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Abstract: In this work, we describe the structural investigation of a Ni(II) complex,
[Ni(C12H8N2)2(H2O)2]2·(C12H10N2O6)·(NO3)2·10H2O, with phenanthroline ligands, a deprotonated
aromatic dicarboxylic acid, N,N′-(1,4-phenylenedicarbonyl)diglycine, and a nitrate as
counter-anions, as well as water molecules. Noncovalent interactions, such as π–π
stacking, lone-pair···π, and C–H···π between the phenanthrolines of the cationic complex,
[Ni(C12H8N2)2(H2O)2]2+, and counter-anions are observed. Moreover, the solvated and
noncoordinating counter-anion, N,N′-(1,4-phenylenedicarbonyl)diglycinate, is embedded in classical
and nonclassical hydrogen-bonding interactions with water molecules and phenanthrolines. The two
water molecules coordinated by the NiII atom and hydrogen bonded to the carboxylate of the
N,N′-(1,4-phenylenedicarbonyl)diglycinate show attractive secondary electrostatic interactions, and
a DD/AA hydrogen bonding pattern is formed. The noncovalent interactions of the cationic complex
and the solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion were explored with a
Hirshfeld surface analysis, and related contributions to crystal cohesion were determined. The results
of the N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion were compared to those of a solvated
N,N′-(1,4-phenylenedicarbonyl)diglycine molecule of a previously described copper(II) complex.

Keywords: crystal structure; nickel(II) complex; N,N′-(1,4-phenylenedicarbonyl)diglycine;
phenanthroline ligand; supramolecular interactions; Hirshfeld surface analysis; π-stacking; hydrogen
bonding; noncovalent interactions

1. Introduction

Since Alfred Werner published his theory of the constitution of inorganic compounds in 1893 [1,2],
coordination compounds have attracted much attention. During this time period, the synthesis and
structural investigation of these compounds have gained wide acceptance in material science because
of their functional architectures and potential applications in catalysis [3–5], gas storage [6,7], and
medicine [8,9], and as luminescent materials [10] or scintillators [11–13]. Today, we are able to test the
performance of scintillators with a tabletop device [14,15]. This approach offers a great opportunity
in the search for these materials and in closing the gap between organic and inorganic scintillators
containing metals of d-block elements and aromatic ligands.

The framework of coordination complexes, including coordination polymers [16–19] of varying
dimensions, is also composed of different noncovalent interactions and is, therefore, closely related to
the field of supramolecular chemistry [20] and the process of self-assembly [21]. Trace elements of
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nickel and cobalt as metal centers of the complexes of urease and vitamin B12 play an essential role in
the biological enzymatic reactions of microorganisms, plants, and in the human metabolism [22–25].
The self-organization processes of these reactions are attributed to noncovalent interactions and are also
responsible for the drug-delivery of biologically active agents [26], as well as the structural composition
of DNA and RNA macromolecules [27]. In summary, the essential processes of biological and chemical
systems are based on metal complexes and the steering forces of noncovalent interactions.

It is known from the literature that reactions of the aromatic diamino acid N,N′-(1,4-
phenylenedicarbonyl)diglycine with d-block elements lead to interpenetrating networks of formed
zigzag chains [28–32]. For our synthetic purpose, we offer the metal centers a bidentate
complexing agent, such as bipyridine or phenanthroline, during their reactions with the N,N′-(1,4-
phenylenedicarbonyl)diglycine. The electron-deficient bidentate nitrogen containing aromatic ligands
has the ability to be involved in different π–π interactions [33,34]. Moreover, the goal is to block parts
of the coordination sphere of the metal centers by using these ligands and to inhibit the forming of
aforementioned zigzag chains.

As a result of the actual reactions, we have prepared two cobalt(II) complexes and a
copper(II) complex, which contain bidentate bipyridine or bidentate phenanthroline ligands
and N,N′-(1,4-phenylenedicarbonyl)diglycine molecules in the crystal structures [35–37]. In the
built supramolecular networks, the embedded N,N′-(1,4-phenylenedicarbonyl)diglycine acts as
the linking molecules between two cationic building blocks in an anionic or neutral form.
The structural analysis of the copper(II) compound reveals an anionic monodentate bridging
N,N′-(1,4-phenylenedicarbonyl)diglycinate and a neutral solvated N,N′-(1,4-phenylenedicarbonyl)-
diglycine molecule in one crystal structure [37]. To further our study of the coordination behavior
of the N,N′-(1,4-phenylenedicarbonyl)diglycine molecule with d-block elements in the presence of
electron-deficient bidentate nitrogen containing aromatic heterocycles, and to discover scintillating
coordination complexes and/or polymers, we prepared the present coordination compound (Scheme 1).
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Nickel(II) nitrate hexahydrate (CAS 13478-00-7) was purchased from Merck KGaA (Darmstadt, 
Germany). The starting material, N,N`-(1,4-phenylenedicarbonyl)diglycine, was prepared according 
to the method of Cleaver and Pratt [38].  

Scheme 1. Schematic representation of the Ni(II) coordination compound with phenanthroline ligands
and the solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate as a counter-anion.

Herein, the N,N′-(1,4-phenylenedicarbonyl)diglycine molecule is embedded in numerous
noncovalent interactions and is a one of the main players of the constructed supramolecular network.

2. Experimental Section

2.1. Matrials and Synthesis of the N,N′-(1,4-Phenylenedicarbonyl)Diglycine

Nickel(II) nitrate hexahydrate (CAS 13478-00-7) was purchased from Merck KGaA (Darmstadt,
Germany). The starting material, N,N′-(1,4-phenylenedicarbonyl)diglycine, was prepared according
to the method of Cleaver and Pratt [38].
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2.2. Preparation of the Ni(II) Complex

Cesium carbonate (2 mmol), N,N′-(1,4-phenylenedicarbonyl)diglycine (1 mmol), and
1,10-phenanthroline (2 mmol) were dissolved in a 1:1 (v/v) mixture of water and methanol (50 mL)
and refluxed for 10 minutes. The mixture was allowed to cool to room temperature, and a
previously prepared aqueous solution of nickel(II) nitrate (1 mmol) was slowly added under
continuous stirring. After heating and cooling to room temperature, the formed pale green
precipitate was filtered out. Pale-blue to violet block-shaped crystals of the complex were obtained
by slow evaporation at room temperature within three days. Alternatively, a sodium salt of
N,N′-(1,4-phenylenedicarbonyl)diglycine prepared from an aqueous solution of sodium hydroxide
and N,N′-(1,4-phenylenedicarbonyl)diglycine in a stoichiometric ratio 2:1 could be used instead of
cesium carbonate and N,N′-(1,4-phenylenedicarbonyl)diglycine. This route can also produce single
crystals of a good quality suitable for X-ray crystallography.

2.3. X-ray Crystallography

Air-sensitive crystals of the nickel(II) coordination compound were separated from the mother
liquor, and a well-shaped crystal was selected under a polarization microscope and sealed in a glass
capillary with perfluorinated oil.

Intensity data sets were collected on a Stoe IPDS II diffractometer (Stoe, Darmstadt, Germany)
using graphite monochromated MoKα radiation (λ = 0.71073 Å). The SHELX-2018 [27] package was
used for structure solution and refinement. The final structure solution was checked with PLATON [28].
The structure was solved by direct methods and refinement using the least-squares method on F2

with the anisotropic displacement parameters for the non-H atoms. The crystal data and structure
refinement parameters of the nickel(II) complex are listed in Table 1. All C-bound H atoms were
set to idealized geometry and refined with Uiso(H) = 1.2 Ueq(C), C–H(aromatic) = 0.94 Å, and
C–H(methylene) =0.98 Å using a riding model. The water H atoms were located in a difference-Fourier map,
and the isotropic displacement parameters were set to Uiso(H) = 1.5 Ueq(O). O2–H2A, O9—H9A/H9B, and
O12—H12A/H12B were refined with O–H distances restrained to 0.82–0.87 Å, except for O13—H13A/H13B,
which had a fixed distance of 1.009 Å and 0.973 Å, which led to a stable and consolidated hydrogen-bonding
network. The nitrate anion was slightly disordered, and O6 could be split. Figures were prepared with
DIAMOND [39] and POV-RAY [40]. Further details of the crystal structure investigation for the
nickel(II) compound may be obtained free of charge from the Cambridge Crystallographic Data Centre
(https://www.ccdc.cam.ac.uk/structures/) by quoting the deposition number CCDC 1957420.

Table 1. Crystal data and structure refinement parameters of the nickel(II) complex.

Compound [Ni(C12H8N2)2(H2O)2]2·(C12H10N2O6)·(NO3)2·10H2O

Empirical formula C30H35N6NiO13
Formula weight 746.35
Temperature (K) 223
Diffractometer Stoe IPDS II

Wavelength (Å) 0.71073
Crystal system triclinic

Space group Pı̄ (No. 2)
a, b, c (Å) 12.5801(14), 12.5852(16), 12.6357(14)
α, β, γ (◦) 114.670(9), 109.175(8), 95.749(10)

V (Å3) 1650.2(4)
Z 2

Dcalc (g·cm3) 1.502
µ (mm-1) 0.664

F(000) 778
Crystal size (mm) 0.22 × 0.21 × 0.20

θ Range (◦) 1.94–25.25

https://www.ccdc.cam.ac.uk/structures/
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Table 1. Cont.

Compound [Ni(C12H8N2)2(H2O)2]2·(C12H10N2O6)·(NO3)2·10H2O

Index ranges
−15 ≤ h ≤ 15
−15 ≤ k ≤ 15
−15 ≤ l ≤ 15

Reflection collected/unique 15380/5887
Completeness to θ (%) 98.5
Absorption correction Numerical; X-AREA, X-RED (2008)

Max. and min. transmission 0.5023, 0.7193
Refinement method Full-matrix least-squares on F2

Data/parameters 5887/496
Goodness-of-fit on F2 1.031

R1 [I ≥ 2σ(I)]/R1 (all data) 0.0528/0.0615
wR2 [I ≥ 2σ(I)]/wR2 (all data) 0.1406/0.1467

Largest diff. peak and hole (e·Å3) 1.30, –0.58
Deposition number CCDC 1957420

R1 =
∑
||Fo| − |Fc||/
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w
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c

)2
/
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w
(
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)2
]1/2
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(
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c

)2
/
(
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)]1/2
.

3. Results and Discussion

3.1. Description of the Crystal Structure

The complex cation of [Ni(C12H8N2)2(H2O)2]2·(C12H10N2O6)·(NO3)2·10H2O contains two
bidentate phenanthroline ligands and two water molecules, forming a distorted octahedral coordination
sphere (Figures 1 and 2, and Table 2). A crystallographic center of inversion is located at the
centroid of the noncoordinating and solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate counter-anion.
The asymmetric unit is completed by one noncoordinating nitrate counter-anion and five water
molecules, which are involved in classical and nonclassical hydrogen-bonding. The hydrogen bond
geometry is listed in Table 3. The distances and angles of the distorted octahedral coordination sphere
of the NiII atom of the common cationic complex are similar to those found in the literature [41,42].
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ellipsoids of non-H atoms drawn at a 40% probability level. Unlabeled atoms are related to labeled
ones by the symmetry operation –x + 1, –y + 1, –z + 1 (see Tables 3 and 4 for details).
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Figure 2. A view of the unit cells of [Ni(C12H8N2)2(H2O)2]2·(C12H10N2O6)·(NO3)2·10H2O along the a
axis with polyhedrons of the octahedral coordination sphere of [Ni(C12H8N2)2(H2O)]2+.

Table 2. Selected bond lengths (Å) and bond angle (◦).

Bond Lengths Bond Lengths

Ni–N1 2.095 (3) Ni–N2 2.083 (3)
Ni–N3 2.101 (3) Ni–N4 2.084 (3)
Ni–O1 2.088 (3) Ni–O2 2.047 (2)

Bond Angle Bond Angle

N1–Ni–N2 80.01 (11) N2–Ni–N3 96.98 (11)
N3–Ni–N4 79.94 (11) N4–Ni–N2 173.16 (11)
N1–Ni–N4 94.08 (12) N1–Ni–N3 94.39 (12)
O1–Ni–N1 171.38 (11) O1–Ni–N2 91.39 (11)
O1–Ni–N3 87.24 (10) O1–Ni–N4 94.55 (11)
O2–Ni–N1 93.87 (3) O2–Ni–N2 90.89 (12)
O2–Ni–N3 169.47 (9) O2–Ni–N4 92.96 (12)
O1–Ni–O2 85.58 (10)
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Table 3. Hydrogen-bond geometry (Å, ◦).

D—H···A d(D—H) d(H···A) d(D···A) ∠D—H···A

O1—H1A···O4iii 0.87 (5) 1.82 (5) 2.692 (3) 175 (4)
O1—H1B···O5ii 0.74 (5) 2.00 (5) 2.741 (3) 173 (4)
O2—H2A···O6iv 0.84 (2) 1.91 (2) 2.739 (5) 166 (5)
O2—H2A···O7iv 0.84 (2) 2.56 (4) 3.258 (6) 141 (4)
O2—H2A···N6iv 0.84 (2) 2.57 (2) 3.389 (4) 166 (5)
O2—H2B···O3iii 0.82 (5) 1.84 (5) 2.658 (3) 173 (5)

O9—H9A···O12xi 0.79 (1) 2.05 (3) 2.787 (5) 154 (7)
O9—H9B···O4xv 0.90 (2) 2.07 (3) 2.937 (4) 159 (6)
O10—H10A···O6i 0.83 (7) 2.07 (7) 2.824 (6) 151 (7)
O10—H10B···O3 0.76 (8) 2.13 (8) 2.867 (5) 162 (7)

O11—H11A···O10 0.91 (8) 1.88 (8) 2.787 (6) 172 (7)
O11—H11B···O8v 0.88 (8) 2.20 (8) 3.056 (6) 163 (7)
O11—H11B···N6v 0.88 (8) 2.61 (8) 3.473 (5) 165 (6)
O12—H12A···O11 0.89 (2) 1.88 (2) 2.769 (5) 173 (7)
O12—H12B···O9v 0.88 (2) 1.97 (2) 2.837 (5) 168 (7)
O13—H13A···O8 1.01 (2) 1.94 (3) 2.942 (6) 169 (8)
O13—H13A···N6 1.01 (2) 2.65 (4) 3.610 (6) 158 (7)
O13—H13B···O9 0.97 (2) 1.96 (5) 2.842 (6) 149 (8)

N5—H5···O8i 0.85 (4) 2.07 (4) 2.900 (5) 164 (4)
C1—H1···O13 0.94 2.53 3.294 (5) 139
C2—H2···O7 0.94 2.55 3.469 (7) 166

C10—H10···O1 0.94 2.63 3.156 (4) 116
C13—H13···O12 0.94 2.54 3.415 (5) 156

Symmetry codes: (i) –x + 1, −y + 1, −z + 1; (ii) x, y + 1, z; (iii) −x, −y + 1, −z; (iv) –x + 1, −y + 1, −z; (v) x − 1, y, z; (xi)
–x + 1, −y + 2, −z + 1; (xviii) x + 1, y + 1, z.

A SciFinder [43] search of the cationic complex yielded more than these two aforementioned
references. We focused on these two structures due to the related chemical system. The nearly identical
bond lengths of the carboxylate group in the solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate
counter-anion [C30—O4 = 1.256 (4) and C30—O2 = 1.244 (5) Å] indicate a delocalized bonding
arrangement, rather than localized single and double bonds. The O3–C30–O4 angle of 126.1 (4) in the
carboxylate group is slightly larger than that in the carboxylic group found in the copper complex [37].
In the noncoordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate ligand, the deviations of atoms
defining the central benzamido entity from its least-squares plane are −0.008 (4) Å (C28), 0.458
(3) Å (O5), −0.571 (3) Å (N5), and −0.671 (4) Å (C29). The angle between the amide group and the
carboxylate group connected through the sp3-hybridized methylene carbon atom (N5–C29–C30) is
115.0 (3)◦. The dihedral angle between the planar carboxylate group (O3/C30/O4) and the aromatic
synthon (C25–27/C25‘–C27‘) of the ligand is 65.7 (3)◦, and thus much smaller than the value found
in the copper complex [22]. The dihedral angle between the mean planes of the two bidentate
phenanthroline ligands is 81.77 (5)◦; the corresponding value between phenanthroline (N1/C1–C12/N2)
and the coordinating water molecules (O1/Ni/O2) is 88.02 (8)◦, and that between phenanthroline
(N3/C13–C24/(N3/C13–C24/N4) and the coordinating water molecules is 88.97 (3)◦.

A large number of different noncovalent interactions are present in the crystal structure (Figures 3–5).
The nitrate anions are embedded in O–H···O, C–H···O and N–H···O hydrogen bonding with the water
molecules, the phenanthroline ligands, and the solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate
counter anion (Figures 3 and 5). The two water molecules coordinated by the NiII atom and hydrogen
bonded to the carboxylate show an attractive secondary electrostatic interaction [44,45] in the formed
hydrogen-bonding pattern. The arrangement is similar to that found in the hydrogen bonded complex
between the guanine and cytosine of nucleic acids [44,46]. The occurrence of an attractive diagonal
interaction with a DD/AA motif [46,47] between the hydrogen bonded bridges supports the hydrogen
bonding of the cationic complex and the N,N′-(1,4-phenylenedicarbonyl)diglycinate (Figures 3–5). Theπ–π
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interactions between phenanthroline ligands stack these components along the different axes, showing
a face-to-face arrangement (Figure 4). Centroid-to-centroid distances and explanations of the different
centroids and their defining ring atoms are summarized in Table 4 and are similar to those in [48,49].
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Figure 3. Different noncovalent interactions are present, such as classical hydrogen-bonding between
water molecules, C–H···π interactions between aromatic moieties, and lone-pair···π interactions between
the oxygen of the carboxylate groups or water molecules and the aromatic moieties. Hydrogen bonds
are indicated by black dashed lines and π-interactions by yellow dashed lines. The hydrogen atoms
not involved in interactions have been omitted for clarity. Distances are given in Å. Symmetry codes:
(i) –x + 1, –y + 1, –z + 1; (ii) x, y + 1, z; (iii) –x, –y + 1, –z; (iv) –x + 1, –y + 1, –z; (v) x – 1, y, z; (vi) –x + 1,
–y + 2, –z; (vii) –x + 2, –y + 2, –z + 1; (viii) –x – 1, –y, –z – 1; (ix) –x – 1, –y + 1, –z – 1; (x) x – 2, y, z – 1
(see Tables 3 and 4 for details).

Table 4. Parameters (Å, ◦) for C–H···π, lone-pair···π and π-π stacking interactions.

Y—X···Cg d(X···Cg) d(Y···Cg) ∠Y—X···Cg

C3—H3···Cg7 3.4215(5) 3.925(5) 115.9(3)
C8—H8···Cg1iii 3.3517(7) 3.735(3) 106.9(3)

C15—H15···Cg1xi 2.7372(5) 3.668(3) 170.3(3)
C26—H26···Cg5xv 3.2107(4) 3.912(4) 132.9(2)
C28—O5···Cg4xv 3.593(3) 3.581(4) 78.5(2)
N6—O7···Cg1iv 3.561(7) 4.616(4) 147.3(4)

O12···Cg3xvi 3.365(4)
O13···Cg6 3.245(7)

Cg···Cg d(Cg···Cg)

Cg2···Cg3iii 3.6649(7)
Cg4···Cg4xi 3.5600(4)
Cg6···Cg6vi 3.5628(4)

Cg1, Cg2, Cg3, Cg4, Cg5, Cg6, and Cg7 are the centroids defined by the ring atoms (N1/C1–C4/C12), (C4–C7/C11–C12),
(N2/C7–C11), (N3/C13–C16/C24), (C16–C19/C23–24), (N4/C19–C23), and (C25–27/25‘–27‘), respectively. Symmetry
codes: (iii) −x, −y + 1, −z; (iv) –x + 1, −y + 1, −z; (vi) –x + 1, −y + 2, −z; (xi) –x + 1, −y + 2, −z + 1; (xv) x, y − 1, z;
(xvi) x + 1, y, z.
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dashed lines. The hydrogen atoms not involved in interactions have been omitted for clarity. Distances
are given in Å. Symmetry codes: (iii) –x, –y + 1, –z; (vi) –x + 1, –y + 2, –z; (ix) –x – 1, –y + 1, –z – 1;
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Figure 5. View of the extended network of noncovalent interactions with the embedded
N,N′-(1,4-phenylenedicarbonyl)diglycinate and the adjacent phenanthrolines of the cationic complex.
The O–H···O and C–H···O contacts are indicated by black dashed lines and different π-interactions by
yellow dashed lines. Symmetry codes: (iii) –x, –y + 1, –z; (xv) x, y – 1, z; (xvi) x + 1, y, z (see Tables 3
and 4 for details).
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Lone-pair···π interactions between the O5 atom of the carboxyl group of the noncoordinating
N,N′-(1,4-phenylenedicarbonyl)diglycinate molecule and the Cg4 centroid of a phenanthroline ligand
are observed. This value is similar to that found in the literature [50–53]. In addition, the lone-pair···π
interactions of the two water molecules O12 and O13 with Cg3 and Cg6 of the phenanthrolines,
respectively, and O7 of the nitrate counter-anion with the Cg1 of a phenanthroline ligand, are visualized
in Figures 3 and 5. These distances are comparable with those found in related compounds [54–57].
Until very recently, lone-pair···π interactions were suggested to be directional. A Cambridge Structural
Database (CSD) study [58] reveals that this is not always the case. Herein, it is concluded that only a small
number (≤3%) of the molecules with lone-pairs are directly located over the center of the arene’s surface,
and this is caused as a side effect of the minimization of the volume in the crystal packing. From this
point of view, the lone-pair···π interaction, as a supramolecular element for crystal engineering, can be
discussed with a certain degree of skepticism. Finally, C–H···π interactions between the phenanthrolines
and phenanthrolines and the noncoordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate molecule of
different arrangements are pictured in Figures 3–5 [59–61].

3.2. Hirshfeld Surface Analysis

The Hirshfeld surface (HS) [62,63] analysis was performed with Crystal Explorer [64,65]
and the electrostatic potentials were calculated by using TONTO [66,67] with standard settings.
All generated surfaces are represented transparently to facilitate visualization of the subjacent
atoms and molecules. The HS is used to investigate the observed noncovalent interactions and
substantiate the supramolecular assembly of the cationic complex (Figure 6) and noncoordinating
N,N′-(1,4-phenylenedicarbonyl)diglycinate counter-anion (Figure 7) in the described crystal structure.
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Two-dimensional fingerprint plots (FPs) of all interactions, and the percentage contributions
to the HS of the different noncovalent interactions, are depicted in the figures. The internal di and
external de distances between the HS and atom contacts are given in Å. The electrostatic potential
energy and the dnorm of the HS of the cationic complex are plotted from –0.0472 to 0.2943 a.u. and
from –0.7261 to 1.3002 a.u., respectively. The hydrogen-bonding interactions of the water molecules
and some carbon-bonded hydrogens from the phenanthrolines of the cationic complex are indicated
by the dark red spots of the HS mapped over the dnorm (a) and represent closer contacts than the
van der Waals radii. The depiction of the HS mapped over the electrostatic potential (b) shows
blue regions around the metal coordinating water molecules and some hydrogen atoms bonded to
carbons of the phenanthrolines, thereby defining the positive electrostatic potential and identifying the
hydrogen-bonded donor’s aspects. This corresponds with the appearance of a large sharp single-spike
in the FP of Figure 6 in the region of de ~ 1.02 Å /di ~ 0.67 Å and associated with classical and nonclassical
hydrogen-bonding. The negative electrostatic potential of phenanthrolines is indicated by the red
areas (b). The observations of the point-to-point arrangement of the red and blue triangles of the HS
mapped over the shape index (c) reveal the face-to-face π–π stacking interactions of some aromatic
moieties of the phenanthrolines, with a blue to green colored region around de ~ 1.80 Å /di ~ 1.80 of
the C···C and N···C close contacts in the FP. Other red colored deformations of the HS with different
shapes over some aromatic centers are attributed to the close contacts of oxygen atoms and hydrogen
atoms according to lone-pair···π and C-H···π interactions. This is confirmed by the appearance of two
symmetrical wings in the region of de ~ 1.66 Å /di ~ 1.10 Å and di ~ 1.62 Å /de ~ 1.12 Å of H···C/C···H in
the FP. The main contributions of the cationic complex to the HS are assigned to the close contacts of
H···H (37.0%), H···C/C···H (24.90%), H···O/O···H (24.30%), and C···C and N···C (adding to 8.40%), as
shown in the pie chart of Figure 6.

For the noncoordinating N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion, the electrostatic
potential energy and the dnorm are plotted in the range of –0.0869 to 0.1440 a.u. and –0.7269 to 1.3865 a.u.,
respectively, and are displayed in Figure 7. A multiplicity distances shorter than the van der Waals radii
can be observed as dark red spots on the HS mapped over dnorm (a).
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Thus, the carbonyl group and the hydrogen of the amide group, as well as the carboxylate group
of the solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion, are also involved in classical
and nonclassical hydrogen bonding. The red regions of the HS mapped over the electrostatic potential
(b) around the oxygen of the deprotonated carboxylate group and the carbonyl group of the amide
are assigned to hydrogen-bond acceptors, in contrast to the blue region around the hydrogen atoms
of the amide group, which can be assigned to the hydrogen-bonded donors. The two asymmetrical
spikes in the regions of de ~ 1.66 Å /di ~ 1.10 Å and di ~ 1.62 Å /de ~ 1.12 Å of the H···O/O···H short
contacts in the FP confirm this fact. The absence of red and blue triangles over the aromatic ring center
of the solvated N,N′-(1,4-phenylenedicarbonyl)diglycinate in the HS, mapped over the shape index (c),
indicate that the counter anion is not involved in π-π stacking interactions. A pair of asymmetrical
wings of the H···C/C···H close contacts in the region of de ~ 1.59 Å /di ~ 1.15 Å and di ~ 1.72 Å /de ~
1.15 Å in the FP suggest that the C–H···π interactions of N,N′-(1,4-phenylenedicarbonyl)diglycinate in
the crystal and are visualized as a red colored deformation of the HS mapped over the shape index
(c). The main contributions of N,N′-(1,4-phenylenedicarbonyl)diglycinate to the HS are assigned
to the close contacts of H···O/O···H (48.40%), H···H (30.0%), and H···C/C···H (16.30), as shown in
the pie chart of Figure 7. The large proportions of H···H close contacts of the cationic complex
and the N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion (with values of 37% and 30%,
respectively) are associated with the high number of hydrogen atoms in the structure. The main
differences between the comparison of the present N,N′-(1,4-phenylenedicarbonyl)diglycinate counter
anion and the N,N′-(1,4-phenylenedicarbonyl)diglycine solvent molecule of the previously-described
Hirshfeld surface analyzed copper(II) complex [37] are the absence of C–C/C–N close contacts
and a higher percentage contribution of H···C/C···H close contacts to the Hirshfeld surface. This is
attributed to the involvement of π-stacking interactions of the N,N′-(1,4-phenylenedicarbonyl)diglycine
solvent molecule of the copper(II) coordination compound and the C–H···π interactions of the
N,N′-(1,4-phenylenedicarbonyl)diglycinate counter anion. Only a slight decrease of H···O/O···H
close contacts of 6.2% (48.4% to 42.2%) could be observed. The H···H close contacts show no
significant differences.

4. Conclusions

A Ni(II) complex, [Ni(C12H8N2)2(H2O)2]2·(C12H10N2O6)·(NO3)2·10H2O, with phenanthroline
ligands and a deprotonated and noncoordinating solvated aromatic dicarboxylic acid,
N,N′-(1,4-phenylenedicarbonyl)diglycine, has been synthesized. Air-sensitive crystals could be
grown from aqueous solutions under ambient conditions, and this complex’s structure was determined
by single-crystal X-ray diffraction. In the present compound, the nickel ion exhibits a distorted
octahedral coordination sphere defined by four nitrogen atoms of two bidentate phenanthroline ligands
and two oxygen atoms of water molecules that construct a cationic complex [Ni(C12H8N2)2(H2O)2]2+.
The two water molecules coordinated by the NiII atom and hydrogen bonded to the carboxylate
show attractive secondary electrostatic interactions. Thus, a DD/AA hydrogen-bonding pattern is
formed. Finally, all aforementioned structurally determined compounds containing phenanthroline
as electron-deficiency aromatic heterocycles and N,N′-(1,4-phenylene- dicarbonyl) diglycine in its
ionic or neutral form reveal supramolecular assemblies varying in size and shape. Flexible and
multifunctional N,N′-(1,4-phenylenedicarbonyl)diglycine molecules deserve further study of their
coordination behavior with different d- and f-block elements in the search for scintillating and
luminous materials.
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