A High-Pressure Investigation of the Synthetic Analogue of Chalcomenite, CuSeO3∙2H2O
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Details
2.3. Density-Functional Theory Calculations
3. Results and Discussion
3.1. Structural Analysis
3.2. Equation of States
3.3. Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ruiz-Fuertes, J.; Segura, A.; Rodrıguez, F.; Errandonea, D.; Sanz-Ortiz, N.M. Anomalous high-pressure Jahn-Teller behavior in CuWO4. Phys. Rev. Let. 2012, 108, 166402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eklund, L.; Persson, I. Structure and hydrogen bonding of the hydrated selenite and selenate ions in aqueous solution. Dalton Trans. 2014, 43, 6315–6321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vchirawongkwin, V.; Rode, B.M.; Persson, I. Structure and dynamics of sulfate ion in aqueous solution: An ab initio QMCF MD simulation and large angle X-ray scattering study. J. Phys. Chem. B 2007, 111, 4150–4155. [Google Scholar] [CrossRef] [PubMed]
- Bandiello, E.; Errandonea, D.; Ferrari, S.; Pellicer-Porres, J.; Martínez-García, D.; Achary, S.N.; Tyagi, A.K.; Popescu, C. Pressure-induced hexagonal to monoclinic phase transition of partially hydrated CePO4. Inorg. Chem. 2019, 58, 4480–4490. [Google Scholar] [CrossRef]
- Robinson, P.D.; Gupta, P.K.S.; Swihart, S.H.; Houk, L. Crystal structure, H positions, and the Se lone pair of synthetic chalcomenite, Cu(H2O)2[SeO3]. Am. Mineral. 1992, 77, 834–838. [Google Scholar]
- Bocharov, V.N.; Charykova, M.V.; Krivovichev, V.G. Raman spectroscopic characterization of the copper, cobalt, and nickel selenites: Synthetic analogs of chalcomenite, cobaltomenite, and ahlfeldite. Spect. Let. 2017, 50, 539–544. [Google Scholar] [CrossRef]
- Frost, R.L.; Keeffe, E.C. Raman spectroscopic study of the selenite minerals–chalcomenite CuSeO3·2H2O, clinochalcomenite and cobaltomenite. J. Raman Spectrosc. 2008, 39, 1789–1793. [Google Scholar] [CrossRef]
- Krivovichev, V.G.; Charykova, M.V.; Vishnevsky, A.V. The thermodynamics of selenium minerals in near-surface environments. Minerals 2017, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- Charykova, M.V.; Lelet, M.I.; Krivovichev, V.G.; Ivanova, N.M.; Suleimanov, E.V. A calorimetric and thermodynamic investigation of the synthetic analogue of chalcomenite, CuSeO3∙2H2O. Eur. J. Miner. 2017, 29, 269–277. [Google Scholar] [CrossRef]
- Errandonea, D.; Ruiz-Fuertes, J. A brief review of the effects of pressure on wolframite-type oxides. Crystals 2018, 8, 71. [Google Scholar] [CrossRef] [Green Version]
- Grasset, O.; Sotin, C.; Mousis, O.; Loic, M. High Pressure Experiments in the System MgSO4-H2O: Implications for Europa. Lunar. Planet. Sci. Conf. 2000, 31, 1386. [Google Scholar]
- Meusburger, J.M.; Ende, M.; Talla, D.; Wildner, M.; Miletich, R. Transformation mechanism of the pressure-induced C2/c-to-P1 transition in ferrous sulfate monohydrate single crystals. J. Sol. State Chem. 2019, 277, 240–252. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Muñoz, A.; Rodríguez-Hernández, P.; Errandonea, D. High-pressure single-crystal X-ray diffraction of lead chromate: Structural determination and reinterpretation of electronic and vibrational properties. Inorg. Chem. 2019, 58, 5966–5979. [Google Scholar] [CrossRef] [PubMed]
- Degen, T.; Sadki, M.; Bron, E.; Konig, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Rigaku Oxford Diffraction. CrysAlisPro Software System, version 1.171.40.53; Rigaku Corporation: Oxford, UK, 2016. [Google Scholar]
- Angel, R.J. Absorption corrections for diamond-anvil pressure cells implemented in the software package Absorb6.0. J. Appl. Crystallogr. 2004, 37, 486–492. [Google Scholar] [CrossRef]
- Angel, R.J.; Bujak, M.; Zhao, J.; Gatta, G.D.; Jacobsen, S.D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 2007, 40, 26–32. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Errandonea, D.; Muñoz, A.; Gonzalez-Platas, J. Comment on “High-pressure x-ray diffraction study of YBO3/Eu3+, GdBO3, and EuBO3: Pressure-induced amorphization in GdBO3”. J. Appl. Phys. 2014, 115, 216101. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.I.; Vydrow, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the Density-Gradient Expansion for Exchange in Solids and Surfaces. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D.C.; Lundqvist, B.I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Mujica, A.R.; Muñoz; Needs, R.J. High-pressure phases of group-IV, III–V, and II–VI compounds. Rev. Mod. Phys. 2003, 75, 863–912. [Google Scholar] [CrossRef] [Green Version]
- Parlinski, K. Computer Code PHONON. Available online: http://wolf.ifj.edu.pl/phonon/ (accessed on 4 December 2019).
- Cazorla, C.; Errandonea, D.; Sola, E. High-pressure phases, vibrational properties, and electronic structure of Ne(He)2 and Ar(He)2: A first-principles study. Phys. Rev. B 2009, 80, 064105. [Google Scholar] [CrossRef] [Green Version]
- Errandonea, D.; Santamaria-Perez, D.; Achary, S.N.; Tyagi, A.K. P Experimental evidence for pressure-driven isostructural and symmetry-breaking phase transitions on Bi14CrO24. Solid State Commun. 2014, 182, 50–54. [Google Scholar] [CrossRef]
- Errandonea, D. Landau theory applied to phase transitions in calcium orthotungstate and isostructural compounds. EPL 2007, 77, 56001. [Google Scholar] [CrossRef] [Green Version]
- Pakhomova, A.; Bykova, E.; Bykov, M.; Glazyrin, K.; Gasharova, B.; Liermann, H.-P.; Mezouar, M.; Gorelova, L.; Krivovichev, S.; Dubrovinsky, L. A closer look into close packing: Pentacoordinated silicon in a high-pressure polymorph of danburite. IUCrJ 2017, 4, 671–677. [Google Scholar] [CrossRef]
- Gorelova, L.A.; Pakhomova, A.S.; Krivovichev, S.V.; Dubrovinsky, L.S.; Kasatkin, A.V. High pressure phase transitions of paracelsian BaAl2Si2O8. Sci. Rep. 2019, 9, 12652. [Google Scholar] [CrossRef] [Green Version]
- Errandonea, D.; Muñoz, A.; Rodríguez-Hernández, P.; Proctor, J.E.; Sapiña, F.; Bettinelli, M. Theoretical and experimental study of the crystal structures, lattice vibrations, and band structures of monazite-type PbCrO4, PbSeO4, SrCrO4, and SrSeO4. Inorg. Chem. 2015, 54, 7524–7535. [Google Scholar] [CrossRef] [PubMed]
- López-Moreno, S.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A. Polymorphs of CaSeO4 under pressure: A first-principles study of structural, electronic, and vibrational properties. Inorg. Chem. 2015, 54, 1765–1777. [Google Scholar] [CrossRef] [PubMed]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Gonzalez-Platas, J.; Alvaro, M.; Nestola, F.; Angel, R.J. EosFit7-GUI: A new GUI tool for equation of state calculations, analyses and teaching. J. Appl. Crystallogr. 2016, 49, 1377–1382. [Google Scholar] [CrossRef]
- Fortes, A.D.; Knight, K.S.; Wood, I.G. Structure, thermal expansion and incompressibility of MgSO4·9H2O, its relationship to meridianiite (MgSO4·11H2O) and possible natural occurrences. Acta Cryst. B 2017, 73, 47–64. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Lin, W. Elastic constants and homogenized moduli of gypsum structure based on density functional theory. Adv. Eng. Res. 2018, 120, 390–395. [Google Scholar]
- Errandonea, D.; Gomis, O.; Santamaría-Perez, D.; García-Domene, B.; Muñoz, A.; Rodríguez-Hernández, P.; Achary, S.N.; Tyagi, A.K.; Popescu, C. Exploring the high-pressure behavior of the three known polymorphs of BiPO4: Discovery of a new polymorph. J. Appl. Phys. 2017, 117, 105902. [Google Scholar] [CrossRef] [Green Version]
- Frost, D.J. The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. Mantle Petrol. Field Obs. High Press. Exp. 1999, 6, 283–296. [Google Scholar]
- Gracia, L.; Beltrán, A.; Errandonea, D.; Andrés, J. CaSO4 and its pressure-induced phase transitions: A density functional theory study. Inorg. Chem. 2012, 51, 1751–1759. [Google Scholar] [CrossRef]
- Benmakhlouf, A.; Errandonea, D.; Bouchenafa, M.; Maabed, S.; Bouhemadoud, A.; Bentabete, A. New pressure-induced polymorphic transitions of anhydrous magnesium sulfate. Dalton Trans. 2017, 46, 5058–5068. [Google Scholar] [CrossRef] [Green Version]
- See The Materials Project. Available online: https://materialsproject.org/materials/mp-22414/ (accessed on 4 December 2019).
- Effenberg, H. Verfeinerung der Kristall struktur von syntetischem Teinem CuTeO3∙2H2O. Tschermaks Minelarogische Petrologische Mittelungen 1977, 24, 287. [Google Scholar] [CrossRef]
- Gladkova, V.F.; Kondrashev, Y.D. Cyrstal structure of ZnSeO3∙2H2O. Sov. Phys. Crystallogr. 1964, 9, 149. [Google Scholar]
- Sathianandan, K.; McCory, L.D.; Margrave, J.L. Infrared absorption spectra of inorganic solids—III selenates and selenites. Spectrochim. Acta 1964, 20, 957–963. [Google Scholar] [CrossRef]
- Makatun, V.N.; Pechkovskii, V.V.; Mel’nikova, R.Y.; Gusev, S.S. Infrared spectra of copper selenites. Zhur. Prikl. Spektrosk. 1970, 12, 497–503. [Google Scholar] [CrossRef]
- Errandonea, D.; Pellicer-Porres, J.; Pujol, M.C.; Carvajal, J.J.; Aguiló, M. Room-temperature vibrational properties of potassium gadolinium double tungstate under compression up to 32 GPa. J. Alloys Compd. 2015, 638, 14–20. [Google Scholar] [CrossRef]
- Dove, M.T. Theory of displacive phase transitions in minerals. Am. Mineral. 1997, 82, 213–244. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Errandonea, D.; Rodriguez-Hernandez, P.; Muñoz, A.; Lacomba-Perales, R.; Polian, A.; Meng, Y. Polymorphism in strontium tungstate SrWO4 under quasi-hydrostatic compression. Inorg. Chem. 2016, 55, 10406–10414. [Google Scholar] [CrossRef]
Formula | CuH4O5Se |
---|---|
Dcalc (g cm−3) | 3.341 |
μ (mm−1) | 12.840 |
Formula Weight | 226.53 |
Size (mm3) | 0.10 × 0.08 × 0.03 |
Crystal System | orthorhombic |
Space Group | P212121 |
a (Å) | 6.6720(2) |
b (Å) | 7.3669(2) |
c (Å) | 9.1613(3) |
α (°) | 90 |
β (°) | 90 |
γ (°) | 90 |
V (Å3) | 450.30(2) |
Z | 4 |
Wavelength (Å) | 0.71073 |
Θmin/Θmax (°) | 3.549/29.817 |
Reflections (collected/unique)/Rint | 1441/1058/0.0126 |
Parameters/Restraints | 66/0 |
Largest Peak/Deepest Hole (e/Å3) | 0.747/−0.761 |
GOF | 1.132 |
wR2/R1 | 0.0633/0.0247 |
Mode | Literature | Present Experiment | Calculations | |||||
---|---|---|---|---|---|---|---|---|
ω0 [6] (cm−1) | ω0 [7] (cm−1) | ω0 (cm−1) | α1 (cm−1/GPa) | α2 (cm−1/GPa2) | ω0 (cm−1) | α1 (cm−1/GPa) | α2 (cm−1/GPa2) | |
A | 67.9 | 2.72 | 0.06 | |||||
B2 | 75.0 | 0.77 | −0.01 | |||||
A | 79.2 | 0.13 | 0.19 | |||||
B3 | 88.4 | 1.13 | 0.10 | |||||
B2 | 96.6 | 1.05 | 0.01 | |||||
B1 | 102 | 98.8 | 1.38 | −0.03 | ||||
B3 | 111 | 110.4 | 2.93 | −0.03 | ||||
A | 110.7 | 0.22 | −0.07 | |||||
B1 | 111.1 | 0.44 | 0.01 | |||||
B1 | 115.8 | 3.27 | −0.14 | |||||
B2 | 118.5 | 1.28 | 0.02 | |||||
B2 | 124.0 | 1.31 | 0.23 | |||||
B3 | 127 | 128–129 | 127 | 2.01 | 0.03 | 130.5 | 2.21 | −0.06 |
A | 134.2 | 1.43 | −0.06 | |||||
B3 | 135.6 | 2.91 | −0.08 | |||||
B1 | 136.5 | 4.71 | −0.19 | |||||
A | 146 | 141–142 | 142 | 3.04 | −0.02 | 138.9 | 3.13 | −0.16 |
A | 150.0 | 6.33 | −0.38 | |||||
B3 | 151.0 | 1.92 | 0.03 | |||||
B2 | 152.0 | 6.51 | −0.39 | |||||
B3 | 155 | 155.2 | 6.30 | −0.15 | ||||
B2 | 165.3 | 4.48 | −0.24 | |||||
B1 | 168 | 2.05 | −0.05 | 169.0 | 2.16 | −0.10 | ||
B2 | 169.2 | 6.34 | 0.13 | |||||
A | 172.3 | 2.98 | 0.12 | |||||
B1 | 183 | 180 | 180 | 4.78 | −0.05 | 178.2 | 5.43 | −0.29 |
B3 | 190.0 | 2.83 | −0.06 | |||||
B1 | 194.9 | 1.39 | 0.17 | |||||
A | 195.5 | 2.57 | 0.03 | |||||
B3 | 200 | 198 | 5.50 | 0.00 | 197.6 | 6.01 | −0.04 | |
B1 | 213.5 | 3.64 | −0.09 | |||||
A | 218 | 218–219 | 218 | 4.78 | −0.05 | 215.0 | 5.46 | −0.16 |
B1 | 220.8 | 2.09 | 0.26 | |||||
B2 | 227.0 | 4.00 | −0.07 | |||||
A | 229.5 | 1.03 | 0.37 | |||||
B3 | 234.1 | 1.86 | 0.14 | |||||
B3 | 235.5 | 12.7 | −0.37 | |||||
B2 | 238 | 2.73 | 0.00 | 238.4 | 2.85 | −0.01 | ||
B1 | 241.1 | 13.4 | −0.56 | |||||
A | 244.2 | 11.8 | −0.49 | |||||
B2 | 247.6 | 12.7 | −0.71 | |||||
A | 258 | 260 | 260 | 5.70 | −0.02 | 269.0 | 6.81 | −0.08 |
B1 | 281.2 | 3.92 | 0.09 | |||||
B2 | 285.2 | 3.20 | 0.25 | |||||
B3 | 287 | 291 | 3.75 | 0.00 | 293.7 | 4.25 | −0.06 | |
B2 | 300.7 | 9.77 | −0.31 | |||||
A | 305.3 | 5.88 | −0.16 | |||||
B3 | 305.7 | 10.8 | −0.43 | |||||
B1 | 306.4 | 10.1 | −0.29 | |||||
A | 312 | 315.1 | 9.10 | −0.20 | ||||
B3 | 337.3 | 7.11 | −0.17 | |||||
B2 | 354 | 349 | 349 | 7.37 | −0.11 | 337.4 | 9.46 | −0.24 |
B1 | 348.2 | 7.91 | −0.15 | |||||
B3 | 361 | 361 | 8.80 | −0.25 | 362.9 | 10.3 | −0.31 | |
A | 367 | 365.0 | 8.60 | −0.19 | ||||
B2 | 377 | 378 | 376 | 6.50 | −0.11 | 374.6 | 6.72 | −0.16 |
B1 | 396–400 | 400 | 6.45 | −0.13 | 398.4 | 6.84 | −0.17 | |
B1 | 409.9 | 11.3 | −0.39 | |||||
B3 | 423.7 | 10.1 | −0.26 | |||||
B2 | 444.7 | 14.7 | −0.69 | |||||
A | 454.7 | 11.9 | −0.49 | |||||
B1 | 460.4 | 13.3 | −0.34 | |||||
B2 | 465 | 8.75 | −0.17 | 465.8 | 10.5 | −0.24 | ||
A | 472 | 472–476 | 475 | 8.88 | −0.19 | 468.1 | 9.94 | −0.22 |
B3 | 485 | 489 | 481.3 | 14.2 | −0.66 | |||
B2 | 500.0 | 4.56 | 0.16 | |||||
B1 | 516.3 | 6.42 | −0.02 | |||||
B3 | 516.5 | 4.68 | 0.11 | |||||
A | 552 | 550–552 | 549 | 7.57 | 0.00 | 518.8 | 8.79 | −0.07 |
A | 604.5 | 12.5 | −0.74 | |||||
B3 | 608.7 | 5.92 | −0.12 | |||||
B1 | 608.9 | 9.49 | −0.47 | |||||
B2 | 624.8 | 5.70 | −0.33 | |||||
B2 | 628.0 | 10.3 | −0.61 | |||||
B3 | 632.5 | 11.8 | −0.71 | |||||
B1 | 632.8 | 9.54 | −0.47 | |||||
A | 634.5 | 4.50 | −0.06 | |||||
B2 | 645.6 | 4.94 | 0.29 | |||||
B1 | 650.8 | 5.03 | 0.25 | |||||
A | 660.3 | 4.77 | 0.16 | |||||
B3 | 688 | 685–690 | 679 | 1.33 | 0.37 | 664.6 | 1.65 | 0.44 |
B1 | 705 | 700–710 | 707 | 12.5 | −0.88 | 716.4 | 17.6 | −1.18 |
A | 720 | 720.5 | 14.4 | −0.94 | ||||
B3 | 725 | 727 | 729 | 11.9 | −0.55 | 727.6 | 13.5 | −0.84 |
B2 | 735.1 | 14.8 | −0.93 | |||||
A | 740.5 | 16.5 | −0.78 | |||||
B1 | 745 | 749 | 748 | 15.5 | −0.43 | 745.2 | 16.6 | −0.56 |
B3 | 751.5 | 16.3 | −0.88 | |||||
B2 | 753.8 | 18.8 | −0.86 | |||||
B3 | 792 | 809.7 | 10.6 | −0.07 | ||||
A | 813 | 811–817 | 811 | 8.78 | −0.05 | 814 | 10.4 | −0.15 |
B2 | 816.9 | 12.8 | −0.38 | |||||
B1 | 828.7 | 9.36 | −0.16 | |||||
A | 832.6 | 17.6 | −0.10 | |||||
B3 | 839.7 | 18.1 | −0.19 | |||||
B2 | 845.9 | 12.5 | 0.26 | |||||
B1 | 880 | 13.5 | −0.11 | 848.2 | 16.6 | −0.12 | ||
B2 | 967 | 1023 | 11.3 | −0.65 | ||||
B1 | 1026 | 11.7 | −0.66 | |||||
B3 | 1030 | 14.6 | −0.79 | |||||
A | 1031 | 13.8 | −0.73 | |||||
A | 1051 | 18.9 | −0.34 | |||||
B1 | 1054 | 20.3 | −0.47 | |||||
B2 | 1054 | 20.1 | −0.46 | |||||
B3 | 1056 | 17.6 | −0.26 | |||||
B2 | 1560 | −0.95 | 0.01 | |||||
B1 | 1564 | −0.69 | 0.00 | |||||
A | 1574 | 1580 | −0.68 | −0.03 | ||||
B3 | 1581 | −0.27 | −0.03 | |||||
B3 | 1601 | 1.64 | −0.18 | |||||
B2 | 1604 | 2.55 | −0.21 | |||||
A | 1624 | −1.78 | −0.07 | |||||
B1 | 1660 | 1625 | −1.68 | −0.07 | ||||
A | 2685 | −44.7 | 1.18 | |||||
B2 | 2688 | −44.1 | 1.15 | |||||
B3 | 2700 | −40.7 | 0.93 | |||||
B1 | 2709 | −37.0 | 0.72 | |||||
B2 | 2766 | −41.6 | 1.74 | |||||
B3 | 2771 | −43.7 | 1.87 | |||||
B1 | 2879 | 2773 | −45.5 | 2.03 | ||||
A | 2980 | 2909 | 2779 | −40.4 | 1.63 | |||
A | 3133 | −26.7 | −1.22 | |||||
B1 | 3136 | −26.2 | −1.23 | |||||
B3 | 3138 | −26.5 | −1.21 | |||||
B2 | 3185 | 3193 | 3141 | −26.6 | −1.19 | |||
B1 | 3357 | −40.0 | 0.96 | |||||
A | 3360 | −39.5 | 1.00 | |||||
B2 | 3362 | −39.0 | 0.91 | |||||
B3 | 3504 | 3507 | 3368 | −38.8 | 0.97 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Platas, J.; Rodriguez-Hernandez, P.; Muñoz, A.; Rodríguez-Mendoza, U.R.; Nénert, G.; Errandonea, D. A High-Pressure Investigation of the Synthetic Analogue of Chalcomenite, CuSeO3∙2H2O. Crystals 2019, 9, 643. https://doi.org/10.3390/cryst9120643
Gonzalez-Platas J, Rodriguez-Hernandez P, Muñoz A, Rodríguez-Mendoza UR, Nénert G, Errandonea D. A High-Pressure Investigation of the Synthetic Analogue of Chalcomenite, CuSeO3∙2H2O. Crystals. 2019; 9(12):643. https://doi.org/10.3390/cryst9120643
Chicago/Turabian StyleGonzalez-Platas, Javier, Placida Rodriguez-Hernandez, Alfonso Muñoz, U. R. Rodríguez-Mendoza, Gwilherm Nénert, and Daniel Errandonea. 2019. "A High-Pressure Investigation of the Synthetic Analogue of Chalcomenite, CuSeO3∙2H2O" Crystals 9, no. 12: 643. https://doi.org/10.3390/cryst9120643
APA StyleGonzalez-Platas, J., Rodriguez-Hernandez, P., Muñoz, A., Rodríguez-Mendoza, U. R., Nénert, G., & Errandonea, D. (2019). A High-Pressure Investigation of the Synthetic Analogue of Chalcomenite, CuSeO3∙2H2O. Crystals, 9(12), 643. https://doi.org/10.3390/cryst9120643