Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Materials
2.2. Methods
- Ra—Average Roughness defined as the average deviation of the profile in relation to its mean line and parameter more sensitive to peaks and valleys;
- Rpm—Mean Peak Height defined as the mean peak height from each length of sampling;
- Rvm—Mean Valley Depth as the mean maximum value of valley depth for each length of sampling;
- Rp—Maximum Peak Height as the maximum height of peak within evaluation length;
- Rv—Maximum Valley Depth as the maximum depth observed within the evaluation length;
- Rmax—Maximum Peak-to-Valley Height understood as the maximum peak-to-valley height within any of the sampling lengths; Rmax = Rv + Rp.
3. Results
3.1. Properties of Basalt Fibres–Reinforced Cement Mortar
3.2. Effectiveness of Hydrophobisation of Basalt Fibres–Reinforced Cement Mortar
3.2.1. Roughness and Microstructure of Mortars
3.2.2. Absorptivity, Wettability, Surface Free Energy (SFE) of Mortars
3.2.3. Frost Resistance of Mortars
4. Discussion
4.1. Properties of Basalt Fibres–Reinforced Cement Mortar
4.2. Effectiveness of Hydrophobisation of Basalt Fibres–Reinforced Cement Mortar
4.2.1. Roughness and Microstructure of Mortars
4.2.2. Absorptivity, Wettability, SFE of Mortars
4.2.3. Frost resistance
5. Conclusions
- The addition of BF has a negative impact on compression strength and frost resistance. However, it improves the flexural strength of the analyzed mortars with and without siloxane addition by 24% and 32%, respectively.
- The BF addition caused changes in the structure of cement mortars and altered the roughness parameters. Along with the increase of basalt fibres, porosity increases by up to 32%.
- Reactive polysiloxane applied in the Series 2 mixtures increased the average roughness by up to 31% for the standard mortars and by up 13% with the highest share of basalt fibres (H1.5). The polymer admixture causes creation of chemical bonds between particular concrete components, influencing the changes in the microstructure and the strength parameters. The hardening process of polysiloxane gel in the aqueous environment of cement slurry and cement hydration in the presence of polymer compound are disrupted. The presence of water weakens the resin hardening process, and the final polymer cross-linking reaction yielding a film of polysiloxane gel is disrupted.
- A linear reaction between the roughness and adhesion properties described by SFE was presented. The highest hydrophobicity was obtained in the case of the reference M0R mortar with SFE equal to 10.53 mJ·m−2.
- The investigation pertaining to the roughness following hydrophobisation, as well as the produced 3D profilograms, confirmed the influence of polysiloxane film on roughness reduction. The cement mortars without the polysiloxane film are characterized by four times greater adhesion, which is connected with the durability of mortars. Following hydrophobisation, the frost resistance of the mortars with 1.5% basalt fibres addition dropped almost three-fold, whereas the reduction in the compression strength decreased almost by a factor of five.
- Due to the negative impact of siloxane admixture in the cement mortars with basalt fibres additionon the frost resistance, compression strength, and adhesion of cement paste to fibres, its application in this type of mortars is not recommended.
- Due to a reduction in wettability and increase in frost resistance, performing the surface hydrophobisation by means of polysiloxanes is encouraged in order to improve the durability of cement mortars with basalt fibres.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Fiore, V.; Scalici, T.; Bella, G.D.; Valenza, A. A review on basalt fiber and its composites. Compos. B Eng. 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Morova, N. Investigation of usability of basalt fibres in hot mix asphalt concrete. Constr. Build. Mater. 2013, 47, 175–180. [Google Scholar] [CrossRef]
- Militky, J.; Kovačič, V.; Rubnerová, J. Influence of thermal treatment on tensile failure of basalt. Eng. Fract. Mech. 2002, 69, 1025–1033. [Google Scholar] [CrossRef]
- Ralegaonkar, R.; Gavali, H.; Aswath, P.; Abolmaali, S. Application of chopped basalt fibers in reinforced mortar, A review. Constr. Build. Mater. 2018, 164, 589–602. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal GRhee, K.Y.; Park, S.J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. B Eng. 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Kogan, F.M.; Nikitina, O.V. Solubility of chrysotile asbestos and basalt fibers in relation to their fibrogenic and carcinogenic action. Environ. Health. Persp. 1994, 102, 205–206. [Google Scholar] [CrossRef]
- Hao, L.C.; Yu, W.D. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics. J. Therm. Anal. Calorim. 2010, 100, 551–555. [Google Scholar] [CrossRef]
- Moiseev, E.A.; Gutnikov, S.I.; Malakho, A.P.; Lazoryak, B.I. Effect of iron oxides on the fabrication and properties of continuous glass fibers. Inorg. Mater. 2008, 44, 1026–1030. [Google Scholar] [CrossRef]
- Nasir, V.; Karimipour, H.; TBehrooz, F.; MShokrieh, M. Corrosion behavior and crack formation mechanism of basalt fiber in sulphuric acid. Corros. Sci. 2012, 64, 1–7. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, S.; Zhu, Y.; Lin, Y.; Chen, D. Effect of polypropylene and basalt fiber on the behavior of mortars for repair applications. Adv. Mater. Sci. Eng. 2016, 2016, 1–11. [Google Scholar] [CrossRef]
- Santarelli, M.L.; Sbardella, F.; Zuena, M.; Tirillo, J.; Sarasini, F. Basalt fiber reinforced natural hydraulic lime mortars: A potential bio-based material for restoration. Mater. Des. 2014, 63, 398–406. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Smarzewski, P. Influence of hydrophobisation on surface free energy of hybrid fiber reinforced ultra-high performance concrete. Constr. Build. Mater. 2016, 102, 367–377. [Google Scholar] [CrossRef]
- Sadowski, Ł.; Stefaniuk, D.; Hoła, J. The effect of the porosity within the interfacial zone between layers on pull-off adhesion. Constr. Build. Mater. 2017, 152, 887–897. [Google Scholar] [CrossRef]
- Sadowski, Ł.; Mathia, T.G. Review. Multi-scale metrology of concrete surface morphology: Fundamentals and specificity. Constr. Build. Mater. 2016, 113, 613–621. [Google Scholar] [CrossRef]
- Halicka, A. Influence new-to-old concrete interface qualities on the behaviour of support zones of composite concrete beams. Constr. Build. Mater. 2011, 25, 4072–4078. [Google Scholar] [CrossRef]
- Czarnecki, L.; Łukowski, P.; Garbacz, A. The Protection and Repair of Concrete Structures. In Comment to PN-EN 1504; PWN: Warsaw, Poland, 2016. (In Polish) [Google Scholar]
- Sadowski, Ł.; Hoła, J.; Czarnecki, S. Non-destructive neural identification of the bond between concrete layers in existing elements. Constr. Build. Mater. 2016, 127, 49–58. [Google Scholar] [CrossRef]
- Wu, S. Polymer Interface and Adhesion; CRC Press: Boca Raton, FL, USA, 1982. [Google Scholar]
- Quere, D. Rough ideas on wetting. Physica A 2002, 313, 32–46. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Bico, J.; Tordeux, C.; Quéré, D. Rough wetting. Europhys. Lett. 2001, 55, 214–220. [Google Scholar] [CrossRef]
- Barnat-Hunek, D.; Łagód, G.; Siddique, R. Properties of hydrophobised lightweight mortars with expanded cork. Constr. Build. Mater. 2017, 155, 15–25. [Google Scholar] [CrossRef]
- Xue, X.; Li, Y.; Yang, Z.; He, Z.; Dai, J.-G.; Xu, L.; Zhang, W. A systematic investigation of the waterproofing performance and chloride resistance of a self-developed waterborne silane-based hydrophobic agent for mortar and concrete. Constr. Build. Mater. 2017, 155, 939–946. [Google Scholar] [CrossRef]
- Czarnecki, L.; Garbacz, A.; Krystosiak, M. On the ultrasonic assessment of adhesion between polymer coating and concrete substrate. Cem. Concr. Compos. 2006, 28, 360–369. [Google Scholar] [CrossRef]
- Suchorab, Z.; Barnat-Hunek, D.; Franus, M.; Łagod, G. Mechanical and physical properties of hydrophobized lightweight aggregate concrete with sewage sludge. Materials (Basel) 2016, 9, 317. [Google Scholar] [CrossRef] [PubMed]
- Brzyski, P.; Barnat-Hunek, D.; Fic, S.; Szeląg, M. Hydrophobisation of lime composites with lignocellulosic raw materials from flax. J. Nat. Fibers. 2017, 14, 609–620. [Google Scholar] [CrossRef]
- Tittarelli, F. Oxygen diffusion through hydrophobic cement-based materials. Cem. Concr. Res. 2009, 39, 924–928. [Google Scholar] [CrossRef]
- Fic, S.; Szewczak, A.; Barnat-Hunek, D.; Łagód, G. Processes of Fatigue Destruction in Nanopolymer-Hydrophobised Ceramic Bricks. Materials 2017, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Barnat-Hunek, D.M.; Widomski, K.; Szafraniec, M.; Łagód., G. Impact of Different Binders on the Roughness, Adhesion Strength, and Other Properties of Mortars with Expanded. Cork. Mater. 2018, 11, 364. [Google Scholar] [CrossRef] [PubMed]
- Jian-jun, L.; Ying, M.; Yan-chun, L. The performance of green basalt fiber and its application in the civil engineering field. Appl. Mech. Mater. 2012, 193–194, 548–552. [Google Scholar]
- Kamiya, S.; Tanaka, I.; Imamura, K.; Sasaki, H.; Nakagawa, N. Basalt fiber material. US Patent 7,767,603 B2, 3 August 2010. [Google Scholar]
- Barnat-Hunek, D.; Smarzewski, P. Analysis of the physical properties of hydrophobised lightweight-aggregate mortars. Compos. Theory Pract. 2016, 16, 96–102. [Google Scholar]
- PN EN 197-1:2012 Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements; PKN: Warsaw, Poland, 2012.
- EN 196-1:2016-07 Methods of Testing Cement—Part 1: Determination of Strength; BSI: London, UK, 2016.
- PN-EN 1015-10:2001 Methods of Test Mortar for Masonry—Vol. 10: Determination of Density of the Dry Hardened Mortar; PKN: Warsaw, Poland, 2001.
- PN-EN 1015-11:2001 Methods of Testing Mortars for Walls—Part 11: Determination of Flexural Strength and Compressive Strength of the Hardened Mortar; PKN: Warsaw, Poland, 2001.
- BS 1881-122:2011 Testing Concrete. Method for Determination of Water Absorption; BSI: London, UK, 2011.
- PN-EN ISO 7783:2012 Farby i Lakiery—Oznaczanie Właściwości Przenikania Pary Wodnej. Metoda z Zastosowaniem Naczynka; PKN: Warsaw, Poland, 2012.
- PN-B-12012:2007 Methods of Test for Masonry Units—Determination of Resistance to Freeze-Thaw Masonry Ceramic; PKN: Warsaw, Poland, 2007.
- Santos, P.M.D.; Júlio, E.N.B.S. A state-of-the-art review on roughness quantification methods for concrete surfaces. Constr. Build. Mater. 2013, 38, 912–923. [Google Scholar] [CrossRef]
- Neumann, A.W.; Good, R.J.; Hope, C.J.; Sejpal, M. An equation-of-state approach to determine surface tensions of low-energy solids from contact angles. J. Colloid Interface Sci. 1974, 49, 291–304. [Google Scholar] [CrossRef]
- Łukowski, P. Role of polymers in forming of properties of polymer-cement binders and composites [in Polish], Prace Naukowe Politechniki Warszawskiej. Budownictwo 2008, 148, 3–159. [Google Scholar]
- Czarnecki, L.; Łukowski, P. Importance of Interphase Surfaces in Concrete-Like Polimer Composites Composites [In Polish]; I Konferencja Naukowa: Inżynieria Materiałowa, Bydgoszcz, 1989; pp. 97–114. [Google Scholar]
- Shaker, F.A.A.; El-Dieb, S.; Reda, M.M. Durability of Styrene-Butadiene latex modified concrete. Cem. Concr. Res. 1997, 27, 711–720. [Google Scholar] [CrossRef]
- Palou, M.T.; Bagel, L.; Zivica, V.; Kuliffayova, M.; Kozankova, J. Influence of hydrothermal curing regimes on the hydration of fiber-reinforced cement composites. J. Therm. Anal. Calorim. 2013, 113, 219–229. [Google Scholar] [CrossRef]
- Quattrociocchi, G.; Albe, M.; Tirillo, J.; Sarasini, F.; Valente, M.; Santarelli, M.L. Basalt fibers as a sustainable reinforcement for cement based mortars: Preliminary study, materials characterization VII 109. WIT Trans. Eng. Sci. 2015, 90, 109–120. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, M.; Zhao, G. Experimental research on basalt fiber reinforced cementitious composites. Appl. Mech. Mater. 2013, 253–255, 533–536. [Google Scholar] [CrossRef]
- Dong, Q.Q.; Jiang, C.H.; McCarthy, T.J.; Chen, D. Influence of basalt fiber on performance of cement mortar. Key Eng. Mater. 2010, 426–427, 93–96. [Google Scholar] [CrossRef]
- Semenov, V.; Rozovskaya, T.; Gubsckiy, A.; Gareeva, R. Effective light-weight masonry mortars with dispersed reinforcement. Proc. Eng. 2016, 153, 630–637. [Google Scholar] [CrossRef]
- Li, Z.; Bu, N.; Cong, X. Contrast experiment of common crack repair method and comprehensive new repair technology research. Appl. Mech. Mater. 2012, 166–169, 1587–1591. [Google Scholar] [CrossRef]
- Hay, K.M.; Dragila, M.I.; Liburdy, J. Theoretical model for the wetting of a rough surface. J. Colloid Interface Sci. 2008, 325, 472–477. [Google Scholar] [CrossRef] [PubMed]
- Barnat-Hunek, D. SURFACE Free Energy as a Factor Affecting Hydrophobisation Effectiveness in Protection of Building Construction; Publishing House of Lublin university of Technology: Lublin, Poland, 2016; 230p, ISBN 978-83-7947-216-1. [Google Scholar]
- Cappelletti, G.; Ardizzone, S.; Meroni, D.; Soliveri, G.; Ceotto, M.; Biaggi, C.; Benaglia, M.; Raimondi, L. Wettability of bare and fluorinated silanes: A combined approach based on surface free energy evaluations and dipole moment calculations. J. Colloid Interface Sci. 2013, 389, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Król, P.; Lechowicz, J.B.; Król, B. Modelling the surface free energy parameters of polyurethane coats—Part 1. Solvent-based coats obtained from linear polyure-thane elastomers. Colloid Polym. Sci. 2013, 291, 1031–1047. [Google Scholar] [CrossRef] [PubMed]
- Courard, L.; Michel, F.; Perkowicz, S.; Garbacz, A. Effects of limestone fillers on surface free energy and electrical conductivity of the interstitial solution of cement mixes. Cem. Concr. Comp. 2014, 45, 111–116. [Google Scholar] [CrossRef]
- Selvakumar, N.; Barshilia, H.C.; Rajam, K.S. Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobicpolytetra-fluoroethylene coatings: A comparison of experimental data with different theore-tical models. J. Appl. Phys. 2010, 108, 013505. [Google Scholar] [CrossRef]
Materials | Unit | Series 1 | Series 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M0.5 | M1 | M1.5 | H0 | H0.5 | H1 | H1.5 | ||
Portland cement I 32.5R | (kg∙m−3) (kg∙m−3) (kg∙m−3) (kg∙m−3) (kg∙m−3) | 280 | 280 | 280 | 280 | 274.4 | 274.4 | 274.4 | 274.4 |
Quartz sand < 2 mm | 1483 | 1483 | 1483 | 1483 | 1483 | 1483 | 1483 | 1483 | |
Water | 126 | 126 | 126 | 126 | 126 | 126 | 126 | 126 | |
Hydrophobic admixture | - | - | - | - | 5.49 | 5.49 | 5.49 | 5.49 | |
Basalt fiber 12–18 µm | - | 13.2 | 26.4 | 39.6 | - | 13.2 | 26.4 | 39.6 | |
Basalt fiber 12–18 µm | (%) | 0 | 0.5 | 1 | 1.5 | 0 | 0.5 | 1 | 1.5 |
Parameters | Unit | Value | Parameters | Unit | Value |
---|---|---|---|---|---|
Specific surface | (cm2∙g−1) | 3985 | Density | (g∙cm−3) | 3.05 |
Initial setting time | (min) | 248 | Volume stability | (mm) | < 10 |
Loss on ignition by weight cement | (%) | 5.0 | SO3 content | (%) | 2.798 |
Compressive strength | (MPa) | Cl content | (%) | 0.066 | |
after 2 days | 17.6 | Cr(VI) diss. content | (ppm) | 0.26 | |
after 28 days | 43.2 | Na2Oeq content | (%) | 0.78 |
Parameters | Unit | Value |
---|---|---|
Hardness on the Mosh’ scale | (-) | 8.5 |
Elongation to fracture | (%) | 2.4–3.1 |
Softening temperature | (°C) | 960 |
Modulus of elasticity | (GPa) | 89–110 |
Tensile strength | (MPa) | 2800–4500 |
Thermal conductivity | (W∙m−1∙K−1) | 1.67 |
Moisture absorption | (%) | <0.1 |
Coefficient of linear thermal expansion | (K−1) | 5.5 × 10−7 |
Specific heat capacity | (kJ∙kg−1∙K−1) | 0.86 |
Constant operating temperature | (°C) | 680 |
Melting temperature | (°C) | 1450 |
Operating temperature range | (°C) | –260 to +750 |
Parameters | Unit | Value |
---|---|---|
Water absorption coefficient w24 | (kg∙m−2∙h−0.5) | <0.1 |
Water requirements | (%) | 20–21 |
Water vapour diffusion δ | (g∙m−1·h−1·hPa−1) | <200 |
Compressive strength after 28 days | (MPa) | 30 |
Tensile bending strength after 28 days | (MPa) | 6 |
Working time | (min) | 60 |
Parameters | Unit | Polysiloxane | Water |
---|---|---|---|
Density | (g∙cm−3) | 1.03 | 0.99 |
Viscosity η | (Pa∙s) | 0.98 × 10−3 | 0.89 × 10−3 |
Surface tension γ | (N∙m−1) | 77.24 × 10−3 | 72 × 10−3 |
Surface tension-to-viscosity ratio η/γ | (-) | 78.82 | 80.90 |
Parameters | Unit | Series 1 | Series 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M0.5 | M1 | M1.5 | H0 | H0.5 | H1 | H1.5 | ||
Apparent density ρa | (kg∙m−3) | 2020 | 1956 | 1941 | 1823 | 1952 | 1892 | 1823 | 1741 |
Density ρ | (kg∙m−3) | 2320 | 2301 | 2287 | 2245 | 2300 | 2265 | 2230 | 2207 |
Total porosity P | (%) | 12.9 | 14.9 | 15.2 | 18.7 | 15.1 | 16.5 | 18.3 | 21.1 |
Open porosity Po | (%) | 5.3 | 7.5 | 9.2 | 11.4 | 8.8 | 9.9 | 10.4 | 12.8 |
Compressive strength fc | (MPa) | 9.53 | 9.01 | 8.31 | 7.63 | 7.23 | 7.06 | 6.41 | 5.68 |
Flexural tensile strength fm | (MPa) | 6.10 | 6.74 | 7.87 | 8.96 | 5.32 | 5.98 | 6.47 | 7.06 |
Type of mortars | Mortar roughness characteristics (µm) | ||||||
---|---|---|---|---|---|---|---|
Ra | Rvm | Rpm | Rp | Rv | Rmax | ||
Series 1 | M0 | 13.3 | 102 | 42 | 52 | 145 | 197 |
M0.5 | 16.2 | 140 | 70 | 78.7 | 163 | 241.7 | |
M1 | 18.4 | 167 | 75 | 90 | 188.7 | 278.7 | |
M1.5 | 22.3 | 179 | 84 | 95.7 | 196 | 291.7 | |
Series 2 | H0 | 19.3 | 111 | 50 | 58.7 | 151 | 208.7 |
H0.5 | 19.3 | 152 | 79 | 83.3 | 169 | 252.3 | |
H1 | 22.9 | 179 | 82 | 99 | 193 | 292 | |
H1.5 | 25.7 | 193 | 92 | 108 | 201 | 309 |
Parameters | Unit | Series 1 | Series 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M0.5 | M1 | M1.5 | H0 | H0.5 | H1 | H1.5 | ||
CA before hydrophobisation | (°) | 52.2 | 48.2 | 41.5 | 39.4 | 47.2 | 40.7 | 39.1 | 30.4 |
CA after hydrophobisation | (°) | 122.1 | 114.1 | 94.7 | 87.5 | 100.8 | 98.7 | 82.5 | 77.6 |
SFE before hydrophobisation | (mJ·m−2) | 52.49 | 54.81 | 58.56 | 59.70 | 55.38 | 59.0 | 59.86 | 64.29 |
SFE after hydrophobisation | (mJ·m−2) | 10.53 | 14.78 | 26.32 | 30.81 | 22.58 | 23.86 | 33.93 | 37.0 |
Parameters | Unit | Series 1 | Series 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
M0 | M0.5 | M1 | M1.5 | H0 | H0.5 | H1 | H1.5 | ||
Mass loss before hydrophobisation | (%) | 0.3 | 0.5 | 0.6 | 0.8 | 2.1 | 2.8 | 5.3 | 8.3 |
Mass loss after hydrophobisation | (%) | 0.01 | 0.1 | 0.2 | 0.24 | 0.7 | 1.2 | 2.4 | 2.7 |
Decrease the compressive strength before hydrophobisation | (%) | - | 1.1 | 2.3 | 2.5 | 4.3 | 6.7 | 13.2 | 24.3 |
Decrease the compressive strength after hydrophobisation | (%) | - | 0.4 | 0.9 | 1.1 | 2.1 | 3.2 | 4.5 | 5.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnat-Hunek, D.; Łagód, G.; Fic, S.; Jarosz-Hadam, M. Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar. Polymers 2018, 10, 420. https://doi.org/10.3390/polym10040420
Barnat-Hunek D, Łagód G, Fic S, Jarosz-Hadam M. Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar. Polymers. 2018; 10(4):420. https://doi.org/10.3390/polym10040420
Chicago/Turabian StyleBarnat-Hunek, Danuta, Grzegorz Łagód, Stanisław Fic, and Monika Jarosz-Hadam. 2018. "Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar" Polymers 10, no. 4: 420. https://doi.org/10.3390/polym10040420
APA StyleBarnat-Hunek, D., Łagód, G., Fic, S., & Jarosz-Hadam, M. (2018). Effect of Polysiloxanes on Roughness and Durability of Basalt Fibres–Reinforced Cement Mortar. Polymers, 10(4), 420. https://doi.org/10.3390/polym10040420