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Abstract: In this paper, we report for the first time an observed thermosalient effect that is not
accompanied with a phase transition. Our experiments found that methscolopamine bromide—a
compound chemically very similar to another thermosalient material, oxitropium bromide—exhibited
crystal jumps during heating in the temperature range of 323–340 K. The same behavior was observed
during cooling at a slightly lower temperature range of 313–303 K. Unlike other thermosalient
solids reported so far, no phase transition was observed in this system. However, similar to
other thermosalient materials, methscolopamine showed unusually large and anisotropic thermal
expansion coefficients. This indicates that the thermosalient effect in this compound is caused by
a different mechanism compared to all other reported materials, where it is governed by sharp
and rapid phase transition. By contrast, thermosalient effect seems to be a continuous process in
methscolopamine bromide.

Keywords: thermosalient materials; jumping crystals; scopolamine bromide; negative thermal
expansion; HT-XRPD

1. Introduction

Materials that exhibit mechanical response to external stimuli (heat or light) in the form of jumping,
bursting, curling, bending, etc. are at the frontier of research into potential actuators at the nanoscale.
Molecular crystals that exhibit such behavior are extremely interesting from not only a scientific aspect,
but also from a technological point of view due to the rapidness of their actuation. The rapidness,
controllability, and high efficiency rate of energy transduction make such materials excellent candidates
for production of smart medical devices or implants, artificial muscles, biomimetic kinetic devices,
electromechanical devices, actuators, materials for electronics, and heat sensitive sensors [1,2]. Among
mechanically responsive single crystals, thermosalient (TS) materials are a class that stand out in
particular [3–11]. Thermosalient materials, colloquially known as “jumping crystals”, are materials that
exhibit mechanical motion during heating/cooling, thus transforming thermal energy into mechanical
work. Although thermosalient compounds are known to belong to different classes of materials—from
simple organic molecules to organometallic compounds, from metal complexes all the way to inorganic
solid—all thermosalient compounds exhibit three common features: 1) crystallinity, 2) negative thermal
expansion for at least of one of the cell parameters, and 3) a phase transition concomitant with a sudden
change of cell parameters. Even though the liberation of crystal stress during the phase transition is the
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most probable explanation for this, a full elucidation that would be valid for all thermosalient systems
is still not established. Recent studies have shown that negative compressibility might be the driving
force for thermosalient effect [12]. Additionally, our own theoretical calculations—performed for the
first time on thermosalient materials—showed that thermosalient effect is caused by the softening of the
low-energy phonon [12]. Despite the fact that the mechanism beyond the thermosalient phenomena is
not yet completely resolved, practical applications are slowly emerging. For example, the movement or
breakage of a crystal of 1,2,4,5-tetrabromobenzene coated with silver has been used for the preparation
of a fuse that is activated by increasing temperature [13].

In the light of all the new cognitions on thermosalient behavior and several years after we
first published a comprehensive study on TS materials, we again return to the anticholinergic
agent oxitropium bromide, which sparked our initial interest in this field [14]. This compound
has two polymorphs (A and B), both belonging to the space group P212121, with subtle differences
in the molecular conformations. The thermally induced single-crystal-to-single-crystal polymorphic
transition from phase A to phase B occurs at T = 331 K. Phase transition is characterized by anisotropic
changes in the cell parameters (∆a: +1%, ∆b: +11%; ∆c: −7%; ∆V: +4%) accompanied by jumping of
crystals up to 2 cm in height while maintaining the crystal integrity. Considering all the accumulated
knowledge about TS materials, this paper endeavors to answer a new question: What would happen
if we introduce a small, subtle change in the chemical composition of oxitropium bromide? We do
this by examining methscopolamine bromide, a compound chemically very similar to oxitropium
bromide. The only difference between oxitropium and scopolamine bromide is the aza-tricyclic part of
the molecules; in oxitropium bromide, the quaterny nitrogen atom has both methyl and ethyl group
as substituents, whereas in methscopolamine bromide, the nitrogen atom bears two methyl groups
(Figure 1).
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Figure 1. Chemical structures of oxitropium bromide and methscopolamine bromide.

The crystal structure of scopolamine bromide has been thoroughly described by Glaser et al.
(orthorhombic space group P212121 at 293(2) K: a = 7.0403(8), b = 10.926(2), c = 23.364(5) Å,
V = 1797.2(6) Å3, Z = 4) [15]. In the present paper, we use variation temperature study to show that
methscopolamine bromide exhibits thermosalient behavior without any associated phase transition.
This is contrary to all previously reported thermosalient materials. Indeed, methscopolamine bromide
is the only known compound in which TS behavior is not concomitant with a phase transition. Results
presented in this work show that thermosalient effect is possible even without phase transition and
that despite all the knowledge we have already acquired in this field, there is still a long way before
the mystery of thermosalient effect is resolved.

2. Materials and Methods

Methscopolamine bromide used for the experiments was purchased from Sigma Aldrich
(Sigma Aldrich, Steinheim, Germany) (>99%, HPLC). It was used as received.

2.1. X-Ray Powder Diffraction (XRPD)

Temperature-induced structural changes were tracked by in situ HT variable temperature (VT)
XRPD using a Philips PW 1710 diffractometer (Philips, Almelo, The Netherlands) equipped with high
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temperature chamber. Diffraction patterns were collected in 2θ range 5–50◦ using monochromatized
CuKα radiation (monochromator: graphite). Data were collected in temperature range of 300 K–458 K.
Crystal structures were refined by the Rietveld method using HighScore Xpert Plus (Version 4.5, March
2016). Thermal expansion coefficients were calculated from the refined unit cell parameters obtained
from variable temperature diffraction data. Linear axial thermal expansion coefficients along the
principal axes were calculated using the PASCal software [16].

2.2. Thermal Analysis

Differential Scanning Calorimetry (DSC) was carried out on Mettler Toledo DSC 822e instrument
(Mettler Toledo, Columbus, OH, USA) in dynamic helium atmosphere (flow rate 50 mL/min) on the
pristine samples in the temperature range between 298 K and 573 K.

2.3. Hot-Stage Microscopy

Mechanical behavior during heating/cooling was recorded using Nikon Eclipse LV150NL (Nikon,
Tokyo, Japan) optical microscope equipped with a Linkam THMS600 hot-stage and OPTOCAM-II color
camera with a resolution of 1600 × 1200 pixels. Crystal behavior was monitored in the temperature
interval from room temperature to the melting point (503 K).

3. Results and Discussion

3.1. Hot-Stage Microscopy and Thermal Analysis

Hot-stage experiments were conducted on methscopolamine bromide crystals in air. During the
first heating run, crystals started jumping at ~323 K. Jumping of crystals continued up to ~340 K. Not
all the crystals jumped in the course of heating, with approximately 50% doing so. Interestingly, during
the cooling run, crystals jumped again, starting at the temperature of ~313 K and finishing at around
303 K. During the second heating run, several crystals jumped again at the same temperature, but the
number of crystals jumping was much smaller compared to the first heating. Hot-stage experiments
were performed many times with different parameters. This included heating/cooling rate (10 to
50 K/min), number of cooling runs (up to five), crystals monitored for jumping when heating/cooling
was stopped at selected temperatures (323 K, 333 K, and 343 K), number of crystals, different crystal
sizes, and crystal orientation.

Several features were observed:

• Jumping (in terms of number of crystal that jumped, their frequency, or strength of the jumps) did
not depend on the heating/cooling rate.

• Jumping did not depend on the size, shape, or orientation of the crystals. As expected, jumps of
the smaller crystals were more forceful, whereas the more massive crystals would only slightly
move or turn over to another facet.

• The number of crystals that jumped decreased drastically with consecutive heating/cooling runs.
For example, if 10 crystals jumped during the first heating run, only 2–3 would jump in the second
heating run.

• Crystals continued to jump sporadically when temperature was maintained for some time within
the jumping temperature interval between 323 K and 333 K. Time period of jumping depended on
the temperature. At 323 K, crystals continued to jump for 10 minutes, whereas the jumps ceased
after 1–2 minutes at 343 K.

• No breaking or cracking of the crystals were observed during the jumping.
• Overall, the jumps of scopolamine bromide crystals were less energetic compared to the crystals

of oxitropium bromide.

Figure 2 shows crystals of scopolamine bromide before jumping (left panel, taken during heating
at the temperature of 315 K) and after jumping (right panel, taken during heating at the temperature
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of 345 K). Crystals that exhibited mechanical motion are marked with blue, green, orange, red, and
purple rectangles. Blue, orange and red rectangles mark crystals that jumped off the hot-stage and left
the recorded area. The green rectangle marks a large crystal that flipped to the other side but remained
in more or less the same position. The purple rectangle marks a crystal that rotated around its axis but
was held at the same place by the larger crystal on top of it.
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Figure 2. Crystals of scopolamine bromide before jumping (left panel) and after jumping (right panel).

Videos of crystals of methscopolamine bromide jumping during heating and cooling are provided
in the supporting information (Video S1 and Video S2). DSC measurements were performed on the
pristine crystals in order to reveal the phase transitions of methscopolamine bromide. In addition,
thermal behavior of methscopolamine bromide was examined in the temperature interval between
298 K and 573 K. Much to our surprise, as can be seen from Figure S1, no maxima corresponding to
phase transitions were observed before the melting point (around 503 K).

3.2. In Situ Variable Temperature X-ray Powder Diffraction (VT XRPD)

In situ XRPD measurements on methscopolamine bromide were performed in the temperature
range of 300 K to 458 K, as shown in Figure 3.

Careful examination of powder diffraction data collected as a function of temperature (prior to
any calculations) revealed quite pronounced shift in diffraction lines. Depending on the hkl index,
diffraction lines shifted towards a lower or a higher 2θ angle; this was the first indication that
scopolamine bromide is characterized by anisotropic thermal expansion. This is best illustrated
in the narrow 2θ range between 16◦ and 17◦ shown in Figure 3; the diffraction line 020 shifted to higher
values of 2θ angle with the increase in temperature, while the diffraction line 112 shifted towards
lower angles, indicating that the unit cell of methscopolamine bromide decreased in b-direction and
expanded in c-direction during heating. The shift of the 112 peak was greater compared to the 002,
suggesting that the absolute value of the thermal expansion coefficient along the c axis was larger than
along the b axis.
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thermally induced shifts of the diffraction lines 020 and 112.

In order to get an insight into the temperature-induced structural changes of scopolamine bromide,
Rietveld refinements were carried out on datasets collected in the temperature range of 308–458 K.
Refinements were carried out starting from the structural model of Glaser [15]. Figure 4 shows
the Rietveld refinements of scopolamine bromide at 308 K and 458 K; refined crystal packings at
308 K and 458 K are showed in overlap manner. Figure 4c,d shows that besides the anisotropic
expansion of cell, there were no significant changes in the crystal packing. An in situ single-crystal
X-ray diffraction study is also underway to get a better understanding of the molecular motion of SMB
with changing temperature. Preliminary data seems to confirm the results of the Rietveld refinements.
Contrary to methscopolamine bromide, quite pronounced differences in molecular structures and
crystal packings have been noted in the case of oxitropium bromide between low-temperature phase A
and high-temperature phase B. In fact, the proposed mechanisms beyond the thermosalient effect—not
only for oxitropium bromide but for most thermosalient materials—was based on the following
scenario: Heating of low-temperature polymorph is accompanied by various conformational changes
of the molecule itself and consequently causes continuous changes of the packing. The shear strain
caused by the distortion of the unit cell, which is almost always very anisotropic, is accrued to the
point where it overweighs the cohesive interactions. At this point, accumulated stress is released and
low-temperature polymorph abruptly switches to high-temperature phase. However, this premise
gives rise to a new question about the rationale behind the thermosalient effect in scopolamine bromide,
a material that exhibits no conformational changes during heating. A somewhat similar situation has
been noted by researchers for 1,2,4,5-tetrabromobenzene. This compound does have a phase transition,
but the difference in the crystal structures and intermolecular interaction energies of the low- and
high-temperature phases is too small to be able to account for the large stress that arises over the
course of the transformation [17].
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Figure 4. (a) Rietveld refinement fit for data collected at 308 K. (b) Rietveld refinement fit for data
collected at 458 K. Experimental data are given as red line, calculated diffraction pattern as blue line,
and the difference curves are given in red underneath the patterns. The green vertical lines represent
positions of Bragg reflections of scopolamine bromide. (c) Overlap of crystal packings of scopolamine
bromide at 308 K (blue) and 458 K (red) viewed along b-direction. (d) Overlap of crystal packings of
scopolamine bromide at 308 K (blue) and 458 K (red) viewed along a-direction.

In the course of Rietveld refinement, unit cell parameters were determined and refined. Thermally
induced changes of the unit cell parameters of methscopolamine bromide are shown in Figure 5
together with thermal expansivity indicatrix. As evident from the Figure 5, cell parameters a and
c showed positive and linear thermal expansion in the investigated temperature range, while
negative expansion occurred along b. A linear model was used to calculate the axial thermal
expansion coefficients, although a slight deviation from linearity was observed along b. Negative
thermal expansion was observed in several inorganic compounds, but it was very rare for organic
compounds [18]. Also, the values of the thermal expansion coefficients were larger than is usual for
molecular solids. Typical values for molecular solids are in the range of 0–20 ×10−6 K−1 [19], and our
values were six times higher for the positive expansion than the maximum typical values (along a and
c axis) and two times higher for the negative expansion (along b axis).
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Since phase transition can be ruled out as a governing force for thermosalient effect in scopolamine
bromide, the only plausible explanation can be that it is caused by the extremely large and anisotropic
thermal expansion. Large anisotropic thermal expansion is characteristic of all reported thermosalient
materials, and this extraordinary feature is shared with methscopolamine bromide as well. At the same
time, this is also what differentiates them from non-thermosalient materials. All thermosalient materials
exhibit uniaxial, or even biaxial, negative thermal expansion, which accommodates extremely large
positive expansion. This preserves the integrity of the crystal lattice and the crystal as a whole during
heating/cooling (during which stress is accumulating in the lattice). More importantly, this probably
allows absorption of large elastic energy, which is released at some point in the form of mechanical
motion of the crystals. The thermosalient mechanism in methscopolamine bromide is a continuous
process unlike other thermosalient materials, which are characterized by sharp phase transition during
which thermosalient effect abruptly takes places. This is evidenced by the quite broad temperature
interval during which the crystals were jumping (more than 10 K), by the lower intensity of jumps
compared to, for example, oxitropium bromide, and by the retained integrity of the crystals.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/8/7/301/s1,
Figure S1: Differential scanning calorimetry of scopolamine bromide; Table S1: Summary of Rietveld structure
refinement for methscopolamine at T= 308 K and T = 458 K; Table S2: Atomic coordinates and isotropic
displacement parameters of methscopolamine at 308 K. Hydrogen atoms were not refined; Table S3: Atomic
coordinates and isotropic displacement parameters of methscopolamine at 458 K. Hydrogen atoms were not
refined. Video S1: heating of methscopolamine bromide (heating rate 10 K/min). Video S2: heating of
methscopolamine bromide (heating rate 20 K/min). Video S3: cooling of methscopolamine bromide (cooling rate
10 K/min). Video S4: cooling of methscopolamine bromide (cooling rate 20 K/min).
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