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Abstract: The geometries of the enol (E) and keto (K) forms of a crystalline salicylideneaniline
molecular switch, (E)-2-methoxy-6-(pyridine-3-yliminomethyl)phenol (PYV3), have been determined
using periodic density functional theory (DFT) calculations with a variety of exchange-correlation
functionals (XCFs). They are compared to X-ray diffraction (XRD) data as well as to geometries
obtained using empirical dispersion energy in the form of the second iteration of Grimme’s scheme,
either with its original parameters (DFT-D2) or with parameters revised for the solid state (DFT-D*).
Using DFT, a good agreement with experiment on the unit cell parameters is obtained with the
PBEsol, PBEsol0, and ωB97X XCFs. DFT-D2 contracts the unit cell too much with all considered
XCFs, whereas DFT-D* lessens this effect thus allowing B3LYP, PBE, and PBE0 to achieve reasonable
agreement with respect to XRD data. When considering molecular geometries, both DFT and DFT-D*
have a similar effect on the bond lengths, both systematically underestimating (overestimating)
the length of the single (double) bonds (within 0.003 Å), as well as on valence angles attaining
differences of 2◦ with respect to XRD data. The errors on the torsion angles are less spread out with
DFT-D* (averaging 1◦) than DFT for which only PBEsol, PBEsol0, andωB97X perform well. Finally,
the relative keto–enol energies, ∆EKE, have been calculated, showing that the inclusion of dispersion
energy stabilizes the keto form more than it does the enol form. This results in the PBE and PBEsol
XCFs wrongly predicting the keto form as the most stable form.

Keywords: salicylideneaniline molecular crystals; solid state geometry optimizations; dispersion
energy corrections

1. Introduction

Thermochromic and photochromic compounds have been extensively studied and still attract a
lot of attention as they have many potential applications [1–8]. With the focus moving from the liquid
phase to the more practical solid one, computational methods well set for quantum calculations of
inorganic solids are now being challenged by the molecular crystalline state. In particular, accurate
description of the intramolecular parameters (defined by the fractional coordinates of the asymmetric
unit) and the intermolecular ones (defined by the unit cell parameters) is required as a starting point
for the prediction and study of their properties. Density functional theory (DFT) was recently shown
to be an efficient tool granted that the appropriate exchange-correlation functional (XCF) is used [9,10].
In [9], Ruggiero and co-workers assessed the reliability of a range of XCFs for the optimization of
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three pyridine carboxylic acid crystals and they highlighted the performances ofωB97X [11]. In [10],
we showed the effectiveness of three XCFs (HSEsol [12], PBEsol0, andωB97X [11]) in optimizing the
molecular and crystal structures of three salicylideneanilines. Still, with respect to the XCFs used so
far, a more precise description of the solid state can be obtained by modifications to the DFT energy by
adding London dispersion interactions (Equation (1)) in the form of empirical terms as proposed by
Grimme [13].

EDFT-D = EDFT + Edisp (1)

where Edisp is the empirical dispersion energy. We consider the second iteration of this scheme,
containing less empirical parameters than the first one, and known as DFT-D2. The general expression
for Edisp reads

Edisp = −s6 ∑
g

′
∑
ij

fdmp
(

Rij,g
) Cij

6

R6
ij,g

, (2)

with the first summation running over all lattice vectors, g, and the second one running over all atom
pairs (excluding the self-interaction case, when i = j for g = 0). s6 is a scaling factor depending on the

functional, Cij
6 =

√
Cii

6 Cjj
6 is the dispersion coefficient for the ij pair, Rij,g is the distance between atom i

in the reference cell (g = 0) and atom j in cell g, and fdmp
(

Rij,g
)

is a dampening function specified as

fdmp
(

Rij,g
)
=

[
1 + e−d(

Rij,g
Rvdw

−1)
]−1

(3)

In the latter expression, Rvdw is the sum of the van der Waals radii of atoms i and j and d defines the
steepness of the function. Since this scheme was parameterized for clusters, Ugliengo and coworkers
proposed to scale the coefficients published by Grimme in order to better describe the dispersion
energy in molecular crystals, leading to DFT-D* (these modifications include a decrease of the scaling
factor by a factor 0.95 and a scale up of the atomic van der Waals radii by 1.05 and 1.30 for heavy and
hydrogen atoms, respectively) [14]. This modification results in smaller dispersion energies.

In this paper, we evaluate the effects of these additional empirical dispersion energy terms
(DFT-D2 and DFT-D*) on the optimized geometrical parameters of a molecular crystal from the
salicylideneaniline family, (E)-2-methoxy-6-(pyridine-3-yliminomethyl)phenol (PYV3, Figure 1). This
compound is in fact a molecular switch that can commute between an enol (E) and a keto (K) form,
allowing in parallel to evaluate the effect on the relative energy of these two forms. The theoretical
structures obtained with DFT-D2 and DFT-D* XCFs are compared to X-ray diffraction (XRD) data as
well as to those results obtained with more traditional DFT functionals [10]. This paper is organized as
follows: Section 2 summarizes the key computational aspects (additional details can be found in [10]),
whereas Section 3 presents and discusses the results before conclusions are drawn in Section 4.
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Figure 1. Structure and keto–enol equilibrium of the studied salicylideneaniline: (E)-2-methoxy-6-
(pyridine-3-yliminomethyl)phenol (PYV3). Key bonds and atoms characterizing the geometries are 
highlighted on the enol structure. 

  

Figure 1. Structure and keto–enol equilibrium of the studied salicylideneaniline: (E)-2-methoxy-6-
(pyridine-3-yliminomethyl)phenol (PYV3). Key bonds and atoms characterizing the geometries are
highlighted on the enol structure.

2. Computational Aspects

Calculations were performed with the Crystal14 package [15] using various XCFs: B3LYP [16],
PBE [17], PBE0 [18], PBEsol [19], PBEsol0, and ωB97X [11] with and without including London
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dispersion interactions. This is achieved by using Grimme’s empirical dispersion corrections [13]. First,
the original parameters were employed (DFT-D2), followed by those revised for the crystalline state
(DFT-D*) [14]. The steepness d of the damping function was set to 20 and a cutoff distance of 25 Å
was set for the lattice summations. The default integration grid was used; the truncation criteria for
the bielectronic integrals (TOLINTEG keyword) were set to 8 8 8 8 16 for all XCFs, except forωB97X
where 7 7 7 7 16 was used; the maximum order of the shell multipole is kept to the default, as well as
all convergence criteria for both the SCF cycles and the optimization. A Monkhorst-Pack shrinking
factor of 6 was used, yielding 64 integration points in the irreducible Brillouin zone. Pople’s 6-31G(d,p)
basis set was used as taken from Basis Set Exchange [20,21].

3. Results and Discussion

3.1. Crystal Structures and Molecular Geometries

First, we start by comparing the optimized structures of PYV3 obtained using the three ‘levels’ of
DFT, i.e., DFT, DFT-D2, and DFT-D*, and a selection of XCFs to X-ray diffraction (XRD) data obtained
at 108 K. According to the electron density map and to key bond lengths, at this temperature molecules
are under the enol form [22,23]. The focus is first set on the unit cell volumes (Table 1) and the unit cell
parameters (Figure 2), then on key bond lengths and angles (Figures 3 and 4). Although we compare
the calculated pure enol form at 0 K to the XRD structure, the experimental variations between the low
and room temperature structures (a ~3% increase of volume, up to 0.01 Å differences in bond lengths,
and 0.6◦ in angles) are well within the accuracy that can be obtained by computations.

Considering the unit cell volume, the use of the reference DFT XCFs yield either large errors with
respect to XRD data (B3LYP 17%, PBE 12%, and PBE0 11%) or errors within a satisfying range (≤2%):
PBEsol < −1%, PBEsol0 < −1%,ωB97X < −2%. Addition of empirical dispersion energy overall leads
to smaller unit cell volumes. In the case of DFT-D2, the unit cells are over-contracted, meaning relative
errors ranging from −15 to −8%, while the DFT-D* results tone down this effect to yield volumes
either in closer agreement with the experimental values for those XCFs performing poorly with DFT
(B3LYP −5%, PBE −3%, and PBE0 −6%), or still over-contracting the unit cell volume for PBEsol,
PBEsol0, andωB97X (errors between −11.6 and −11.2%).

Table 1. Differences of unit cell volume [∆V = V(E) − V(XRD), in Å3, and ∆V/V = ∆V/V(XRD),
in %] as calculated with different XCFs and models for PYV3. The 6-31G(d,p) basis set was used for
all calculations.

Method DFT DFT-D2 DFT-D*

B3LYP 189.0 (17.2%) −112.9 (−10.3%) −52.3 (−4.8%)
PBE 129.4 (11.8%) −89.3 (−8.1%) −36.2 (−3.3%)
PBE0 117.3 (10.7%) −112.3 (−10.5%) −61.1 (−5.6%)

PBEsol −5.2 (−0.5%) −169.3 (−15.4%) −122.9 (−11.2%)
PBEsol0 −7.0 (−0.6%) −170.5 (−15.5%) −127.2 (−11.6%)
ωB97X 1 −21.9 (−2.0%) −163.4 (−14.9%) −124.9 (−11.4%)

1 TOLINTEG = 7 7 7 7 16.

Figure 2 shows the unit cell parameter (a, b, and c) variations with respect to XRD data. When
using conventional DFT XCFs (B3LYP, PBE, and PBE0), variations on the unit cell parameters, all are
positive (except for PBE) and larger than 3% (Figure 2a). On the other hand, when using XCFs
optimized for the solid state (PBEsol and PBEsol0) as well as ωB97X the differences with respect to
XRD data are smaller than 3% and not systematically positive (leading to error cancellation on the
estimated unit cell volume, e.g., for PBEsol: the error on a, −2.7%, is partially cancelled by the one on
b, 1.9%, while c is fairly accurately estimated, 0.5%).

In the case of DFT-D* (Figure 2b) the a parameter is strongly underestimated (errors between
−6 and −10%) for all XCFs while the errors on b are positive (except for ωB97X) allowing for error
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compensation on the volume when c is accurate (between −0.8 and 0.4%): B3LYP, PBE, and PBE0.
This explains why the volume is closer to experiment with these three functionals (−5.6 to −3.3%)
than with PBEsol, PBEsol0, and ωB97X (−11.6 to −11.2%). Indeed, for the latter XCFs, the errors
on the a and c parameters are both negative (−2.3 to −3.1%) and are not compensated by the errors
on b. Finally, the DFT-D2 model, Figure 2c, results in strong and systematic underestimations of all
parameters, ranging from −2.5 to −7.7%. A distinction can be made for the a parameter as determined
with B3LYP, PBE, and PBE0 for which the error is smaller, ~3%, than with the other XCFs, ~7%, while
the errors for b and c are similar among the XCFs. This results in B3LYP, PBE, and PBE0 volumes that
are slightly better than the PBEsol, PBEsol0, andωB97X ones.
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Accurate unit cell parameters constitute a good starting point for further investigation of 
thermodynamic or optical properties, at least as long as the bond lengths and angles are also 
accurately modelled. Figure 3 shows key bond length variations with respect to XRD data s along the 
O-C2-C1-C7-N-C8 path (Figure 1). Moreover, two bond length ratios are considered, the N- and C-
ratios, which describe the π-conjugation and are defined as 

C-ratio = d(C1 − C7)/d(C2 = C1), (3)

N-ratio = d(N − C8)/d(C7 = N), (4)

Figure 2. Differences (in %) between the optimized unit cell parameters and the XRD values as a
function of the XCF, ∆ = [X(Calc.) − X(XRD)]/X(XRD): (a) with DFT; (b) with DFT-D*; (c) with
DFT-D2. The XRD values are given on the top of each figure. The 6-31G(d,p) basis set was used for
all calculations.

Accurate unit cell parameters constitute a good starting point for further investigation of
thermodynamic or optical properties, at least as long as the bond lengths and angles are also
accurately modelled. Figure 3 shows key bond length variations with respect to XRD data s along
the O-C2-C1-C7-N-C8 path (Figure 1). Moreover, two bond length ratios are considered, the N- and
C-ratios, which describe the π-conjugation and are defined as

C-ratio = d(C1 − C7)/d(C2 = C1), (4)

N-ratio = d(N − C8)/d(C7 = N), (5)
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The comparison to experiment is not presented for DFT-D2 since we just showed its poor reliability
for unit cell parameters. Figure 3a, for DFT, and Figure 3b, for DFT-D*, highlight the systematic
underestimation (overestimation) of the single (double) bond lengths, with the exception of C1-C7 and
C7=N withωB97X. Still, in the worst case scenarios, these errors are smaller than 0.025 Å and generally
of the order of 0.01 Å. This results in N-/C-ratios that are slightly underestimated, especially in the
case of the two GGA XCFs, PBE and PBEsol, whereas theωB97X’s ratios are slightly overestimated.
The DFT-D* results are extremely similar to the DFT ones since the differences do not exceed 0.003 Å.
This affects the ratios by about the same amount.
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function of the XCF, ∆ = [d(DFT) − d(XRD)]: (a) with DFT; (b) with DFT-D*. The XRD values are given
on the top of each figure. The 6-31G(d,p) basis set was used for all calculations.

As for the valence and torsion angles, variations with respect to XRD data are presented in
Figure 4 for two valence angles (C1-C7-N and C7-N-C8), the three torsion angles involving the C7=N
bond (C2-C1-C7-N, C1-C7-N-C8, and C7-N-C8-C9), one torsion angle associated with the H-bond
(C2-O-N-C7), and one torsion angle describing the global torsion of the molecule (C2-C1-C8-C9).
As before, only DFT and DFT-D* results are discussed (Figure 4a,b, respectively). The absolute errors
on the valence angles are within a [−2◦; 2◦] range for all XCFs using both types of DFT (~2% of
relative error). For the torsion angles, in the case of DFT without dispersion, they are systematically
underestimated, except forωB97X. Furthermore, the error on the molecular torsion angle C2-C1-C8-C9

and, to a smaller extent on the angle C7-N-C8-C9, is quite large for those XCFs that poorly perform for
the unit cell parameters (with errors ranging between −5.7◦ and −10.5◦ for B3LYP, PBE, and PBE0).
For the other XCFs (PBEsol, PBEsol0, and ωB97X), the deviations are much smaller: −3.1◦, −3.1◦,
and −1.0◦, respectively. This highlights the key role of the torsion angles on the unit cell parameters or,
in other words, their interdependence. It is however difficult to say whether the error on the torsion
angles drives the error on the unit cell or vice versa.

When using the DFT-D* model, the amplitude of the errors is greatly reduced compared to
standard DFT, in particular for B3LYP, PBE, and PBE0. Note that the scale of Figure 4a for DFT goes
from −12 to 4◦ while that of Figure 4b for DFT-D*, from −2 to 4◦. For DFT-D*, the errors on the torsion
angles are mainly positive, except for the C1-C7-N-C8 angle. For the important molecular torsion
(C2-C1-C8-C9), the error is around 1◦ for all XCFs, except for PBE0 (<1◦) andωB97X (2◦), which is on
par with the errors of PBEsol, PBEsol0, andωB97X with DFT for the same angle. Accurate molecular
torsions are obtained in parallel to accurate unit cell parameters.
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different XCFs for PYV3. The percentage of keto calculated using Boltzmann’s distribution at 298.15 K 
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Method DFT DFT-D2 DFT-D*
B3LYP 8.3 (3%) 2.7 (25%) 3.4 (20%) 

PBE 2.6 (26%) −2.5 (73%) −1.3 (63%) 
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Figure 4. Differences between the angles of the optimized structure and of the XRD data as a function
of the XCF, ∆ = [a(DFT) − a(XRD)]: (a) with DFT; (b) with DFT-D*. The XRD values are given on the
top of each figure. The 6-31G(d,p) basis set was employed for all calculations.

3.2. Keto–Enol Energies

After investigating the geometrical structures, we now turn to studying the effect of the methods
used on the relative energy of the keto and enol forms (Table 2). Experimentally, XRD measurements
show only the enol form of PYV3 to be present both at low and room temperatures. This highlights
the fact that the enol form (E) is more stable than the keto one (K). The relative energy difference,
∆EKE = E(K) − E(E), is thus expected to be positive. Table 2 shows the relative energies computed
with the selected XCFs. Although ∆EKE varies significantly depending on the XCF, all DFT values are
positive, ranging from 1 to 13 kJ/(mol of asymmetric unit), in agreement with experiment. Addition of
dispersion energy has a more important stabilizing effect on the keto form compared to the enol one,
leading overall to less positive ∆EKE values, if not negative ones like in the case of PBE and PBEsol
[−2.5 and −2.7 kJ/(mol asym. unit) for DFT-D2 and −1.3 and −1.9 kJ/(mol asym. unit) for DFT-D*,
respectively]. Since we know from experiment that ∆EKE is positive, these two XCFs are not considered
any further. DFT-D2 values, ranging from 2.7 to 10.2 kJ/(mol asym. unit), vary little from the DFT-D*
ones (ranging from 3.4 to 9.9 kJ/(mol asym. unit)). Still, as expected, the dispersion energies obtained
with DFT-D2 are larger than with DFT-D*, which favors the keto form hence decreasing the relative
energy difference ∆EKE (with the exception ofωB97X). The energy difference can be used to analyze
the K/E Boltzmann distributions at 298.15 K to further quantify the effects of the dispersion energy.
In the case ofωB97X, barely no change is observed, with the keto population increasing from 1% with
DFT to 2% with DFT-D2/D*. The effects are much larger for the other functionals, and they correspond
to at least a 10% increase of the keto form upon adding dispersion, i.e., from 1 to 14% for PBE0, from 3
to 25% for B3LYP, and from 5 to 20% for PBEsol0.

Table 2. Keto–enol energy differences [∆EKE = E(K) − E(E), in kJ/(mol asym. unit)] as calculated with
different XCFs for PYV3. The percentage of keto calculated using Boltzmann’s distribution at 298.15 K
is given in parentheses. The 6-31G(d,p) basis set was used in all calculations.

Method DFT DFT-D2 DFT-D*

B3LYP 8.3 (3%) 2.7 (25%) 3.4 (20%)
PBE 2.6 (26%) −2.5 (73%) −1.3 (63%)

PBE0 11.0 (1%) 4.5 (14%) 5.3 (11%)
PBEsol 1.0 (40%) −2.7 (75%) −1.9 (68%)

PBEsol0 7.1 (5%) 3.4 (20%) 4.0 (17%)
ωB97X 1 12.9 (1%) 10.2 (2%) 9.9 (2%)

1 TOLINTEG = 7 7 7 7 16.



Crystals 2018, 8, 125 7 of 8

4. Conclusions

Density functional theory has been challenged for the geometry optimization of molecular
switches in their solid crystalline state. By performing comparisons with X-ray diffraction (XRD) data,
a recent contribution [10] has demonstrated that HSEsol [12], PBEsol0, and ωB97X [11] can already be
effective but, in this work, we investigated whether the addition of empirical dispersion energy, as
proposed by Grimme [13], could further improve these results. First, we have shown that the use of the
original dispersion parameters (DFT-D2) over-contracts the unit cell for the selected XCFs (B3LYP [16],
PBE [17], PBE0 [18], PBEsol [19], PBEsol0, andωB97X). On the other hand, the down-scaled parameters
proposed for the solid state (DFT-D*) [14] decrease this effect so that the B3LYP, PBE, and PBE0 XCFs
achieve a rather good agreement with XRD data when considering the unit cell volume, though,
mostly due to error compensations. Looking at the molecular geometries, the main conclusions are:
(i) inclusion of dispersion energy has almost no effect on the bond lengths, though systematically
underestimating (overestimating) the length of the single (double) bonds, with the maximum difference
between DFT and DFT-D* attaining 0.003 Å; (ii) the valence angles are also barely affected when using
DFT-D* compared to DFT with relative errors with respect to XRD data of 2% or less in both cases;
and iii) in the case of the torsion angles, the use of DFT-D* XCFs improves the results since the
variations with respect to XRD data are less spread out. The average errors with DFT-D* are of the
order of 1◦ whereas with DFT, only the PBEsol, PBEsol0, andωB97X XCFs perform well. This means
that an accurate description of the unit cell parameters leads to accurate molecular torsions but that
accurate molecular torsions do not constitute a sufficient condition to fully describe the intermolecular
interactions, and to reproduce the XRD unit cell. Finally, for all XCFs, the relative keto–enol energy
differences ∆EKE have been calculated, showing that the inclusion of dispersion stabilizes the keto form
more than the enol form. As a consequence, the PBE and PBEsol XCFs incorrectly predict the keto form
to be the most stable. The other functionals, with exception ofωB97X, predict a decrease of ∆EKE but
the overall value remains positive. Overall, these results show PBEsol0 and ωB97X XCFs to be reliable
in predicting molecular crystal structures and that there is no clear advantage of using empirical energy
dispersion corrections as originally proposed [13] or later reparameterized [14] for solids.
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