen, 2,2′-bipy, 4,4′-bipy). J. Struct. Chem. 2000, 41, 632–639. [Google Scholar] [CrossRef]
- Lai, C.S.; Liu, S.; Tiekink, E.R.T. Steric control over polymer formation and topology in adducts of zinc dithiophosphates formed with bridging bipyridine ligands. CrystEngComm 2004, 6, 221–226. [Google Scholar] [CrossRef]
- Welte, W.B.; Tiekink, E.R.T. catena-Poly[[bis(O,O′-diisopropyl dithiophosphato-κ2S,S′)zinc(II)]-μ-1,2-di-4-pyridylethylene-κ2N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2007, 63, m790–m792. [Google Scholar] [CrossRef]
- Welte, W.B.; Tiekink, E.R.T. catena-Poly[[bis(O,O′-diisobutyl dithiophosphato-κ2S,S′)zinc(II)]-μ-1,2-di-4-pyridylethylene-κ2N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2006, 62, m2070–m2072. [Google Scholar] [CrossRef]
- Tiekink, E.R.T.; Wardell, J.L.; Welte, W.B. catena-Poly[[bis(O,O′-diethyl dithiophosphato-κ2S,S′)zinc(II)]-μ-1,2-di-4-pyridylethane-κ2N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2007, 63, m818–m820. [Google Scholar] [CrossRef]
- Lai, C.S.; Liu, S.; Tiekink, E.R.T. catena-Poly[[bis(O,O′-diisobutyldithiophosphato-κ2S,S′)zinc(II)]-μ-1,2-bis(4-pyridyl)ethane-κ2N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2004, 60, m1005–m1007. [Google Scholar] [CrossRef]
- Chen, D.; Lai, C.S.; Tiekink, E.R.T. catena-Poly[[bis(O,O′-dicyclohexyldithiophosphato-κ2S,S′)zinc(II)]-μ-1,2-bis(4-pyridylmethylene)hydrazine-κ2N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2005, 61, m2052–m2054. [Google Scholar] [CrossRef]
- Avila, V.; Tiekink, E.R.T. catena-Poly[[bis(O,O′-diisopropyl dithiophosphato-κ2S,S′)zinc(II)]-μ-1,2-bis(3-pyridylmethylene)hydrazine-κ2N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2006, 62, m3530–m3531. [Google Scholar] [CrossRef]
- Devillanova, F.; Aragoni, C.; Arca, M.; Huth, S.L.; Hursthouse, M.B. CAGLIARI 154a - C28H32N2O4P2S4Zn1. Pers. Commun. Camb. Str. Database 2008. [Google Scholar] [CrossRef]
- Shchukin, V.G.; Glinskaya, L.A.; Klevtsova, R.F.; Larionov, S.V. Synthesis, structure, and thermal properties of heteroligand coordination compounds ZnL{(i-C4H9)2PS2}2 (L = Phen, 2,2′-Bipy, or 4,4′-Bipy). Polymeric structure of [Zn(4,4′-Bipy){(i-C4H9)2PS2}2]n. Russ. J. Coord. Chem. 2000, 26, 331–337. [Google Scholar]
- Klevtsova, R.F.; Glinskaya, L.A.; Berus, E.I.; Larionov, S.V. Monodentate and bridging bidentate functions of 4,4′-bipyridine in the crystal structures of [Zn(4,4′-Bipy){(n-C3H7)2NCS2}2] and [Zn2(4,4′-Bipy){(n-C3H7)2NCS2}4]. J. Str. Chem. 2001, 42, 639–647. [Google Scholar] [CrossRef]
- Zha, M.-Q.; Li, X.; Bing, Y.; Lu, Y. μ-4,4′-Bipyridine-κ2N:N′)bis[bis(N,N-dimethyldithiocarbamato-κ2S,S′)zinc(II)]. Acta Crystallogr. E Crystallogr. Commun. 2010, 66, m1465. [Google Scholar] [CrossRef]
- Zemskova, S.M.; Glinskaya, L.A.; Durasov, V.B.; Klevtsova, R.F.; Larionov, S.V. Mixed-ligand complexes of zinc(II) and cadmium(II) diethyldithiocarbamates with 2,2′-bipyridyl and 4,4′-bipyridyl-synthesis, structure, and thermal-properties. J. Struct. Chem. 1993, 34, 794–802. [Google Scholar] [CrossRef]
- Lai, C.S.; Tiekink, E.R.T. (4,4′-Bipyridine)bis[bis(N,N-diethyldithiocarbamato)zinc(II)]. Appl. Organomet. Chem. 2003, 17, 253–254. [Google Scholar] [CrossRef]
- Larionov, S.V.; Klevtsova, R.F.; Shchukin, V.G.; Glinskaya, L.A.; Zemskova, S.M. Heteroligand complexes of Zn(II) diisopropyl dithiocarbamate with 1,10-phenanthroline and 4,4′-bipyridlne. Crystal and molecular structures of clathrate compound Zn(4,4′-Bipy)((i-C3H7)2NCS2)4·2C6H5CH3. Russ. J. Coord. Chem. 1999, 25, 694–700. [Google Scholar]
- Zemskova, S.M.; Glinskaya, L.A.; Klevtsova, R.F.; Durasov, V.B.; Gromilov, S.A.; Larionov, S.V. Volatile mixed-ligand complexes of bis(diisobutyldithiocarbamato)zinc with 1,10-phenanthroline, 2,2′-bipyridyl, and 4,4′-bipyridyl. Crystal and molecular structure of the binuclear complex [Zn2(C10H8N2){(i-C4H9)2NCS2}4]. J. Struct. Chem. 1996, 37, 941–947. [Google Scholar] [CrossRef]
- Yin, X.; Zhang, W.; Fan, J.; Wei, F.X.; Lai, C.S.; Tiekink, E.R.T. Bis[bis(N,N-dibenzyldithiocarbamato)zinc(II)](4,4′-bipyridine). Appl. Organomet. Chem. 2003, 17, 889–890. [Google Scholar] [CrossRef]
- Chen, X.-F.; Liu, S.-H.; Zhu, X.-H.; Vittal, J.J.; Tan, G.-K.; You, X.-Z. μ-(4,4′-Bipyridine)-N:N′-bis[bis-(pyrrolidinedithiocarboxylato-S,S′)zinc(II)]. Acta Crystallogr. C Struct. Chem. 2000, 56, 42–43. [Google Scholar] [CrossRef]
- Liu, S.-H.; Chen, X.-F.; Zhu, X.-H.; Duan, C.-Y.; You, X.-Z. Crystal structure and thermal analysis of a 4,4′-bipy-bridged binuclear zinc(II) complex, 2[R2NCS2]2·Zn(4,4′-bipy) (R = piperidyl). J. Coord. Chem. 2001, 53, 223–231. [Google Scholar] [CrossRef]
- Poplaukhin, P.; Tiekink, E.R.T. (μ-1,2-Di-4-pyridylethylene-κ2N:N′)bis[bis(N,N-dimethyldithiocarbamato-κ2S,S′)zinc(II)]. Acta Crystallogr. E Crystallogr. Commun. 2009, 65, m1474. [Google Scholar] [CrossRef]
- Arman, H.D.; Poplaukhin, P.; Tiekink, E.R.T. (μ-trans-1,2-Di-4-pyridylethylene-κ2N:N′)bis[bis(N,N-diethyldithiocarbamato-κ2S,S′)zinc(II)] chloroform solvate. Acta Crystallogr. E Crystallogr. Commun. 2009, 65, m1472–m1473. [Google Scholar] [CrossRef]
- Arman, H.D.; Poplaukhin, P.; Tiekink, E.R.T. (μ-trans-1,2-Di-4-pyridylethylene-κ2N:N′)bis[bis(N,N-diisopropyldithiocarbamato-κ2S,S′)zinc(II)]. Acta Crystallogr. E Crystallogr. Commun. 2009, 65, m1475. [Google Scholar] [CrossRef]
- Lai, C.S.; Tiekink, E.R.T. Bis[bis(N,N-diethyldithiocarbamato)zinc(II)] (trans-1,2-bis(4-pyridyl)ethylene)trans-1,2-bis(4-pyridyl)ethylene lattice adduct. Appl. Organomet. Chem. 2003, 17, 251–252. [Google Scholar] [CrossRef]
- Avila, V.; Tiekink, E.R.T. μ-1,2-Di-4-pyridylethane-κ2N:N′-bis[bis(N,N-diisopropyldithiocarbamato-κ2S,S′)zinc(II)]. Acta Crystallogr. E Crystallogr. Commun. 2008, 64, m680. [Google Scholar] [CrossRef]
- Arman, H.D.; Poplaukhin, P.; Tiekink, E.R.T. Crystal structure of (μ2-N,N′-bis((pyridin-4-yl)methyl)ethanediamide-κ2N:N′)-tetrakis(diethylcarbamodithioato-κ2S,S′)dizinc(II), C34H54N8O2S8Zn2. Z. Krist. New Cryst. Struct. 2017, in press. [Google Scholar] [CrossRef]
- Arman, H.D.; Poplaukhin, P.; Tiekink, E.R.T. Crystal structures of {μ2-N,N′-bis[(pyridin-3-yl)-methyl]ethanediamide}tetrakis(dimethylcarbamodithioato)dizinc(II) dimethylformamide disolvate and {{μ2-N,N′-bis[(pyridin-3-yl)methyl]ethanediamide}tetrakis(di-n-propylcarbamodithioato)-dizinc(II). Acta Crystallogr. E Crystallogr. Commun. 2017, 73, 1501–1507. [Google Scholar] [CrossRef] [PubMed]
- Jotani, M.M.; Poplaukhin, P.; Arman, H.D.; Tiekink, E.R.T. Supramolecular association in (μ2-pyrazine)-tetrakis(N,N-bis(2-hydroxyethyl)dithiocarbamato)dizinc(II) and its di-dioxane solvate. Z. Krist. 2017, 232, 287–298. [Google Scholar] [CrossRef]
- Benson, R.E.; Ellis, C.A.; Lewis, C.E.; Tiekink, E.R.T. 3D-, 2D- and 1D-supramolecular structures of {Zn[S2CN(CH2CH2OH)R]2}2 and their {Zn[S2CN(CH2CH2OH)R]2}2(4,4′-bipyridine) adducts for R = CH2CH2OH, Me or Et: Polymorphism and pseudo-polymorphism. CrystEngComm 2007, 9, 930–940. [Google Scholar] [CrossRef]
- Tan, Y.S.; Tiekink, E.R.T. Crystal structure of (4,4′-bipyridyl-κN)bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-κ2S,S′]-zinc(II)–4,4′-bipyridyl (2/1) and its isostructural cadmium(II) analogue. Acta Crystallogr. E Crystallogr. Commun. 2017, 73, 1642–1646. [Google Scholar] [CrossRef] [PubMed]
- Broker, G.A.; Jotani, M.M.; Tiekink, E.R.T. Bis[N-2-hydroxyethyl,N-methyldithiocarbamato-κ2S,S)′-4-{[(pyridin-4-ylmethylidene)hydrazinylidene}methyl]pyridine-κN1)zinc(II): Crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E Crystallogr. Commun. 2017, 73, 1458–1564. [Google Scholar] [CrossRef] [PubMed]
- Poplaukhin, P.; Tiekink, E.R.T. Interwoven coordination polymers sustained by tautomeric forms of the bridging ligand. CrystEngComm 2010, 12, 1302–1306. [Google Scholar] [CrossRef]
- Poplaukhin, P.; Arman, H.D.; Tiekink, E.R.T. Supramolecular isomerism in coordination polymers sustained by hydrogen bonding: Bis[Zn(S2CN(Me)CH2CH2OH)2](N,N′-bis(pyridin-3-ylmethyl)thioxalamide). Z. Krist. 2012, 227, 363–368. [Google Scholar] [CrossRef]
- Arman, H.D.; Poplaukhin, P.; Tiekink, E.R.T. Bis[N-(2-hydroxyethyl)-N-methyldithiocarbamato-κS][2,4,6-tris(pyridin-2-yl)-1,3,5-triazine-κ3N1,N2,N6]zinc dioxane sesquisolvate. Acta Crystallogr. E Crystallogr. Commun. 2012, 68, m319–m320. [Google Scholar] [CrossRef]
- Ikeda, T.; Hagihara, H. The crystal structure of zinc ethylxanthate. Acta Crystallogr. 1966, 21, 919–927. [Google Scholar] [CrossRef]
- Lai, C.S.; Lim, Y.X.; Yap, T.C.; Tiekink, E.R.T. Molecular paving with zinc thiolates. CrystEngComm 2002, 4, 596–600. [Google Scholar] [CrossRef]
- Addison, A.W.; Rao, T.N.; Reedijk, J.; van Rijn, J.; Verschoor, G.C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc. Dalton Trans. 1984, 1349–1356. [Google Scholar] [CrossRef]
- Tiekink, E.R.T. Aggregation patterns in the crystal structures of organometallic Group XV 1,1-dithiolates: The influence of the Lewis acidity of the central atom, metal- and ligand-bound steric bulk, and coordination potential of the 1,1-dithiolate ligands upon supramolecular architecture. CrystEngComm 2006, 8, 104–118. [Google Scholar] [CrossRef]
- Jotani, M.M.; Zukerman-Schpector, J.; Sousa Madureira, L.; Poplaukhin, P.; Arman, H.D.; Miller, T.; Tiekink, E.R.T. Structural, Hirshfeld surface and theoretical analysis of two conformational polymorphs of N,N′-bis(pyridin-3-ylmethyl)oxalamide. Z. Krist. 2016, 231, 415–425. [Google Scholar] [CrossRef]
- Zukerman-Schpector, J.; Sousa Madureira, L.; Poplaukhin, P.; Arman, H.D.; Miller, T.; Tiekink, E.R.T. Conformational preferences for isomeric N,N′-bis(pyridin-n-ylmethyl)ethanedithiodiamides, n = 2, 3 and 4: A combined crystallographic and DFT study. Z. Krist. 2015, 230, 531–541. [Google Scholar] [CrossRef]
- Jamaludin, N.S.; Halim, S.N.A.; Khoo, C.-H.L.; Chen, B.-J.; See, T.-H.L.; Sim, J.-H.; Cheah, Y.-K.; Seng, H.-L.; Tiekink, E.R.T. Bis(phosphane)copper(I) and silver(I) dithiocarbamates: Crystallography and anti-microbial assay. Z. Krist. 2016, 231, 341–349. [Google Scholar] [CrossRef]
- Abrahams, B.F.; Hoskins, B.F.; Winter, G. The structure of cadmium bis(isopropylxanthate)-4,4′-bipyridine. Aust. J. Chem. 1990, 43, 1759–1765. [Google Scholar] [CrossRef]
- Li, T.; Li, Z.-H.; Du, S.-W. catena-Poly[[bis(O,O′-dimethyl dithiophosphato-κ2S,S′)cadmium(II)]-μ-4,4′-bipyridine-N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2005, 61, m95–m97. [Google Scholar] [CrossRef]
- Li, T.; Li, Z.-H.; Du, S.-W. catena-Poly[[bis(O,O′-diethyl dithiophosphato-κ2S,S′)cadmium(II)]-μ-4,4′-bipyridine-N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2004, 60, m1912–m1914. [Google Scholar] [CrossRef]
- Lai, C.S.; Tiekink, E.R.T. Engineering polymers with variable topology—Bipyridine adducts of cadmium dithiophosphates. CrystEngComm 2004, 6, 593–605. [Google Scholar] [CrossRef]
- Lai, C.S.; Tiekink, E.R.T. Polymeric topologies in cadmium(II) dithiophosphate adducts of the isomeric n-pyridinealdazines, n = 2, 3 and 4. Z. Krist. 2006, 221, 288–293. [Google Scholar] [CrossRef]
- Lai, C.S.; Tiekink, E.R.T. Delineating the principles controlling polymer formation and topology in zinc(II)- and cadmium(II)-dithiophosphate adducts of diimine-type ligands. J. Mol. Struct. 2006, 796, 114–118. [Google Scholar] [CrossRef]
- Devillanova, F.; Aragoni, C.; Arca, M.; Huth, S.L.; Hursthouse, M.B. CAGLIARI 143-C26H28Cd1N2O4P2S4. Pers. Commun. Camb. Str. Database 2008. [Google Scholar] [CrossRef]
- Devillanova, F.; Aragoni, C.; Arca, M.; Hursthouse, M.B.; Huth, S.L. CAGLIARI 161-C28H32Cd1N2O4P2S4. Pers. Commun. Camb. Str. Database 2008. [Google Scholar] [CrossRef]
- Devillanova, F.; Aragoni, C.; Arca, M.; Huth, S.L.; Hursthouse, M.B. CAGLIARI 145-C28H30Cd1N2O4P2S4. Pers. Commun. Camb. Str. Database 2008. [Google Scholar] [CrossRef]
- Devillanova, F.; Aragoni, C.; Arca, M.; Huth, S.L.; Hursthouse, M.B. CAGLIARI 144a-C28H32Cd1N2O4P2S4. Pers. Commun. Camb. Str. Database 2008. [Google Scholar] [CrossRef]
- Devillanova, F.; Aragoni, C.; Arca, M.; Hursthouse, M.B.; Huth, S.L. CAGLIARI 142-C29H34Cd1N2O4P2S4. Pers. Commun. Camb. Str. Database 2008. [Google Scholar] [CrossRef]
- Larionov, S.V.; Shchukin, V.G.; Glinskaya, L.A.; Klevtsova, R.F.; Mazhara, A.P. Mixed-ligand coordination compounds CdL{(i-C4H9)2PS2}2 (L = phen, 2,2′-Bipy, and 4,4′-Bipy): Synthesis, structure, and thermal properties. Polymeric structure of [Cd(4,4′-Bipy){(i-C4H9)2PS2}2]n. Russ. J. Coord. Chem. 2001, 27, 463–468. [Google Scholar] [CrossRef]
- Fan, J.; Wei, F.-X.; Zhang, W.-G.; Yin, X.; Lai, C.S.; Tiekink, E.R.T. Small ligands-induced synthesis of cadmium complexes with N,N-dibenzyl dithiocarbamate and their crystal structures. Acta Chim. Sin. 2007, 65, 2014–2018. [Google Scholar]
- Chai, J.; Lai, C.S.; Yan, J.; Tiekink, E.R.T. Polymeric [bis(N,N-diethyldithiocarbamato) (trans-1,2-bis(4-pyridyl)ethylene)cadmium(II)]. Appl. Organomet. Chem. 2003, 17, 249–250. [Google Scholar] [CrossRef]
- Avila, V.; Benson, R.E.; Broker, G.A.; Daniels, L.M.; Tiekink, E.R.T. catena-Poly[[bis(N,N-diethyldithiocarbamato-κ2S,S′)cadmium(II)]-μ-trans-1,2-di-4-pyridylethane-κ2N:N′]. Acta Crystallogr. E Crystallogr. Commun. 2006, 62, m1425–m1427. [Google Scholar] [CrossRef]
- Poplaukhin, P.; Tiekink, E.R.T. (μ-2-Pyridinealdazine-κ4N,N′:N″,N′′′)bis[bis(N,N-di-n-propyldithiocarbamato-κ2S,S′)cadmium(II)]. Acta Crystallogr. E Crystallogr. Commun. 2008, 64, m1176. [Google Scholar] [CrossRef]
- Jotani, M.M.; Poplaukhin, P.; Arman, H.D.; Tiekink, E.R.T. [μ2-trans-1,2-Bis(pyridin-4-yl)ethene-κ2N:N′]bis{[1,2-bis(pyridin-4-yl)ethene-κN]bis[N-(2-hydroxyethyl)-N-isopropyldithiocarbamato-κ2S,S′]cadmium} acetonitrile tetrasolvate: Crystal structure and Hirshfeld surface analysis. Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- Broker, G.A.; Tiekink, E.R.T. Bis[N-(2-hydroxyethyl)-N-propyldithiocarbamato-κ2S,S′]bis(4-{[(pyridin-4-ylmethylidene)hydrazinylidene]methyl}pyridine-κN1)cadmium. Acta Crystallogr. E Crystallogr. Commun. 2011, 67, m320–m321. [Google Scholar]
- Arman, H.D.; Poplaukhin, P.; Tiekink, E.R.T. An unprecedented binuclear cadmium dithiocarbamate adduct: Bis[μ2-N-(2-hydroxyethyl)-N-isopropylcarbamodithioato-κ3S:S,S′]bis{[N-(2-hydroxyethyl)-N-isopropylcarbamodithioato-κ2S,S′](3-{(1E)-[(E)-2-(pyridin-3-ylmethylidene)hydrazin-1-ylidene]methyl}-pyridine-κN)cadmium]} dihydrate. Acta Crystallogr. E Crystallogr. Commun. 2016, 72, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.S.; Sudlow, A.L.; Molloy, K.C.; Morishima, Y.; Fujisawa, K.; Jackson, W.J.; Henderson, W.; Halim, S.N.B.A.; Ng, S.W.; Tiekink, E.R.T. Supramolecular isomerism in a cadmium bis(N-hydroxyethyl, N-isopropyldithiocarbamate) compound: Physiochemical characterization of ball (n = 2) and chain (n = ∞) forms of {Cd[S2CN(iPr)CH2CH2OH]2·solvent}n. Cryst. Growth Des. 2013, 13, 3046–3056. [Google Scholar] [CrossRef]
- Tan, Y.S.; Halim, S.N.A.; Tiekink, E.R.T. Exploring the crystallization landscape of cadmium bis(N-hydroxyethyl, N-isopropyl-dithiocarbamate), Cd[S2CN(iPr)CH2CH2OH]2. Z. Krist. 2016, 231, 113–126. [Google Scholar] [CrossRef]
Compound | R/R′ | N-Ligand | Donor Set | Motif | Ref. |
---|---|---|---|---|---|
1 | Et | pyr | N2S4 | linear chain | [28] |
2 1 | iPr | bpy | NS4 | dimer | [29] |
3 | iBu | bpy | N2OS3 | helical chain | [30] |
4 | Et | bpe | N2O2S2 | zig-zag chain | [31] |
5 | nBu | bpe | N2O2S2 | zig-zag chain | [31] |
6 2 | Cy | bpe | NS4 | dimer | [31] |
7 | iPr | pyr | NS3+S | dimer | [32] |
8 | Et | bpy | N2S2 | zig-zag chain | [33] |
N2OS2 | |||||
9 | iPr | bpy | N2S2 | zig-zag chain | [34] |
10 | Cy | bpy | NS4 | dimer | [35] |
11 | iPr | bpe | N2S2 | zig-zag chain | [36] |
12 | iBu | bpe | N2S4 | linear chain | [37] |
13 | Cy | bpe | N2S4 | linear chain | [35] |
14 3 | iPr | bpeh | NS4 | dimer | [38] |
15 | Et | bpeh | N2S2 | zig-zag chain | [35] |
16 4 | iPr | bpeh | N2S2 | zig-zag chain | [35] |
17 | iBu | bpeh | N2S4 | linear chain | [39] |
18 | Cy | bpeh | N2S2 | zig-zag chain | [35] |
19 | iPr | bpp | N2S2 | helical chain | [32] |
20 | iPr | bpS2 | N2OS2 | zig-zag chain | [32] |
21 | iPr | bpa | N2S2 | zig-zag chain | [32] |
22 | Cy | 4-pyald | N2S4 | zig-zag chain | [40] |
23 | iPr | 2-bpe | NS4 | dimer | [32] |
24 | Cy | 2-bpe | NS3 | monomer | [32] |
25 | iPr | 3-pyald | N2S4 | linear chain | [41] |
26 | Me, 4-MePh | bpeh | N2S2 | zig-zag chain | [42] |
27 | iBu | bpy | N2S4 | linear | [43] |
28 | nPr | bpy | NS4 | monomer | [44] |
29 | Me | bpy | NS4 | dimer | [45] |
30 | Et | bpy | NS4 | dimer | [49,50] |
31 | nPr | bpy | NS4 | dimer | [44] |
32 5 | iPr | bpy | NS4 | dimer | [48] |
33 | iBu | bpy | NS4 | dimer | [49] |
34 | CH2Ph | bpy | NS4 | dimer | [50] |
35 6 | CH2CH2 | bpy | NS4 | dimer | [51] |
36 7 | CH2CH2 | bpy | NS4 | dimer | [52] |
37 | Me | bpe | NS4 | dimer | [53] |
38 8 | Et | bpe | NS4 | dimer | [54] |
39 | iPr | bpe | NS4 | dimer | [55] |
40 9 | Et | bpe | NS4 | dimer | [56] |
41 | nPr | bpeh | NS4 | dimer | [57] |
42 | Et | 4-pdaO | NS4 | dimer | [58] |
43 10 | Me | 3-pdaO | NS4 | dimer | [59] |
44 | nPr | 3-pdaO | NS4 | dimer | [59] |
45 | CH2CH2OH | pyr | NS4 | dimer | [60] |
46 11 | CH2CH2OH | pyr | NS4 | dimer | [60] |
47 | Me, CH2CH2OH | bpy | NS4 | dimer | [61] |
48 | Et, CH2CH2OH, | bpy | NS4 | dimer | [61] |
49 12 | Et, CH2CH2OH | bpy | NS4 | dimer | [61] |
50 | CH2CH2OH | bpy | NS4 | dimer | [61] |
51 13 | iPr, CH2CH2OH | bpy | NS4 | monomer | [62] |
52 | Me, CH2CH2OH | 4-pyald | NS4 | monomer | [63] |
53 | Me, CH2CH2OH | 3-pdaO | NS4 | dimer | [64] |
54 | CH2CH2OH | 3-pdaOt | NS4 | dimer | [64] |
55 10 | Me, CH2CH2OH | 3-pdaS | NS4 | dimer | [65] |
56 14 | Me, CH2CH2OH | 3-pdaS | NS4 | dimer | [65] |
57 15 | Me, CH2CH2OH | triazine | N3S2 | monomer | [66] |
Compound | R/R′ | N-Ligand | Donor Set | Motif | Ref. |
---|---|---|---|---|---|
58 | iPr | bpy | N2S4 | linear chain | [74] |
59 | Me | bpy | N2S4 | zig-zag chain | [75] |
60 | Et | bpy | N2S4 | linear chain | [76] |
61 | iPr | bpy | N2S4 | linear chain | [77] |
62 | Cy | bpy | N2S4 | linear chain | [77] |
63 | iPr | bpe | N2S4 | linear chain | [77] |
64 | Cy | bpe | N2S4 | linear chain | [77] |
65 | iPr | bpeh | N2S4 | linear chain | [77] |
66 | iPr | dpp | N2S4 | linear chain | [77] |
67 1 | Cy | dpp | N2S4 | dimer | [77] |
68 | iPr | bpS2 | N2S4 | linear chain | [77] |
69 | iPr | 4-pyald | N2S4 | linear chain | [78] |
70 | iPr | 3-pyald | N2S4 | linear chain | [78] |
71 1 | Cy | 3-pyald | N2S4 | linear chain | [79] |
72 | iPr | 2-pyald | N2S4 | dimer | [78] |
73 | iPr | 2-bpe | N2S4 | linear chain | [77] |
74 | Cy | 2-bpe | N2S4 | linear chain | [77] |
75 | Me, 4-MeOPh | bpy | N2S4 | linear chain | [80] |
76 | Et, 4-MeOPh | bpy | N2S4 | linear chain | [81] |
77 | Me, 4-MeOPh | bpe | N2S4 | zig-zag chain | [82] |
78 | Me, 4-MeOPh | dpeh | N2S4 | zig-zag chain | [83] |
79 | Me, 4-MeOPh | dpp | N2S4 | zig-zag chain | [84] |
80 | iBu | bpy | N2S4 | linear chain | [85] |
81 | CH2Ph | bpy | N2S4 | linear chain | [86] |
82 | Et | bpe | N2S4 | linear chain | [87] |
83 | Et | bpeh | N2S4 | linear chain | [88] |
84 | nPr | 2-pyald | N2S4 | dimeric | [89] |
85 2 | iPr, CH2CH2OH | bpy | NS4 | monomeric | [62] |
86 3 | iPr, CH2CH2OH | bpe | N2S4 | dimeric | [90] |
87 | nPr, CH2CH2OH | 4-pyald | N2S4 | monomeric | [91] |
88 4 | iPr, CH2CH2OH | 3-pyald | N3S2 | dimeric | [92] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiekink, E.R.T. Perplexing Coordination Behaviour of Potentially Bridging Bipyridyl-Type Ligands in the Coordination Chemistry of Zinc and Cadmium 1,1-Dithiolate Compounds. Crystals 2018, 8, 18. https://doi.org/10.3390/cryst8010018
Tiekink ERT. Perplexing Coordination Behaviour of Potentially Bridging Bipyridyl-Type Ligands in the Coordination Chemistry of Zinc and Cadmium 1,1-Dithiolate Compounds. Crystals. 2018; 8(1):18. https://doi.org/10.3390/cryst8010018
Chicago/Turabian StyleTiekink, Edward R. T. 2018. "Perplexing Coordination Behaviour of Potentially Bridging Bipyridyl-Type Ligands in the Coordination Chemistry of Zinc and Cadmium 1,1-Dithiolate Compounds" Crystals 8, no. 1: 18. https://doi.org/10.3390/cryst8010018
APA StyleTiekink, E. R. T. (2018). Perplexing Coordination Behaviour of Potentially Bridging Bipyridyl-Type Ligands in the Coordination Chemistry of Zinc and Cadmium 1,1-Dithiolate Compounds. Crystals, 8(1), 18. https://doi.org/10.3390/cryst8010018