Compression Properties of Interlayer and Intralayer Carbon/Glass Hybrid Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.2. Hybrid Scheme Design
2.2.1. Interlayer Hybrid Composites
2.2.2. Intralayer Hybrid Composites
2.3. Compression Tests
3. Results and Discussions
3.1. Compression Performances of Interlayer Hybrid Composites
3.2. Compression Performances of Intralayer Hybrid Composites
3.3. Experimental and Theoretical Values of Compressive Strength and Modulus
4. Conclusions
- The compression modulus of interlayer and intralayer hybrid composites is determined by the mixed ratio.
- Alterations in layer structures merely impact the compressive strength of the interlayer hybrid composites, which mainly manifest as compression strength, fracture strain and strength of an interlayer hybrid composite with glass fiber sandwiching carbon fiber above that of carbon fiber sandwiching glass fiber.
- There is no evident impact of mixing ratios and hybrid structure of C/G interlayer hybrid composites on compression modulus and strength under the 90-degree compression loading.
- As indicated through comparing experimental results and theoretical calculation values for interlayer and intralayer hybrid composites, the experimental compressive modulus is consistent with theoretical values calculated via the ROM, while the experimental compressive strength surmounts the theoretical values and exhibits a positive hybrid effect.
- Moreover, interlayer hybrid composites provide more excellent mechanical properties than intralayer hybrid structures, which make it possible for interlayer hybrid composites to attain higher strength on the premise of using less carbon fiber.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Thornton, P.H. Energy Absorption in Composite Structures. J. Compost. Mater. 1979, 13, 247–262. [Google Scholar] [CrossRef]
- Oya, N.; Hamada, H. Effects of Reinforcing Fibre Properties on Various Mechanical Behaviors of Unidirectional Carbon/Epoxy Laminates. Sci. Eng. Compost. Mater. 1996, 5, 105–130. [Google Scholar] [CrossRef]
- Cramer, D.R.; Taggart, D.F.; Hypercar Inc. Design and Manufacture of an Affordable Advanced-Composite Automotive Body Structure. In Proceedings of the 19th International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium and Exhibition, Busan, Korea, 19–23 October 2002. [Google Scholar]
- Thilagavathi, G.; Pradeep, E.; Kannaian, T.; Sasikala, L. Development of Natural Fiber Nonwovens for Application as Car Interiors for Noise Control. J. Ind. Text. 2010, 39, 267–278. [Google Scholar] [CrossRef]
- Zhang, J.; Chaisombat, K.; He, S.; Wang, C.H. Hybrid Composite Laminates Reinforced with Glass/Carbon Woven Fabrics for Lightweight Load Bearing Structures. Mater. Des. 2012, 36, 75–80. [Google Scholar] [CrossRef]
- Davies, I.J. Flexural Failure of Unidirectional Hybrid Fibre-Reinforced Polymer (FRP) Composites Containing Different Grades of Glass Fibre. Adv. Mater. Res. 2008, 357–362. [Google Scholar]
- Manders, P.W.; Bader, M.G. The Strength of Hybrid Glass/Carbon Fibre Composites. J. Mater. Sci. 1981, 16, 2233–2245. [Google Scholar] [CrossRef]
- Zweben, C. Tensile Strength of Hybrid Composites. J. Mater. Sci. 1977, 12, 1325–1337. [Google Scholar] [CrossRef]
- Ikbal, M.H.; Wei, L. Effect of Proportion of Carbon Fiber Content and the Dispersion of Two Fiber Types on Tensile and Compressive Properties of Intra-Layer Hybrid Composites. Text. Res. J. 2017, 87, 305–328. [Google Scholar] [CrossRef]
- Kretsis, G. A Review of the Tensile, Compressive, Flexural and Shear Properties of Hybrid Fibre-Reinforced Plastics. Composites 1987, 18, 13–23. [Google Scholar] [CrossRef]
- Hang, Z.Y.; Choi, J.R.; Soo-Jin, P. Thermal Conductivity and Thermo-Physical Properties of Nanodiamond-Attached Exfoliated Hexagonal Boron Nitride/Epoxy Nanocomposites for Microelectronics. Compost. App. Sci. Manuf. 2017, 101, 227–236. [Google Scholar]
- Fu, S.Y.; Lauke, B.; Mäder, E.; Yue, C.Y.; Hu, X. Tensile Properties of Short-Glass-Fiber-and Short-Carbon-Fiber-Reinforced Polypropylene Composites. Compost. App. Sci. Manuf. 2000, 31, 1117–1125. [Google Scholar] [CrossRef]
- Bunsell, A.R.; Harris, B. Hybrid Carbon and Glass Fibre Composites. Composites 1974, 5, 157–164. [Google Scholar] [CrossRef]
- Kalnin, I.L. Evaluation of Unidirectional Glass-Graphite Fiber/Epoxy Resin Composites. Compost. Mater. ASTM Int. 1972. [Google Scholar] [CrossRef]
- Marom, G.; Fischer, S.; Tuler, F.R.; Wagner, H.D. Hybrid Effects in Composites: Conditions for Positive or Negative Effects Versus Rule-of-Mixtures Behaviour. J. Mater. Sci. 1978, 13, 1419–1426. [Google Scholar] [CrossRef]
- Song, D.C.; Davies, I.J. Optimal Design for the Flexural Behaviour of Glass and Carbon Fibre Reinforced Polymer Hybrid Composites. Mater. Des. 2012, 37, 450–457. [Google Scholar]
- Song, D.C.; Ranaweera-Jayawardena, H.A.; Davies, I.J. Flexural Properties of Hybrid Composites Reinforced by S-2 Glass and T700s Carbon Fibres. Compost. Eng. 2012, 43, 573–581. [Google Scholar]
- Song, D.C.; Davies, I.J. Flexural and Tensile Strengths of Unidirectional Hybrid Epoxy Composites Reinforced by S-2 Glass and T700s Carbon Fibres. Mater. Des. 2014, 574, 955–966. [Google Scholar]
- Song, D.C.; Davies, I.J. Flexural and Tensile Moduli of Unidirectional Hybrid Epoxy Composites Reinforced by S-2 Glass and T700s Carbon Fibres. Mater. Des. 2014, 54, 893–899. [Google Scholar]
- Davies, I.J.; Hamada, H. Flexural Properties of a Hybrid Polymer Matrix Composite Containing Carbon and Silicon Carbide Fibres. Adv. Compost. Mater. 2001, 10, 77–96. [Google Scholar] [CrossRef]
- Sudarisman; de San Miguel, B.; Davies, I.J. The Effect of Partial Substitution of E-Glass Fibre for Carbon Fibre on the Mechanical Properties of CFRP Composites. In Proceedings of the International Conference on Materials and Metallurgical Technology, Surabaya, Indonesia, 24–25 June 2009; pp. 125–128. [Google Scholar]
- Miwa, M.; Horiba, N. Effects of Fibre Length on Tensile Strength of Carbon/Glass Fibre Hybrid Composites. J. Mater. Sci. 1994, 29, 973–977. [Google Scholar] [CrossRef]
- Shun-Fa, H.; Ching-Ping, M. Failure of Delaminated Interply Hybrid Composite Plates under Compression. Compost. Sci. Technol. 2001, 61, 1513–1527. [Google Scholar]
- Hwang, S.F.; Ching-Ping, M. The Delamination Buckling of Single-Fibre System and Interply Hybrid Composites. Compost. Struct. 1999, 46, 279–287. [Google Scholar] [CrossRef]
- Yerramalli, C.S.; Waas, A. Compressive Behavior of Hybrid Composites. In Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Norfolk, VA, USA, 7–10 April 2003; p. 1509. [Google Scholar]
- Pandya, K.S.; Veerraju, C.; Naik, N.K. Hybrid Composites Made of Carbon and Glass Woven Fabrics under Quasi-Static Loading. Mater. Des. 2011, 32, 4094–4099. [Google Scholar] [CrossRef]
- Ikbal, M.H.; Ahmed, A.; Tao, W.Q.; Shuai, Z.; Wei, L. Hybrid Composites Made of Unidirectional T600s Carbon and E-Glass Fabrics under Quasi-Static Loading. J. Ind. Text. 2017, 46, 1511–1535. [Google Scholar] [CrossRef]
- Dehkordi, M.T.; Nosraty, H.; Shokrieh, M.M.; Minak, G.; Ghelli, D. The Influence of Hybridization on Impact Damage Behavior and Residual Compression Strength of Intraply Basalt/Nylon Hybrid Composites. Mater. Des. 2013, 43, 283–290. [Google Scholar] [CrossRef]
- Singh, S.B.; Chawla, H. Hybrid Effect of Functionally Graded Hybrid Composites of Glass–Carbon Fibers. Mech. Adv. Mater. Struct. 2018. [Google Scholar] [CrossRef]
- Czél, G.; Jalalvand, M.; Wisnom, M.R. Design and Characterisation of Advanced Pseudo-Ductile Unidirectional Thin-Ply Carbon/Epoxy–Glass/Epoxy Hybrid Composites. Compost. Struct. 2016, 143, 362–370. [Google Scholar] [CrossRef]
Material | Tensile Strength (MPa) | Tensile Modulus (GPa) |
---|---|---|
CPIC ECT469L-2400 Glass Fiber | 2366 | 78.7 |
TORAY T620SC-24K-50C Carbon Fiber | 4175 | 234 |
SWANCOR 2511-1A/BS Epoxy Resin | 73.5 | 3.1 |
Fabric Type | Areal Density (g/m2) | Ratio of Carnon/Glass (C/G) | |
---|---|---|---|
Carbon Fiber | Glass Fiber | ||
Carbon | 728.3 | 0 | 1:0 |
Glass | 0 | 944.9 | 0:1 |
C–G | 364.2 | 472.4 | 1:1 |
C–G–G | 242.8 | 629.9 | 1:2 |
C–G–G–G–G | 145.7 | 755.9 | 1:4 |
C/G Hybrid Ratios | Stacking Sequences | |||
---|---|---|---|---|
C:G=1:1 | ||||
[G/G/C/C] | [G/C/C/G] | [C/G/G/C] | [G/C/G/C] | |
C:G=1:2 | ||||
[G/G/C] | [G/C/G] | |||
C:G=1:3 | ||||
[G/G/G/C] | [G/G/C/G] | |||
C:G=1:4 | ||||
[G/G/G/G/C] | [G/G/G/C/G] | [G/G/C/G/G] |
Hybrid Fabric | Stacking Sequences | |||
---|---|---|---|---|
C–C–G–G C:G=1:1 | ||||
[C–C–G–G]-0 | [C–C–G–G]-1 | [C–C–G–G]-2 | ||
[C–C–G–G]-0.5 | [C–C–G–G]-1.5 | |||
C–G–G C:G=1:2 | ||||
[C–G–G]-0 | [C–G–G]-1 | [C–G–G]-0.5 | [C–G–G]-1.5 | |
C–G–G–G–G C:G=1:4 | ||||
[C–G–G–G–G]-0 | [C–G–G–G–G]-1 | [C–G–G–G–G]-2 | ||
[C–G–G–G–G]-0.5 | [C–G–G–G–G]-1.5 | [C–G–G–G–G]-2.5 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Wu, W.; Li, W. Compression Properties of Interlayer and Intralayer Carbon/Glass Hybrid Composites. Polymers 2018, 10, 343. https://doi.org/10.3390/polym10040343
Wang Q, Wu W, Li W. Compression Properties of Interlayer and Intralayer Carbon/Glass Hybrid Composites. Polymers. 2018; 10(4):343. https://doi.org/10.3390/polym10040343
Chicago/Turabian StyleWang, Qingtao, Weili Wu, and Wei Li. 2018. "Compression Properties of Interlayer and Intralayer Carbon/Glass Hybrid Composites" Polymers 10, no. 4: 343. https://doi.org/10.3390/polym10040343
APA StyleWang, Q., Wu, W., & Li, W. (2018). Compression Properties of Interlayer and Intralayer Carbon/Glass Hybrid Composites. Polymers, 10(4), 343. https://doi.org/10.3390/polym10040343