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Abstract: Ytterbium doped Lu1.5Y1.5Al5O12 (LuYAG) nanocrystalline powders were synthesized
by a wet chemical mixed precipitant co-precipitation (MPP) method, and then the mixed crystal of
Yb:LuYAG was grown in an optical floating zone (OFZ) furnace at the speed of 6–10 mm/h, using
a [111] oriented YAG seed crystal. The transmittance of the polished LuYAG crystal is close to the
ideal value of LuAG or YAG. The X-ray rocking curve shows complete symmetry and the full width
at half maximum (FWHM) is 10 arc-second, indicating the good quality of as grown Yb:LuYAG
multicomponent garnet crystal. The thermal luminescent spectrum at room temperature shows
four deep energy traps at around 1–1.3 eV. X-ray excited luminesce (XEL) spectra is measured to
characterize the existence of LuAl or YAl shadow defects in the bulk single crystal. The emission peak
at around 320 nm indicates that the LuYAG crystal prepared by OFZ have lower concentrations of
antisite defects (AD) with respect to its Czochralski counterpart.
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1. Introduction

Compared with YAG host material, lutetium aluminum garnet (Lu3Al5O12, LuAG) is
characterized by favorable properties such as high Zeff, high density, high doping concentrations and
outstanding thermal conductivity [1–4]. Because of the above advantages, LuAG host materials were
widely used in solid state lasers and scintillators in transparent ceramics and crystals [5–8].

LuAG crystals usually grown by the traditional crystal growth processing such as Czochralski
(CZ), Bridgman, or the other techniques. However, the high melting point of LuAG (2010 ◦C) and
the long growth cycles make it easy to introduce LuAl AD in the crystal, which will affect the optical
performances of crystals, especially as scintillators [4]. To reduce the concentration of AD in LuAG
crystals, one way is to lower the melting point by introducing the component of low melting point
YAG, and the other way is to accelerating the growth speed. That is the motivation we develop LuYAG
mixed crysals by OFZ. In 2004, Kuwano et al. first used a solar furnace to determine solidification
points of LuYAG, and then grew LuYAG crystals by CZ method [9]. They investigated the solidification
point, the lattice parameter, the thermal conductivity, and refractive index of a series (Lu,Y)3Al5O12 in
details. The melting point of the Lu1.5Y1.5Al5O12 crystal is 40 ◦C lower than that of LuAG crystal [9].
In recent years, the spectroscopic properties of LuYAG mixed crystal doped with different rare earth
ions were widely studied. In our review of the published literatures, the LuYAG mixed crystals were
grown by Czochralski or µ-pulling down (µ-PD) method [10–13].
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In this paper we report, for the first time to our knowledge, the growth of optical grade Yb:LuYAG
mixed crystals by using MPP derived nanocrystalline LuYAG powders, combined with optical floating
zone method, using YAG seed crystal. The growth speed is 6–8 times faster than the CZ method.
The detailed results concerning crystal growth and the optical properties are also discussed.

2. Materials and Methods

2.1. Powder Synthesis

The Yb doped LuYAG powders were synthesized by a modified wet chemical method,
using ammonium hydroxide and ammonium hydrogen carbonate as the mixed precipitator as
reported in our previous works [14–16]. The starting chemicals used were commercial high purity
powders without further purification: lutetium oxide (Lu2O3, 4N5), yttrium oxide (Y2O3, 4N5),
ytterbium oxide (Yb2O3, 4N5), nitric acid (HNO3, GR), aluminum nitrate (Al(NO3)3, AR), ammonium
hydrogen carbonate (NH4HCO3, AR), and ammonium hydroxide (NH4OH, AR). Aqueous solution of
(Lu3+, Y3+, Yb3+, Al3+) were prepared by dissolving these solid powders into hot HNO3 or deionized
water, following the formula 2at.%Yb:Lu1.5Y1.5Al5O12. Finally, Yb-doped LuYAG precursors were
synthesized by reverse-strike co-precipitant method. After aged and calcined, the nanocrystalline
powders were used to make the feed rods for crystal growth by optical floating zone method.

2.2. Crystal Growth

Yb:LuYAG mixed crystals were grown in an optical floating zone (OFZ) furnace (Crystal Systems
Inc., Salem, MA, USA, FZ-T-12000-X-I-S-SU) equipped with four 3 kW Xenon lamps reaching a
maximum temperature of 3000 ◦C (100% lamp power). The single crystal was grown along the [111]
direction, utilizing pure YAG with [111] direction as the seed crystal. Argon gas, 30 mL/min flow, was
introduced into the growth chamber as for the protective atmosphere. In the process of crystal growth,
the crystal growth rate and feed rod feeding speed needs to be accurately controlled, in order to keep
the as-grown LuYAG mixed crystal in the same diameter. In this paper, the optimized parameter of the
growth rate was kept in the range of 6–10 mm/h, and the rotation rates of the feed rod and the seed
rod were both maintained at 15 rpm in opposite directions. After the growth was finished, the crystal
was cooled down to room temperature at the speed of 600 ◦C/h. The growth technology and the
detailed procedure of OFZ method can be found in references [17,18].

2.3. Measurements

Thermal decomposition behaviors of the precursor powder were characterized on TG-DSC
apparatus (STA 449 F3, NETZSCH, Selb, Bavaria, Germany). Phase composition identification
was performed with X-ray diffractometer (Dmax-2550, Rigaku, Japan) equipped with graphite
monochromatized Cu Kα radiation (λ = 1.5406 Å, 40 kV/200 mA) in the range of 2θ = 10–80◦.
Photo-luminescent spectra were measured using spectrophotometer (PL, Ed, England). Thermally
stimulated luminescence (TSL), equipped by a Harshow 2000 TL reader was measured to investigate
the trap energy level at a heating rate of 5 ◦C/s. X-ray excited luminescence (XEL) spectra were
measured on a home-made X-ray excited luminescence spectrometer, X-ray tube (70 kV × 2.5 mA).
All measurements were carried out at room temperature.

3. Results and Discussion

Figure 1 shows the thermogravimetric-differential scanning calorimeter (TG-DSC) curves of the
precursor derived from a modified wet chemical precipitant. In the curves, the precursor reveals a
continuous thermal decomposition from room temperature till 1100 ◦C with a total weight loss of
about 37%. The DSC curves show that the endothermic peak at 119 ◦C resulted from the release of
OH− in precursors. The wide band of exothermic peak located at around 405 ◦C corresponds to the
decomposition of CO3

2−. It can be inferred that the exothermic peaks at about 890 ◦C, 936 ◦C and
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1026 ◦C resulted from the phase formations of the Lu0.5Y0.5AlO3 (LuYAP), Lu2Y2Al2O9 (LuYAM),
and LuYAG, respectively [19]. Compared to the solid-state reaction synthesis, the LuYAG phase
formed at a much lower temperature of about 1026 ◦C (solid state synthesis: over 1400 ◦C). What is
more, the much lower synthesis temperature indicates a better reactivity of the LuYAG nanocrystalline
powder. It is favorable for the melting of the feed rod used in optical floating zone furnace.
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Figure 1. Thermogravimetric-differential scanning calorimeter (TG-DSC) curves of the as synthesized
Yb:LuYAG precursors.

X-ray diffraction (XRD) patterns of Yb:LuYAG powders (calcined at 1100 ◦C/2 h) are shown in
Figure 2a. The patterns exhibit a cubic garnet phase and no other impurity phases are detected. The main
characteristic peaks are in good agreement with the standard PDF cards (LuAG JCPDS:73–1368 and
YAG JCPDS:72–1315). The X-ray rocking curves with (444) direction show complete symmetry and the
full width at half maximum (FWHM) is a 10 arc-second, indicating that the Yb:LuYAG mixed crystals
have good optical quality, as shown in Figure 2b.
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Figure 2. (a) X-ray diffraction (XRD) of Yb:LuYAG polycrystal powder and (b) the X-ray rocking curve.

Figure 3 shows the optical transmittance of Yb:LuYAG crystal, polished on both sides (1.2 mm
in thickness) in the wavelengths that range from 200 to1500 nm. From the transmittance curve,
it can be seen that the linear transmittance increases from 82% to 83.5% in the range of 400–800
nm wavelength, and the transmittance has been maintained at around 84% in the infrared range
(800–1500 nm). The absorption bands at 912, 937, 965, and 1027 nm wavelengths are caused by Yb-ions
in the measurement wavelength. The high optical transmittance indicates that the optimized MPP
nanocrystalline powder coupled with the optical floating zone method could be a promising route for
preparing optical grade LuYAG crystals. The inset is the appearance of as-grown Yb:LuYAG single
crystals in the dimension of about Φ 5 × 40 mm.
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Figure 3. In-line transmittance of LuYAG crystals (inset: appearance of as-grown crystal).

Figure 4 shows the room temperature excitation and emission spectra of LuYAG crystal doped by
ytterbium activators. The main emission peak is centered at 1030 nm, corresponding to the transition of
2F5/2–2F7/2. when excited at 969 and 940 nm wavelength respectively. From the emission spectrum,
the intensity excited at 940 nm is about 1.3 times of that excited at 969 nm because of the larger
excitation peak areas at 940 nm.
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Figure 4. Fluorescence spectrum of Yb:LuYAG crystal.

Thermo-luminescence (TL) is an effective technique for the investigation of possible presence and
distribution of traps in materials. To figure out the crystal quality and the luminescence potential of the
as-grown mixed crystals, TSL was conducted on the Yb:LuYAG mixed crystal, as shown in Figure 5.
In our experiment, the crystal was irradiated for 60 min by a home-made UV irradiation instrument,
and then the TSL glow curves above room temperature were measured by a Harshow 2000 TL reader
(heating rate: 5 ◦C/s). A resultant curve was fitted using the general order kinetics equation [20,21].
The values of the trap parameters of the trap energy level and the concentration of trapped charges
(n0) are shown in Table 1.
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Table 1. Thermally stimulated luminescence (TSL) parameters from the curve fitting.

Peak Peak Temperature (◦C) Trap Energy (eV) n0

Peak 1 120 0.998 1687.18
Peak 2 181 1.028 2613.49
Peak 3 212 1.218 1353.02
Peak 4 257 1.296 1957.89

The result shows that there are four TL peaks from room temperature to 300 ◦C and the trap
depth value of as-grown Yb:LuYAG crystal are around 1–1.3 eV. In order to further characterize the
shallow level defects (such as antisite defect of LuAl), the XEL spectra of the OFZ and CZ LuYAG
crystal are measured at room temperature, as shown in Figure 6. The CZ crystal shows an obvious
higher emission peak than that of OFZ crystal around 320 nm, which is ascribed to the existence and
concentration of LuAl antisite defects in the mixed LuYAG hosts [21]. In general, the antisite defect
is a kind of common defect in high meting point crystals. However, in this paper, MPP and OFZ
fabricated Yb:LuYAG crystal demonstrates a lower XEL peak at 320 nm than that of the CZ counterpart.
To our knowledge, the high melting point of LuAG (2010 ◦C) and the long growth cycles make it easy
to introduce LuAl AD in the crystal. The mechanism of reducing the concentration of AD in LuAG
crystals are suggested as (1) Y-ions was doped into LuAG (to form Lu1.5Y1.5Al5O12 mixed crystal) to
lower the melting point of about 40 ◦C respect to LuAG crystal; (2) Shortening of the growth cycle
leads to an acceleration of the crystal growth process. Thus, the fast speed growth route of OFZ is
adopted; (3) High reactivity LuYAG nanocrystalline powders synthesized by MPP, which is supported
as the key feed rod used for the OFZ crystal growth at a fast speed.
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4. Conclusions

We have successfully synthesized the MPP derived nanocrystalline powders for preparing a
dense Yb:LuYAG feed rod, which is a key factor to grow LuAG crystal. By the OFZ method, crack-free
Yb:LuAG crystals with a dimension of Φ 5 × 40 mm were grown with the optimized conditions of
the growth rate of 6–10 mm/h and the rotation rate of 15 rpm. The narrow FWHM of 10 arc-second
and high optical transmittance of 83.5% reveal good optical quality of our OFZ crystal. The thermal
luminescent spectrum at room temperature shows four deep energy traps at around 1–1.3 eV. X-ray
excited luminesce (XEL) spectra is measured to characterize the existence of LuAl or YAl shadow
defects in the bulk single crystal. The lower X-ray excited emission intensity at 320 nm of OFZ crystal
shows that there are less antisite defects in OFZ crystal than that in CZ grown counterpart, and the
mechanism was suggested.
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