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Abstract: The adhesion feature of graphene on metal substrates is important in graphene synthesis,
transfer and applications, as well as for graphene-reinforced metal matrix composites. We investigate
the adhesion energy of graphene nanosheets (GNs) on iron substrate using molecular dynamic
(MD) simulations. Two Fe–C potentials are examined as Lennard–Jones (LJ) pair potential and
embedded-atom method (EAM) potential. For LJ potential, the adhesion energies of monolayer
GN are 0.47, 0.62, 0.70 and 0.74 J/m2 on the iron {110}, {111}, {112} and {100} surfaces, respectively,
compared to the values of 26.83, 24.87, 25.13 and 25.01 J/m2 from EAM potential. When the number
of GN layers increases from one to three, the adhesion energy from EAM potential increases. Such a
trend is not captured by LJ potential. The iron {110} surface is the most adhesive surface for monolayer,
bilayer and trilayer GNs from EAM potential. The results suggest that the LJ potential describes a
weak bond of Fe–C, opposed to a hybrid chemical and strong bond from EAM potential. The average
vertical distances between monolayer GN and four iron surfaces are 2.0–2.2 Å from LJ potential and
1.3–1.4 Å from EAM potential. These separations are nearly unchanged with an increasing number
of layers. The ABA-stacked GN is likely to form on lower-index {110} and {100} surfaces, while the
ABC-stacked GN is preferred on higher-index {111} surface. Our insights of the graphene adhesion
mechanics might be beneficial in graphene growing, surface engineering and enhancement of iron
using graphene sheets.

Keywords: graphene; adhesion mechanics; graphene/Fe composite; surface orientation; molecular
dynamics; interatomic potential

1. Introduction

Graphene, a single layer of graphite, possesses an intrinsic strength of 130 GPa [1,2], Young’s
modulus of 1.0 Tpa [3] and many other extraordinary physical and chemical properties [4–6], as well
as a wide range of applications [7]. To synthesis high-quality graphene on a large scale, growing
graphene on metals such as Cu [8,9], Ni [10], Fe [11] and others [12] is a common approach. Graphene
can also be a good candidate for the reinforcement of a metal matrix to enhance its mechanical
behavior [13]. In both applications, graphene/metal contact is inevitable. However, since graphene is a
2D material with ultra-high specific surface area (~2600 m2/g) [14], it has a tendency to be crumpled
intrinsically [15,16], which can greatly change the inherent properties of graphene. Hence, interfacial
properties between graphene and metal substrate are important in graphene synthesis [17] and the
design of graphene-reinforced metal matrix composites [18].

Many attempts have been made to explore the interfacial characteristics of graphene and metals,
such as quantification of adhesion energy of graphene to metallic substrate. Among differently
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scaled simulation methods [17,19–21], first principle (FP) and molecular dynamic (MD) methods are
commonly used to calculate adhesive energy, for example graphene on Ni, Cu and other seven metallic
substrates by FP [17], on Fe by FP [22] and on Ti by MD [23]. There are also a few experimental
works which directly measured the adhesion energy of graphene to metallic substrates, such as Cu
and Ni [24,25]. However, the measured adhesion energy of graphene on Cu substrate had a large
discrepancy, with results of 0.72 J/m2 [24] and 12.75 J/m2 [25]. The adhesion energy from FP calculation
was about 0.40 J/m2 [26]. Although FP calculations can provide some material properties at an atomic
scale, they limit the size of the studied system to only a few hundred atoms, where system size may
play a significant role on adhesion energy of graphene and metals [27], resembling J-integral at crack
propagation. This limitation could be overcome by employing the MD method, but the MD results
strongly depend on the accuracy of interatomic potential. Moreover, the adhesion of graphene on Cu
substrate is commonly known as a weak physisorption [17], while that on Ni substrate is believed
as a strong chemisorption, which was also measured differently with the experimental values of
6.76 J/m2 [28] and 72.7 J/m2 [25], compared with 1.64 J/m2 from FP [26]. Therefore, the adhesion energy
of graphene on metal substrate needs to be further clarified.

The interface features between graphene and iron have attracted great attention since iron is the
most widespread transition metal, and it could yield a considerable price reduction in comparison
with using other transition metal substrates. You et al. studied graphene growth on iron substrate
by chemical vapor deposition (CVD) and found that cooling rate and atomic structure played an
important role on the graphene growth [11]. In [22], the growth of graphene on epitaxial iron films
was realized by CVD at relatively low temperatures and the resulting graphene monolayer created
a novel periodically corrugated pattern on Fe {110} substrate. Graphene is believed to be strongly
chemisorbed on iron due to a rich interaction between Fe and C, which is beneficial for interfacial
strength [22,29] and also affects load transfer on graphene-reinforced metal matrix composites. In our
previous work [30], we studied the mechanical properties of graphene nanosheet (GN)-reinforced iron
matrix composite by MD simulation and the results showed that when the GN was parallel to the
{110} plane of iron matrix, the shear modulus and yield stress of the composite increased by 107% and
1400%, respectively, compared to unreinforced Fe. However, a systematic study about adhesion energy
of graphene on iron substrate is still lacking.

In this work, we systematically study the adhesion energy of monolayer graphene nanosheet
(GN) on the {110}, {111}, {112} and {100} surfaces of a single crystalline iron using MD simulations and
the corresponding morphologies of GN are further analyzed. The adhesion energies for bilayer and
trilayer GNs with different stacking styles on iron surfaces are compared since the GN composed of a
few graphene layers possesses similar properties to those of monolayer graphene but is much easier to
produce [31]. In addition, the bilayer or trilayer graphene are also of interest due to their tunable band
gaps, which are crucial in transistor applications [17].

2. Molecular Dynamic Setup and Interatomic Potentials

2.1. Molecular Dynamic Setup

Molecular dynamic (MD) is a well-established and powerful tool to investigate various properties
with large-scale atomic insights [32]. In this study, the classical MD simulation was performed by
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) code [33].

The schematic of the MD setting for a graphene nanosheet on iron substrate is shown in Figure 1.
The simulation cell was about 100 × 100 × 100 Å3, which included a cubic single crystalline iron
substrate and a square graphene nanosheet (GN) above. The substrate contained about 90,000 Fe
atoms and the GN contained about 4000 C atoms in each layer. The lattice constant of BCC α–Fe matrix
was 2.86 Å and the C–C bond length was 1.42 Å in the GN. The lateral x and y directions were set
to periodic boundary conditions and the z direction was fixed boundary. The armchair and zigzag
directions of the GN were parallel to x and y axes, respectively.
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Figure 1. (a) Schematic of molecular dynamic (MD) setting for a graphene nanosheet (blue) 
located on iron (grey) surface with different orientations; (b) atomic structure of a bilayer 
graphene nanosheet (GN) with AB or AA stacking; and (c) atomic structure of a trilayer GN 
with ABA or ABC stacking. 
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and trilayer graphene. We also considered stacking sequence of multilayer graphene, where 
the two typical stackings of AB or AA for bilayer GN and ABA or ABC for trilayer were used, 
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faces were ordered in [112ሜ ], [111] and [11ሜ0] respectively. For the {111}, {112} and {100} surfaces, 
the axis settings were x [11ሜ0], y [112ሜ ], z [111]; x [111], y [11ሜ0], z [112ሜ ]; and x [100], y [010], z [001], 
respectively. After energy minimization, the GN reached its stable structure and the adhesion 
energy of GN and the iron substrate was obtained. 

The energy minimization was performed as follows: firstly, we applied 300 K temperature 
using Nose–Hoover algorithm [34] and set zero pressure in x, y and z directions under NPT 
ensemble to reduce internal stress and run the system to reach the thermostable state. Then, a 
quenching process was applied to minimize the total potential energy of the whole system. 
Afterward, the adhesion energy E, defined as the energy per unit area to connect graphene 
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Figure 1. (a) Schematic of molecular dynamic (MD) setting for a graphene nanosheet (blue) located on
iron (grey) surface with different orientations; (b) atomic structure of a bilayer graphene nanosheet
(GN) with AB or AA stacking; and (c) atomic structure of a trilayer GN with ABA or ABC stacking.

Three types of the GNs were used in this simulation, which contained a monolayer, bilayer and
trilayer graphene. We also considered stacking sequence of multilayer graphene, where the two typical
stackings of AB or AA for bilayer GN and ABA or ABC for trilayer were used, as shown in Figure 1b.
The GN was initially placed 1.0 Å above the iron substrate with the {110}, {111}, {112} and {100} iron
surfaces. To achieve {110} surface, the atoms along x, y, and z faces were ordered in [112], [111] and
[110] respectively. For the {111}, {112} and {100} surfaces, the axis settings were x [110], y [112], z [111];
x [111], y [110], z [112]; and x [100], y [010], z [001], respectively. After energy minimization, the GN
reached its stable structure and the adhesion energy of GN and the iron substrate was obtained.

The energy minimization was performed as follows: firstly, we applied 300 K temperature using
Nose–Hoover algorithm [34] and set zero pressure in x, y and z directions under NPT ensemble to
reduce internal stress and run the system to reach the thermostable state. Then, a quenching process
was applied to minimize the total potential energy of the whole system. Afterward, the adhesion
energy E, defined as the energy per unit area to connect graphene nanosheet with iron substrate, was
calculated by [17,23,35]:

E =
(EFe + EGN) − EGN/Fe

AGN
(1)

where EGN, EFe and EGN/Fe are the relaxed energies for graphene nanosheet, the clean iron substrate
and the combined system, respectively and AGN is the interfacial area of graphene nanosheet.

2.2. Interatomic Potentials for Graphene and Iron System

When using classical MD to calculate adhesive energy of graphene to a metallic substrate, we need
to employ empirical interatomic potential to mimic the interaction between C and metal. Therefore,
the simulated results strongly depend on the accuracy of the potential. The C–metal interaction is
commonly described by Lennard–Jones potential. The adhesion energies of graphene on Cu, Fe and Ni
substrates from experiments and simulations are summarized in Table 1. There is a large discrepancy
between them.

There are several types of Fe–C interatomic potentials, such as Lennard–Jones (LJ) pair potential [35],
embedded-atom method (EAM) potential [40], modified EAM potential [38] and reactive force field
(ReaxFF) potential [39]. Using MD with different types of Fe–C potentials, the adhesive energy of
graphene on Fe {110} substrate was compared [35]. Then the LJ potential with two determined
parameters of σC-Fe = 2.221 Å, εC-Fe = 0.043 eV and the cutoff radius of Rcut = 3σC-Fe was used to study
the tribological features of graphene-coated Fe {110} surface. The LJ potential is commonly used to
describe the weak interaction between the C and metallic atoms (e.g., van der Waals interaction). The
reason to choose the LJ potential in [35] was that graphene on Fe {110} surface was believed to be
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stable at temperatures below 630 ◦C and few iron carbides could be formed [41]. The main failing of
the LJ potential may be from the poor performance of various covalent bonding due to its simplicity
and spherical symmetry of bonding [42]. There are some experimental works which indicated that
graphene is chemisorbed on iron substrate. At present, the EAM potential of Fe–C has already been
developed to describe chemical interactions of iron carbides [29,43–47], such as ferritic FeC solid
solution or cementite (Fe3C) [11,40]. In our work, both LJ [35] and EAM potentials [40] are used to
describe the Fe–C interaction and the main purpose is to reveal the effect of the Fe–C bonding features
on adhesion energy and graphene structure on different iron surfaces.

Table 1. Comparison of adhesion energy (E) of graphene (Gr) to Fe, Cu and Ni substrates, obtained
from experiments, first-principle (FP) simulation and molecular dynamic (MD) with different types of
interatomic potentials.
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The results show that using the LJ potential, the predicted adhesion energies (Es) of the monolayer
GN and Fe substrate are 0.47 J/m2 (or 0.076 eV/C atom), 0.62, 0.70 and 0.74 J/m2 on the {110}, {111},
{112} and {100} surfaces, respectively, with the average vertical distance (D1) between the GN layer
and iron surfaces of 2.0–2.2 Å. For comparison, a calculated E for graphene on Fe {110} surface was
about 0.89 J/m2 from a FP simulation [29]. On the other hand, when using EAM potential, the Es are
26.83 J/m2 (or 4.36 eV/C atom), 24.87, 25.13 and 25.01 J/m2 on the {110}, {111}, {112} and {100} surfaces,
respectively, with the corresponding D1 of 1.3–1.4 Å. The E order matches the surface stability of
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BCC α-iron where surface energies are 2.37, 2.57, 2.58 and 2.68 J/m2 on {110}, {100}, {112} and {111}
surfaces, respectively [51]. In comparison, the MD-calculated Es between graphene monolayer and
Fe {110} surface were 0.94, 40.09 and 15.04 J/m2 using LJ, MEAM and ReaxFF potentials of Fe–C,
respectively [35]. Since this LJ potential of Fe–C [35] is used in our work, the E of the GN on Fe {110} is
also calculated using the same MD setup in reference and is 0.72 J/m2, close to the reference value of
0.94 J/m2, where the difference might be from different potentials of Fe–Fe interaction.

In Table 2, the D1s on different surfaces from LJ are almost the same within the range of 2.0–2.2 Å,
while those from EAM are in the range of 1.3–1.4 Å. In both cases, the D1 on the {111} surface is shorter
than others. It may be caused by different Fe-Fe layer spacing under the surfaces, which are 2.02,
0.82, 1.17 and 1.43 Å under the {110}, {111}, {112} and {100} surfaces of BCC α-iron, respectively. In
comparison, the D1s between the GN and the Fe {110} surface calculated from MD using LJ, MEAM and
ReaxFF potentials were 2.2, 1.3 and 4.6 Å, respectively [35] and a reference value from DFT calculation
was about 2.1 Å [29].

Comparing with the MD results from different potentials, the adhesion energy of GN and the iron
surface from EAM potential is two orders of magnitude higher than that from LJ, and the GN on the
{110} surface has the highest adhesion strength from EAM. Since the EAM potential includes several
covalent types of Fe–C bonding [40,42] and should be better to capture more realistic chemisorption
features [11,22,41], it implies that the predicted adhesion energy from LJ potential describes a weak
interaction of Fe–C, while the adhesion from EAM can perform a hybrid and strong interaction
occurring in GN/Fe interface.

In addition, we also considered the effect of initial distance between the GN and the iron surface
on MD results using EAM potential. If we set the initial distance of 2.5 Å above the substrate in the
MD model, the adhesion energies at local energy minimum state were about 23.25, 22.70, 23.83 and
22.20 J/m2, respectively, on the {110}, {111}, {112} and {100} surfaces, corresponding to the D1s of 2.2, 1.8,
1.7 and 2.1 Å.

The distributions of the length (Lb) of Fe–C bonding on the monolayer GN and Fe {110}, {111},
{112} and {100} surfaces are provided in Figure 2. It shows that the distribution of the Lb from EAM
potential is discontinuous within the two ranges of 1.8–2.0 Å and 2.3–2.5 Å, while it becomes only one
continuous range of 2.2–2.8 Å from LJ potential. Furthermore, the maximum frequency of the Lb from
EAM is greater and the corresponding length is shorter than those from LJ one. The difference of the
Lb from EAM and LJ potentials indicates that the bonding type from EAM is more complex than that
from LJ. Moreover, different bonding will further affect surface morphology of GN on the iron surfaces.

The suspended pristine graphene sheet without metallic substrate is intrinsically rippled [15,52]
and the graphene layer can form a unique structure called a moiré pattern when it is on different
metallic surfaces. Surface morphologies of monolayer GN located on four iron surfaces have different
moiré patterns, as shown in Figure 3. It is found that the corrugation from LJ potential varies smoothly
over several moiré unit cells. Due to the weak interaction provided by LJ, the GN leads to a partial
disordered moiré pattern and a rather random distribution of ripples has been probed, which is
different from previous experimental results [22]. This implies that the LJ potential may provide
improper binding sites for GN adherence. On the contrary, a sharp and ordered periodic moiré pattern
with high corrugation is found from MD simulation using EAM potential, where the corrugation starts
a precipitous decline in the boundaries of moiré unit cells, in good agreement with the experimental
results [22].
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The GN morphologies on differently oriented substrates are quite different. In detail, the moiré
pattern on the Fe {110} has long equidistant stripes with a periodicity of 4 nm, as shown in Figure 3a.
Along the <112> direction, the distance between Fe–Fe atoms is 1.166 Å and every nine graphene
rings can match 18 rows of the iron atoms, while seven graphene rings can match six rows of the iron
atoms along the <100> direction. On Fe {111} surface, a typical morphology of the moiré structure is
presented in Figure 3b, where the typical geometrical corrugation is dictated by the lattice mismatch
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and connected with a buckling of the graphene layer indicating local variations of the binding to
iron. When GN is on the {112} surface, the moiré pattern is less evident, and the identification and
characterization of the minimal coincidence supercell is difficult, as shown in Figure 3c. For GN on Fe
{100}, a cable-like structure appears on GN and the unit cell of moiré patterning is much smaller than
the other three surfaces in Figure 3d.

In Figure 3, the maximum lengths of the corrugation are about ∼1.65 Å for {110}, ∼1.42 Å for
{111}, ∼1.22 Å for {112} and ∼1.34 Å for {100} from EAM potential, which are higher than those from
LJ potential with ∼0.82 Å for {110}, ∼0.71 Å for {111}, ∼1.01 Å for {112} and ∼0.7 Å for {100}. The
distributions of the vertical distance (D1) between the C atoms in the monolayer GN and the Fe {110},
{111}, {112} and {100} surfaces are further provided, as shown in Figure 4. It is found that the D1s from
EAM potential are 1.3–1.4 ± 0.8 Å, and the distribution of D1 is more scattered and flatter than that from
LJ one with the D1s of 2.0–2.2 ± 0.4Å. The distribution on four surfaces from EAM is less different than
that from LJ. The maximum frequency (FM) of the D1 from EAM is smaller than that from LJ, and the
FM on Fe {112} has always the highest value, while that on Fe {110} is the lowest from both potentials.
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GN and the (a) {110}; (b) {111}; (c) {112}; and (d) {100} surface of iron substrates, calculated from MD
simulations using LJ and EAM potentials.

The structure for GN/Fe surface may also be affected by the layer number of graphene, the stacking
style of multilayer graphene and defects on graphene [53–55]. For example, when the graphene has
multiple layers, the graphene edge becomes a staggered edge, a double layer folded back on itself or
a small scroll to resemble a nanotube [55]. Therefore, we continue to examine adhesion features of
bilayer and trilayer GNs on four surfaces in the following section.

3.2. Adhesion Features of Bilayer or Trilayer Graphene Nanosheet and Iron Surfaces

When the number of GN layers increases, the adhesion energy (E) from EAM potential increases.
On the contrary, there is no clear trend from LJ. The Es of the AB-stacked bilayer GN from LJ (EAM)
potential are 0.80 (26.96), 0.22 (25.00), 0.49 (25.08) and 0.15 (25.29) J/m2 on the {110}, {111}, {112} and
{100} iron surfaces, respectively, as listed in Table 3. For the AA-stacked GN from LJ (EAM) potential,
the Es are −1.22 (27.00), −0.62 (24.91), −0.56 (25.56) and 0.47 (26.33) J/m2 on the {110}, {111}, {112} and
{100} iron surfaces, respectively. It is also found that the E from EAM is much less sensitive to stacking,
compared to that from LJ. The results show that the AB-stacked bilayer GN on Fe {110} surface has a
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higher adhesion strength than that on the other surfaces and the AA-stacked bilayer GN is more likely
to form on higher-index surfaces of {100}.

Table 3. Adhesion energy (E) and average vertical distance (Di) between the C atoms in the ith layer
of GN and iron surface, where a bilayer or trilayer GN is located on iron substrate with different
surface orientation.

GN/Fe
{110} {111} {112} {100}

Adhesion
LJ EAM LJ EAM LJ EAM LJ EAM

Bilayer
GN

AB-stack

E (J/m2) 0.80 26.93 0.22 25.00 0.49 25.08 0.15 25.29
D1 (Å) 2.2 1.4 2.0 1.3 2.0 1.4 2.2 1.4
D2 (Å) 5.6 4.9 5.5 4.8 5.5 4.9 5.6 4.9

AA-stack
E (J/m2) −1.22 27.00 −0.62 24.91 −0.56 25.26 0.47 26.33
D1 (Å) 2.2 1.4 2.0 1.2 2.0 1.4 2.2 1.4
D2 (Å) 5.6 4.9 5.5 4.9 5.5 4.9 5.6 4.9

Trilayer
GN

ABA-stack

E (J/m2) 0.12 28.41 −1.03 25.02 −0.86 25.70 0.28 25.03
D1 (Å) 2.2 1.4 2.0 1.3 2.0 1.4 2.2 1.5
D2 (Å) 5.6 4.9 5.5 4.7 5.5 4.8 5.6 5.6
D3 (Å) 9.0 8.4 8.9 8.2 8.9 8.2 9.1 8.4

ABC-stack

E (J/m2) −0.1 27.36 0.48 25.08 −0.18 25.76 −0.22 24.99
D1 (Å) 2.2 1.4 2.0 1.3 2.0 1.4 2.2 1.5
D2 (Å) 5.6 4.9 5.5 4.7 5.5 4.9 5.6 5.0
D3 (Å) 9.1 8.3 8.9 8.2 8.9 8.3 9.1 8.4

Using EAM potential, the D1 for the average vertical spacing between the bottom-layered C atoms
in GN and the iron surface is within the range of 1.3–1.4 Å, and the D2 for the average vertical spacing
between the top-layered C atoms and the iron surface is in the range of 4.8–5.0 Å, while the D1 is
2.0–2.2 Å and the D2 is 5.5–5.6 Å from LJ.

Next, we briefly compare surface morphologies of a bilayer GN with AB and AA stacking on the
Fe {110} surface, as shown in Figure 5. It is found that in the corresponding layer of GN, the moiré
pattern from the two potentials is very close and the corrugations from the two stacking sequences
are also similar, which indicate that the moiré pattern is less sensitive to the stacking sequence of
GN. The maximum lengths of corrugation from EAM potential are ~1.42 Å for the bottom layer and
∼1.28 Å for the top one, which become ~1.10 and ∼0.97 Å from LJ potential. The maximum length
of the corrugation for the bottom layer is shorter than that of monolayer GN from EAM potential, in
contrast to that from LJ. The observations from surface morphology on the other three surfaces are
similar to those on the {110} surface, which is not fully addressed in this work.

Furthermore, the distributions of the vertical distance (D1 and D2) between the C atom in the
bottom and top layers of the GN and the Fe {110}, {111}, {112} and {100} surfaces are illustrated in
Figure 6. It is found that (1) in the AB-stacked bilayer GN on four iron substrates, the distributions
of the D1 are similar to those in the monolayer ones; (2) in the AA-stacked bilayer GN cases, the
distribution of the D1 on Fe {112} from EAM becomes less scattered and the maximum frequency (FM)
is higher, compared with those on the other surfaces; (3) the FM of the D1 on Fe {111} from LJ becomes
the highest rather than that on Fe {112}, which occurs in the monolayer GN case; (4) in both AB- and
AA-stacked GNs, the distribution of the D2 on the Fe {110} surface becomes more scattered and the FM

is lower from EAM potential, compared with those of the D1 on Fe {110}; and (5) compared with those
of the D1, the distributions of the D2 for AB- and AA-stacked GNs on the {111}, {112} and {100} iron
surfaces become less scattered and the FM become higher from EAM potential.
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Figure 6. The distributions of the vertical distance (D1 and D2) between the bottom- and top-layered
C atoms of the AB- and AA-stacked bilayer GN and the {110}, {111}, {112} and {100} surfaces of iron
substrates, calculated from MD simulations using LJ and EAM potentials.

For trilayer GN on the iron substrates, the ABA and ABC stacking sequences are considered. The
Es of the ABA-stacked GN from LJ (EAM) potential are 0.12 (28.41), −1.03 (25.02), −0.86 (25.70) and
0.28 (25.03) J/m2 on the {110}, {111}, {112} and {100} iron surfaces, respectively, while the Es become
−0.1 (27.36), 0.48 (25.08), −0.18 (25.76) and −0.22 (24.99) J/m2 for the ABC-stacked one. The findings
are similar to those in the bilayer ones, where the adhesion energy from EAM is less sensitive to
stacking, in contrast to that from LJ. It is also observed that the ABA-stacked GN is more likely to
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form on lower-index {110} and {100} surfaces, while the ABC-stacked GN could be preferred on the
higher-index {111} surface.

From EAM potential, the D1 for the average vertical spacing between the bottom-layered C atom
and the surface increases slightly within the range of 1.3–1.5 Å, the D2 for the average spacing between
the central-layered C atom and the substrate is in the range of 4.7–5.0 Å, and the D3 of the top-layered C
atom to the substrate ranges from 8.2 to 8.4 Å. When the LJ potential is used, the D1 becomes 2.0–2.2 Å,
the D2 is 5.5–5.6 Å and the D3 is 8.9–9.1 Å, as listed in Table 3.

The distributions of the vertical distance (D1, D2 and D3) between the C atoms in the bottom,
central and top layers of GN and the Fe {110}, {111}, {112} and {100} surfaces are displayed in Figure 7.
It is found that (1) using EAM potential, the distributions of the D2 and D3 on the {111}, {112} and {100}
iron surfaces are less scattered; (2) the FM are higher than those of the corresponding D1; (3) the highest
FM of the D1, D2 and D3 from both potentials almost appears on the Fe {100} surface, while the lowest
one is nearly on the Fe {110} surface; (4) the highest FM of the D2 and D3 from EAM potential occur on
the Fe {111} surface in the ABC-stacked trilayer GN cases, while they change on the Fe {100} surface
when the LJ potential is used; and (5) in the ABC-stacked trilayer GN cases, the lowest FM of the D3
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Figure 7. The distributions of the vertical distance (D1, D2 and D3) between the bottom-, central- and
top-layered C atoms of the ABA- and ABC-stacked trilayer GN and the {110}, {111}, {112} and {100}
surfaces of iron substrates, calculated from MD simulations using LJ and EAM potentials.

The average distances between the monolayer GN and iron surface were 2.0–2.2 Å from LJ
potential and 1.3–1.4 Å from EAM. This result is consistent with adhesion energy analysis where
stronger chemical binding exists in EAM description resulting in a shorter separation. Such a separation
is nearly unchanged with the increasing layer number. The underlying reason could be the fact that
the interactions of the additional layers with the substrate are van der Waals interactions. Moreover,
the distributions of the length of Fe–C bonding and the vertical distance between the C atoms in the
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bottom layer of GN and iron substrate from EAM potential are generally more scattered than those
from LJ, suggesting hybrid and strong bonding features between C and Fe atoms.

4. Conclusions

In summary, we have investigated adhesion energy of monolayer, bilayer or trilayer graphene
nanosheets (GNs) located on four differently oriented iron substrates by molecular dynamic simulations
using two types of Fe–C potentials. The results show that using Lennard–Jones (LJ) pair potential of
Fe–C, the predicted adhesion energies of monolayer GN and iron substrate are 0.47, 0.62, 0.70 and
0.74 J/m2 on the {110}, {111}, {112} and {100} surfaces, respectively. The values of the counterparts
from embedded-atom method (EAM) potential on the {110}, {111}, {112} and {100} surfaces are 26.83,
24.87, 25.13 and 25.01 J/m2, respectively. When the GN layer number increases from one to three, the
adhesion energy from EAM potential increases. However, there is not a clear trend from LJ.

The adhesion energies of the AB-stacked bilayer GN from LJ (EAM) potential are 0.8 (26.96), 0.22
(25.00), 0.49 (25.08) and 0.15 (25.29) J/m2 on the {110}, {111}, {112} and {100} iron surfaces, respectively.
The corresponding values for the AA-stacked GN on the {110}, {111}, {112} and {100} iron surfaces
are −1.22 (27.00), −0.62 (24.91), −0.56 (25.56) and 0.47 (26.33) J/m2, respectively. For a trilayer GN,
the adhesion energies of the ABA-stacked GN are 0.12 (28.41), −1.03 (25.02), −0.86 (25.70) and 0.28
(25.03) J/m2 on the {110}, {111}, {112} and {100} surfaces, respectively, while they become −0.1 (27.36),
0.48 (25.08), −0.18 (25.76) and −0.22 (24.99) J/m2 for the ABC-stacked one. The iron {110} surface is the
most adhesive surface for monolayer, bilayer and trilayer GN from EAM potential. Our results imply
that the predicted adhesion energy from the LJ potential describes a weak bond of Fe–C, while the
adhesion from EAM performs a hybrid chemical and strong bond.

The average vertical distances between the monolayer GN and four iron surfaces are 2.0–2.2 Å from
LJ potential and 1.3–1.4 Å from EAM, consistent with the adhesion energy analysis. The graphene–iron
separation is nearly unchanged with the increasing layer number. The distribution of the vertical
distance between the C atom in the bottom layer of the GN and the iron surface from EAM potential
is more scattered than that from LJ. It is also found that the ABA-stacked GN is likely to form on
lower-index {110} and {100} surfaces, while the ABC-stacked GN is preferred on the higher-index {111}
surface. Our study might be beneficial to graphene growing, surface engineering and enhancement of
iron using graphene sheets.
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