Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Luminescent Dyes
2.2. Solvents and Polymer Supports
2.3. Spectroscopic Measurements
2.4. Luminescence Lifetimes
2.5. Phase-Sensitive Luminescence Measurements
2.6. Temperature Control
2.7. Fabrication of the Sensor Tips
2.8. Temperature-Sensing Film in Microfluidic Devices
3. Results and Discussion
3.1. Indicator Dye Selection
3.2. Photophysical Characterization of [Ru(Phen)2(4-Clp)]2+ in Solution
3.3. Polymer Sensor Tip Development
3.4. Photophysical Characterization of the Dye Entrapped into a Poly(Cyanoacrylate) Matrix
3.5. Temperature Measurements Based on the Luminescence Lifetime of the Polymer Material
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References and Note
- Childs, P.R.N.; Greenwood, J.R.; Long, C.A. Review of temperature measurement. Rev. Sci. Instrum. 2000, 71, 2959–2979. [Google Scholar] [CrossRef]
- Wang, X.-D.; Wolfbeis, O.S.; Meier, R.J. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 42, 7834–7869. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, M.; Möllmann, K.-P. Basic properties of IR imaging systems. In Infrared Thermal Imaging: Fundamentals, Research and Applications, 2nd ed.; Vollmer, M., Möllmann, K.-P., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; ISBN 9783527693306. [Google Scholar]
- Thompson, R.B. Fluorescence-based fiber-optic sensors. In Topics in Fluorescence Spectroscopy; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2002; Volume 2, pp. 345–365. ISBN 9780306470585. [Google Scholar]
- Uchiyama, S.; Gota, C.; Tsuji, T.; Inada, N. Intracellular temperature measurements with fluorescent polymeric thermometers. Chem. Commun. 2017, 53, 10976–10992. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.E.; Kopelman, R. Nanoparticle PEBBLE sensors in live cells. Methods Enzymol. 2012, 504, 419–470. [Google Scholar] [CrossRef] [PubMed]
- Hoera, C.; Ohla, S.; Shu, Z.; Beckert, E.; Nagl, S.; Belder, D. An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors. Anal. Bioanal. Chem. 2015, 407, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Borisov, S.M.; Wolfbeis, O.S. Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen. Anal. Chem. 2006, 78, 5094–5101. [Google Scholar] [CrossRef] [PubMed]
- Orellana, G.; García-Fresnadillo, D. Environmental and industrial optosensing with tailored luminescent Ru(II) polypyridyl complexes. In Optical Sensors: Industrial Environmental and Diagnostic Applications; Springer: Berlin/Heidelberg, Germany, 2004; pp. 309–357. [Google Scholar]
- Zhou, H.; Sharma, M.; Berezin, O.; Zuckerman, D.; Berezin, M.Y. Nanothermometry: From microscopy to thermal treatments. ChemPhysChem 2016, 17, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-D.; Wolfbeis, O.S. Optical methods for sensing and imaging oxygen: Materials, spectroscopies and applications. Chem. Soc. Rev. 2014, 43, 3666–3761. [Google Scholar] [CrossRef] [PubMed]
- For instance, the Ocean Optics (USA) Foxy®, Presens (Germany) Microx®, Van Essen Instruments (The Netherlands) Diver®, or PyroScience (Germany) FireStingO2® fiber-optic oxygen monitors.
- Demas, J.N.; DeGraff, B.A. Design and applications of highly luminescent transition metal complexes. In Topics in Fluorescence Spectroscopy; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2002; Volume 4, ISBN 9780306470608. [Google Scholar]
- Klimant, I.; Holst, G. Optical Temperature Sensors and Optical-Chemical Sensors with Optical Temperature Compensation. U.S. Patent 6,303,386, 24 May 2001. [Google Scholar]
- Mills, A.; Tommons, C.; Bailey, R.T.; Tedford, M.C.; Crilly, P.J. Luminescence temperature sensing using poly(vinyl alcohol)-encapsulated Ru(bpy)32+ films. Analyst 2006, 131, 495–500. [Google Scholar] [CrossRef] [PubMed]
- Mirenda, M.; Levi, V.; Bossi, M.L.; Bruno, L.; Bordoni, A.V.; Reqazzoni, A.E.; Wolosiuk, A. Temperature response of luminescent tris(bipyridine)ruthenium(II)-doped silica nanoparticles. J. Colloid Interface Sci. 2013, 392, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Tsvirko, M.; Tkaczyk, S.; Kozak, M.; Kalota, B. Luminescent temperature sensor based on [Ru(bpy)3]2+ incorporated into chitosan. Funct. Mater. 2013, 20, 127–132. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Huang, B.-H.; Cheng, F.-R.; Chen, S.-W.; Liou, T.-M. Experimental study of heat transfer enhancement with segmented flow in a microchannel by using molecule-based temperature sensors. Int. J. Heat Mass Transf. 2017, 107, 657–666. [Google Scholar] [CrossRef]
- Koese, M.E.; Carroll, B.F.; Schanze, K.S. Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films. Langmuir 2005, 21, 9121–9129. [Google Scholar] [CrossRef] [PubMed]
- Tolosa, L.; Lam, H.; Kostov, Y.; Falk, S.M.; Rao, G. Luminescence Based Noninvasive Remote Parameter Sensor and Sensing Method. U.S. Patent US 9,560,974 B2, 7 February 2017. [Google Scholar]
- Zhang, H.; Lei, B.; Dong, H.; Liu, Y.; Zheng, M.; Xiao, Y. Temperature and oxygen sensing properties of Ru(II) covalently-grafted sol-gel derived ormosil hybrid materials. J. Nanosci. Nanotechnol. 2016, 16, 4023–4028. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, S.A.; Nagl, S. On-chip photothermal analyte detection using integrated luminescent temperature sensors. Anal. Chem. 2017, 89, 9400–9406. [Google Scholar] [CrossRef] [PubMed]
- Draxler, S. Temperature dependence of the photophysical properties of ruthenium diphenylphenanthroline in liquid and solid environments. J. Phys. Chem. A 1999, 103, 4719–4722. [Google Scholar] [CrossRef]
- Klein, C.; Henne, U.; Constantini, M.; Beifuss, U.; Ondrus, V. Ruthenium Compound as a Temperature Probe in a Temperature-Sensitive Paint for Use at Low Temperatures [Ruthenium-Verbindung als Temperatursonde in einer Temperaturempfindlichen Farbe für den Einsatz bei Niedrigen Temperaturen]. Ger. Patent DE 102,015,104,585 B3, 8 September 2016. [Google Scholar]
- García-Fresnadillo, D.; Georgiadou, Y.; Orellana, G.; Braun, A.M.; Oliveros, E. Singlet-oxygen (1Δg) production by ruthenium(II) complexes containing polyazaheterocyclic ligands in methanol and in water. Helv. Chim. Acta 1996, 79, 1222–1238. [Google Scholar] [CrossRef]
- Lumpkin, R.S.; Kober, E.M.; Worl, L.A.; Murtaza, Z.; Meyer, T.J. Metal-to-ligand charge-transfer (MLCT) photochemistry: Experimental evidence for the participation of a higher lying MLCT state in polypyridyl complexes of ruthenium(II) and osmium(II). J. Phys. Chem. 1990, 94, 239–243. [Google Scholar] [CrossRef]
- Pourtois, G.; Beljonne, D.; Moucheron, C.; Schumm, S.; Kirsch-De Mesmaeker, A.; Lazzaroni, R.; Brédas, J.-L. Photophysical properties of ruthenium(II) polyazaaromatic compounds: A theoretical insight. J. Am. Chem. Soc. 2004, 126, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Mosquera-Vazquez, S.; Daku, L.M.; Guénée, L.; Goodwin, H.A.; Vauthey, E.; Hauser, A. Experimental evidence of ultrafast quenching of the 3MLCT luminescence in ruthenium(II) tris-bipyridyl complexes via a 3dd state. J. Am. Chem. Soc. 2013, 135, 13660–13663. [Google Scholar] [CrossRef] [PubMed]
- Van Houten, J.; Watts, R.J. Temperature dependence of the photophysical and photochemical properties of the tris(2,2′-bipyridyl)ruthenium(II) ion in aqueous solution. J. Am. Chem. Soc. 1976, 98, 4853–4858. [Google Scholar] [CrossRef]
- Seddon, E.A.; Seddon, K.R. The Chemistry of Ruthenium; Clark, R.J.H., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; Volume 19, pp. 1228–1236. ISBN 9781483289908. [Google Scholar]
- Rillema, D.P.; Allen, G.; Meyer, T.J.; Conrad, D. Redox properties of ruthenium(II) tris chelate complexes containing the ligands 2,2′-bipyrazine, 2,2′-bipyridine, and 2,2′-bipyrimidine. Inorg. Chem. 1983, 22, 1617–1622. [Google Scholar] [CrossRef]
- Sullivan, B.P.; Salmon, D.J.; Meyer, T.J. Mixed phosphine 2,2′-bipyridine complexes of ruthenium. Inorg. Chem. 1978, 17, 3334–3341. [Google Scholar] [CrossRef]
- Snyder, H.R.; Freier, H.E. Some substituted 1,10-phenanthrolines. J. Am. Chem. Soc. 1946, 68, 1320–1322. [Google Scholar] [CrossRef] [PubMed]
- García-Fresnadillo, D. Molecular Engineering and Photochemistry of Ru(II) Luminescent Indicators for Oxygen, Detergents and Pesticides Optosensing. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1996. [Google Scholar]
- Gutiérrez-Alonso, M.C. Luminescent DNA Probes and Photonucleases Based on Intercalating Viologens and Ru(II) Polypyridyls. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 1996. [Google Scholar]
- Villeras, J.; Ramband, M. Wittig-Horner reaction in heterogeneous media; 1. An easy synthesis of ethyl α-hydroxymethylacrylate and ethyl α-halomethylacrylates using formaldehyde in water. Synthesis 1982, 11, 924–926. [Google Scholar] [CrossRef]
- Mielenz, K.D. Measurements of photoluminescence. In Optical Radiation Measurements; Grum, F., Bartleson, C.J., Eds.; Academic Press: New York, NY, USA, 1982; Volume 3, ISBN 9780123049032. [Google Scholar]
- Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S. Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. Phys. Chem. Chem. Phys. 2009, 11, 9850–9860. [Google Scholar] [CrossRef] [PubMed]
- Valeur, B.; Berberan-Santos, M.N. Molecular Fluorescence. Principles and Applications, 2nd ed.; Wiley-VCH Verlag & Co. KGaA: Weinheim, Germany, 2012; ISBN 9783527328376. [Google Scholar]
- Lakowicz, J.R. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006; ISBN 9780387463124. [Google Scholar]
- Sykora, M.; Kincaid, J.R. Synthetic manipulation of excited state decay pathways in a series of ruthenium(II) complexes containing bipyrazine and substituted bipyridine ligands. Inorg. Chem. 1995, 34, 5852–5856. [Google Scholar] [CrossRef]
- Allen, G.H.; White, R.P.; Rillema, D.P.; Meyer, T.J. Synthetic control of excited-state properties. Tris-chelate complexes containing the ligands 2,2′-bipyrazine, 2,2′-bipyridine, and 2,2′-bipyrimidine. J. Am. Chem. Soc. 1984, 106, 2613–2620. [Google Scholar] [CrossRef]
- Jacquet, L.; Kirsch-De Mesmaeker, A. Spectroelectrochemical characteristics and photophysics of a series of Ru(II) complexes with 1,4,5,8,9,12-hexaazatriphenylene: Effects of polycomplexation. J. Chem. Soc. Faraday Trans. 1992, 88, 2471–2480. [Google Scholar] [CrossRef]
- Rillema, D.P.; Blanton, C.B.; Shaver, R.J.; Jackman, D.C.; Boldaji, M.; Bundi, S.; Worl, L.A.; Meyer, T.J. MLCT-dd energy gap in pyridyl-pyrimidine and bis(pyridine) complexes of ruthenium(II). Inorg. Chem. 1992, 31, 1600–1606. [Google Scholar] [CrossRef]
- Orellana, G.; Cano-Raya, C.; López-Gejo, J.; Santos, A.R. Online Monitoring Sensors. In Treatise on Water Science; Wilderer, P., Ed.; Elsevier: Oxford, UK, 2011; Volume 3, pp. 221–262. ISBN 9780444531933. [Google Scholar]
- Ozturk, S.; Hu, W.-S. Cell Culture Technology for Pharmaceutical and Cell-Based Therapies; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Masterton, R.J.; Smales, C.M. The impact of process temperature on mammalian cell lines and the implications for the production of recombinant proteins in CHO cells. Pharm. Bioprocess. 2014, 2, 49–61. [Google Scholar] [CrossRef]
- Maruszewski, K.; Strommen, D.P.; Kincaid, J.R. Zeolite-entrapped ruthenium(II) complexes with bipyridine and related ligands. Elimination of ligand-field-state deactivation and increase in 3MLCT state lifetimes. J. Am. Chem. Soc. 1993, 115, 8345–8350. [Google Scholar] [CrossRef]
- Sen, R.; Koner, S.; Bhattacharjee, A.; Kusz, J.; Miyashita, Y.; Okamoto, K. Entrapment of [Ru(bpy)3]2+ in the anionic metal-organic framework: Novel photoluminescence behavior exhibiting dual emission at room temperature. Dalton Trans. 2011, 40, 6952–6960. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Zhang, J.; Chelora, J.; Xiong, Y.; Kershaw, S.V.; Li, K.F.; Lo, P.-K.; Cheah, K.W.; Rogach, A.L.; Zapien, J.A.; et al. Ruthenium(II) complex incorporated UiO-67 metal-organic framework nanoparticles for enhanced two-photon fluorescence imaging and photodynamic cancer therapy. ACS Appl. Mater. Interfaces 2017, 9, 5699–5708. [Google Scholar] [CrossRef] [PubMed]
- López-Gejo, J.; Haigh, D.; Orellana, G. Relationship between the microscopic and macroscopic world in optical oxygen sensing: A luminescence lifetime microscopy study. Langmuir 2010, 26, 2144–2150. [Google Scholar] [CrossRef] [PubMed]
Complex | A × 103 /s−1 | B × 1011 /s−1 | ΔE /cm−1 | r | τ/μs a | kt × 10−5 /s−1 a,b | ηt a,c |
---|---|---|---|---|---|---|---|
[Ru(phen)3]2+ | 235 ± 5 | 446 ± 89 | 3546 ± 23 | 0.9998 | 0.53 ± 0.01 | 1.6 | 0.08 |
[Ru(dpp)3]2+ | 146 ± 1 | 0.2 ± 0.1 | 2861 ± 162 | 0.9993 | 6.0 ± 0.1 | 0.2 | 0.14 |
[Ru(bpy)3]2+ | 656 ± 8 | 481 ± 219 | 3858 ± 100 | 0.9996 | 0.96 ± 0.02 | 3.9 | 0.37 |
[Ru(phen)2(4-Clp)]2+ | 236 ± 4 | 1500 ± 937 | 4215 ± 134 | 0.9995 | 2.22 ± 0.04 | 2.2 | 0.48 |
[Ru(phen)2(4-OHp)]2+ d | 276 ± 10 | 347 ± 228 | 3764 ± 141 | 0.9995 | 1.40 ± 0.03 | 4.4 | 0.62 |
[Ru(bpz)3]2+ | 388 ± 10 | 753 ± 344 | 3808 ± 96 | 0.9998 | 0.87 ± 0.02 | 7.8 | 0.67 |
Solvent | Δλmaxabs/nm (ε/M−1 cm−1) a | Δλmaxem /nm b | τAir /μs c | τAr /μs c |
---|---|---|---|---|
water | 224 (59,500), 262 (83,000), 425 (13,900), 445 (14,100) | 610 | 0.82 | 1.49 d |
propylene carbonate | 224, 262, 425, 445 | 619 | 0.51 | 2.22 |
acetonitrile | 224, 262, 425, 445 | 612 | 0.24 | 1.90 |
butyronitrile | 224, 262, 425, 445 | 610 | 0.34 | 1.63 |
Polymer support a | PCA | EPOXY | SOL-GEL | p(EHMA-MMA) |
---|---|---|---|---|
I0/I40 b | 3.6 | 3.3 | 2.2 | 1.8 |
T/°C | ΔτPC/μs a | τ1/μs (α1) b | Δτ2/μs (α2) b | Δτ3/μs (α3) b | τM c | Δτφ d |
---|---|---|---|---|---|---|
0.0 | 3.71 | 5.78 (0.44) | 3.03 (0.36) | 1.27 (0.20) | 3.89 | 3.51 |
40.0 | 1.23 | 3.35 (0.30) | 1.19 (0.45) | 0.18 (0.25) | 1.59 | 2.08 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustamante, N.; Ielasi, G.; Bedoya, M.; Orellana, G. Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes. Polymers 2018, 10, 234. https://doi.org/10.3390/polym10030234
Bustamante N, Ielasi G, Bedoya M, Orellana G. Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes. Polymers. 2018; 10(3):234. https://doi.org/10.3390/polym10030234
Chicago/Turabian StyleBustamante, Nelia, Guido Ielasi, Maximino Bedoya, and Guillermo Orellana. 2018. "Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes" Polymers 10, no. 3: 234. https://doi.org/10.3390/polym10030234
APA StyleBustamante, N., Ielasi, G., Bedoya, M., & Orellana, G. (2018). Optimization of Temperature Sensing with Polymer-Embedded Luminescent Ru(II) Complexes. Polymers, 10(3), 234. https://doi.org/10.3390/polym10030234