Bismuth-Based Oxyborate Piezoelectric Crystals: Growth and Electro-Elastic Properties
Abstract
:1. Introduction
2. Experimental Section
2.1. Single Crystal Growth
2.2. High-Resolution X-Ray Diffraction
2.3. Characterization of Electro-Elastic Properties
3. Results and Discussion
3.1. Crystal Quality Evaluation
3.2. Electro-Elastic Constants
3.3. Characterization of Radial Extensional Vibration Mode
3.4. Characterization of the Face Shear Vibration Mode
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Jiang, X.X.; Lin, Z.S.; Wu, Y.C. Borate-based ultraviolet and deep-ultraviolet nonlinear optical crystals. Crystals 2017, 7, 95. [Google Scholar] [CrossRef]
- Bubnova, R.; Volkov, S.; Albert, B.; Filatov, S. Borates-crystal structures of prospective nonlinear optical materials: High anisotropy of the thermal expansion caused by anharmonic atomic vibrations. Crystals 2017, 7, 93. [Google Scholar] [CrossRef]
- Wu, Y.C.; Sasaki, T.; Nakai, S.; Yokotani, A.; Tang, H.G.; Chen, C.T. CsB3O5: A new nonlinear optical crystal. Appl. Phys. Lett. 1993, 62, 2614–2615. [Google Scholar] [CrossRef]
- Aka, G.; Kahn-Harari, F.; Mougel, F.; Vivien, D. Linear- and nonlinear-optical properties of a new gadolinium calcium oxoborate crystal, Ca4GdO(BO3)3. J. Opt. Soc. Am. B 1997, 14, 2238–2247. [Google Scholar] [CrossRef]
- Sasaki, T.; Mori, Y.; Yoshimura, M.; Yap, Y.K.; Kamimura, T. Recent development of nonlinear optical borate crystals: Key materials for generation of visible and UV light. Mater. Sci. Eng. 2000, 30, 1–54. [Google Scholar] [CrossRef]
- Mori, Y.; Yap, Y.K.; Kamimura, T.; Yoshimura, M.; Sasaki, T. Recent development of nonlinear optical borate crystals for UV generation. Opt. Mater. 2002, 19, 1–5. [Google Scholar] [CrossRef]
- Hu, C.; Mutailipu, M.; Wang, Y.; Guo, F.J.; Yang, Z.H.; Pan, S.L. The activity of lone pair contributing to SHG response in bismuth borates: A combination investigation from experiment and DFT calculation. Phys. Chem. Chem. Phys. 2017, 19, 25270–25276. [Google Scholar] [CrossRef]
- Lin, Z.S.; Wang, Z.Z.; Chen, C.T.; Lee, M.H. Mechanism for linear and nonlinear optical effects in monoclinic bismuth borate (BiB3O6) crystal. J. Appl. Phys. 2001, 90, 5585–5590. [Google Scholar] [CrossRef]
- Levin, E.M.; Mcdaniel, C.L. The System Bi2O3-B2O3. J. Am. Ceram. Soc. 1962, 45, 355–360. [Google Scholar] [CrossRef]
- Burianer, M.; Mϋhlberg, M. Crystal growth of boron sillenite Bi24B2O39. Cryst. Res. Technol. 1997, 32, 1023–1027. [Google Scholar] [CrossRef]
- Filatov, S.; Shepelev, Y.; Bubnova, R.; Sennova, N.; Egorysheva, A.V.; Kargin, Y.F. The study of Bi3B5O12: Synthesis, crystal structure and thermal expansion of oxoborate Bi3B5O12. J. Solid State Chem. 2004, 177, 515–522. [Google Scholar] [CrossRef]
- Becker, P.; Liebertz, J.; Bohatý, L. Top-seeded growth of bismuth triborate, BiB3O6. J. Cryst. Growth 1999, 203, 149–155. [Google Scholar] [CrossRef]
- Zhang, K.C.; Chen, X.A.; Wang, X.M. Review of study on bismuth triborate (BiB3O6) crystal. J. Synth. Cryst. 2005, 34, 438–443. [Google Scholar]
- Wang, Z.P.; Teng, B.; Fu, K.; Xu, X.G.; Song, R.B.; Du, C.L.; Jiang, H.D.; Wang, J.Y.; Liu, Y.G.; Shao, Z.S. Efficient second harmonic generation of pulsed laser radiation in BiB3O6 (BIBO) crystal with different phase matching directions. Opt. Commun. 2002, 202, 217–220. [Google Scholar] [CrossRef]
- Barbier, J.; Penin, N.; Cranswick, L.M. Melilite-type borates Bi2ZnB2O7 and CaBiGaB2O7. Chem. Mater. 2005, 17, 3130–3136. [Google Scholar] [CrossRef]
- Li, F.; Pan, S.L.; Hou, X.L.; Yao, J. A novel nonlinear optical crystal Bi2ZnOB2O6. Cryst. Growth Des. 2009, 9, 4091–4095. [Google Scholar] [CrossRef]
- Teng, B.; Wang, J.Y.; Wang, Z.P.; Hu, X.B.; Jiang, H.D.; Liu, H.; Cheng, X.F.; Dong, S.M.; Liu, Y.G.; Shao, Z.S. Crystal growth, thermal and optical performance of BiB3O6. J. Cryst. Growth 2001, 233, 282–286. [Google Scholar] [CrossRef]
- Yu, F.P.; Lu, Q.M.; Zhang, S.J.; Wang, H.W.; Cheng, X.F.; Zhao, X. High-performance, high-temperature piezoelectric BiB3O6 crystals. J. Mater. Chem. C 2015, 3, 329–338. [Google Scholar] [CrossRef]
- Li, F.; Hou, X.L.; Pan, S.L.; Wang, X. Growth, structure, and optical properties of a congruent melting oxyborate, Bi2ZnOB2O6. Chem. Mater. 2009, 21, 2846–2850. [Google Scholar] [CrossRef]
- Chen, F.F.; Wang, X.L.; Wei, L.; Yu, F.P.; Tian, S.W.; Jiang, C.; Li, Y.L.; Cheng, X.F.; Wang, Z.P.; Zhao, X. Thermal properties and CW laser performances of pure and Nd doped Bi2ZnB2O7 single crystals. CrystEngComm 2018, 20, 7094–7099. [Google Scholar] [CrossRef]
- Chen, F.F.; Jiang, C.; Tian, S.W.; Yu, F.P.; Cheng, X.F.; Duan, X.L.; Wang, Z.P.; Zhao, X. Electroelastic features of piezoelectric Bi2ZnB2O7 crystal. Cryst. Growth Des. 2018, 18, 3988–3996. [Google Scholar] [CrossRef]
- Kauffmann, P.; Ploix, M.A.; Chaix, J.F.; Gueudré, C.; Corneloup, G.; Baqué, F. Study of lamb waves for non-destructive testing behind screens. EPJ Web Conf. 2018, 170, 1–3. [Google Scholar] [CrossRef]
- Rguiti, M.; Grondel, S.; El youbi, F.; Courtois, C.; Lippert, M.; Leriche, A. Optimized piezoelectric sensor for a specific application: Detection of lamb waves. Sens. Actuators A 2006, 126, 362–368. [Google Scholar] [CrossRef]
- Giurgiutiu, V. Structural Health Monitoring, with Piezoelectric Wafer Active Sensors; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- FrÖhlich, V.R.; Bohatý, U.L.; Lieberta, J. Die kristallstruktur von wismutborat, BiB3O6. Acta Cryst. 1984, C40, 343–344. [Google Scholar] [CrossRef]
- Brese, N.E.; Keeffe, M.O. Bond-valence parameters for solids. Acta Cryst. 1991, B47, 192–197. [Google Scholar] [CrossRef]
- Maggard, P.A.; Nault, T.S.; Stern, C.L.; Kenneth, R.P. Alignment of acentric MoO3F33- anions in a polar material:(Ag3MoO3F3)(Ag3MoO4)Cl. J. Solid State Chem. 2003, 175, 27–33. [Google Scholar] [CrossRef]
- Su, Z.Q.; Ye, L.; Lu, Y. Guided lamb waves for identification of damage in composite structures: A review. J. Sound Vib. 2006, 295, 753–780. [Google Scholar] [CrossRef]
- Kuypers, J.H.; Pisano, A.P. Interpolation technique for fast analysis of surface acoustic wave and lamb wave devices. Jpn. J. Appl. Phys. 2009, 48, 07GG07. [Google Scholar] [CrossRef]
- Schmitt, M.; Olfert, S.; Rautenberg, J.; Lindner, G.; Henning, B.; Reindl, L.M. Multi reflection of lamb wave emission in an acoustic waveguide sensor. Sensors 2013, 13, 2777–2785. [Google Scholar] [CrossRef]
- Li, Y.; Qin, Z.K. Measurement of Piezoelectric and Ferroelectric Materials; Science Press: Beijing, China, 1984. [Google Scholar]
- Bohm, J.; Chilla, E.; Flannery, C.; Frohlich, H.J.; Hauke, T.; Heimann, R.B.; Hengst, M.; Straube, U. Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14(LGS), La3Ga5.5Nb0.5O14(LGN) and La3Ga5.5Ta0.5O14 (LGT) II. Piezoelectric and elastic properties. J. Cryst. Growth 2000, 216, 293–298. [Google Scholar] [CrossRef]
Empirical Formula | α-BiB3O6 | Bi2ZnB2O7 |
---|---|---|
Formula weight | 337.41 | 616.97 |
symmetry | monoclinic | orthorhombic |
space group | C2 | Pba2 |
a (Å) | 7.116 (2) | 10.8268 (4) |
b (Å) | 4.993 (2) | 11.0329 (4) |
c (Å) | 6.508 (3) | 4.8848 (2) |
V (Å3) | 222.69 | 583.49 (19) |
Z | 2 | 4 |
density (Mg/m3) | 5.033 | 7.036 |
(pm2·N−1) | |||||||||||||
s11 | s12 | s13 | s15 | s22 | s23 | s25 | s33 | s35 | s44 | s46 | s55 | s66 | |
BIBO | 36.2 | −48.0 | 2.9 | 17.9 | 85.0 | −2.6 | −23.8 | 10.2 | 9.3 | 65.0 | 11.5 | 26.5 | 19.1 |
BZBO | 8.2 | −3.9 | −1.5 | \ | 11.8 | −3.5 | \ | 8.2 | \ | 17.3 | \ | 17.2 | 20.5 |
(1010 N·m−2) | |||||||||||||
c11 | c12 | c13 | c15 | c22 | c23 | c25 | c33 | c35 | c44 | c46 | c55 | c66 | |
BIBO | 12.4 | 6.1 | 1.0 | −3.2 | 4.7 | −0.9 | 0.4 | 15.7 | −7.0 | 1.7 | −1.0 | 8.8 | 5.9 |
BZBO | 17.0 | 7.4 | 6.3 | \ | 13.1 | 6.9 | \ | 16.4 | \ | 5.8 | \ | 5.8 | 4.9 |
ε11 | ε13 | ε22 | ε33 | ||||||||||
BIBO | 12.0 | −1.4 | 8.4 | 13.8 | |||||||||
BZBO | 36.8 | \ | 18.5 | 18.3 | |||||||||
Piezoelectric Charge Coefficients dij (pC/N) | |||||||||||||
d14 | d15 | d16 | d21 | d22 | d23 | d24 | d25 | d31 | d32 | d33 | d34 | d36 | |
BIBO | 10.9 | \ | 13.9 | 16.7 | 40.0 | 2.5 | \ | 4.3 | \ | \ | \ | 18.7 | 13.0 |
BZBO | \ | 1.4 | \ | \ | \ | \ | −5.5 | \ | 2.5 | −6.4 | 1.1 | \ | \ |
Electromechanical Coupling Factors kij (%) | |||||||||||||
k14 | k15 | k16 | k21 | k22 | k23 | k24 | k25 | k31 | k32 | k33 | k34 | k36 | |
BIBO | 13.1 | \ | 30.9 | 32.1 | 50.0 | 9.2 | \ | 9.6 | \ | \ | \ | 21.0 | 26.9 |
BZBO | \ | 1.8 | \ | \ | \ | \ | 10.7 | \ | 8.8 | 14.5 | 3.1 | \ | \ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, F.; Cheng, X.; Yu, F.; Wang, C.; Zhao, X. Bismuth-Based Oxyborate Piezoelectric Crystals: Growth and Electro-Elastic Properties. Crystals 2019, 9, 29. https://doi.org/10.3390/cryst9010029
Chen F, Cheng X, Yu F, Wang C, Zhao X. Bismuth-Based Oxyborate Piezoelectric Crystals: Growth and Electro-Elastic Properties. Crystals. 2019; 9(1):29. https://doi.org/10.3390/cryst9010029
Chicago/Turabian StyleChen, Feifei, Xiufeng Cheng, Fapeng Yu, Chunlei Wang, and Xian Zhao. 2019. "Bismuth-Based Oxyborate Piezoelectric Crystals: Growth and Electro-Elastic Properties" Crystals 9, no. 1: 29. https://doi.org/10.3390/cryst9010029
APA StyleChen, F., Cheng, X., Yu, F., Wang, C., & Zhao, X. (2019). Bismuth-Based Oxyborate Piezoelectric Crystals: Growth and Electro-Elastic Properties. Crystals, 9(1), 29. https://doi.org/10.3390/cryst9010029