Synthesis, Characterization and Microstructure of New Liquid Poly(methylhydrosiloxanes) Containing Branching Units SiO4/2
Abstract
:1. Introduction
2. Materials and Methods
Synthesis of Branched Polymethylhydrosiloxanes (PMHS-Q)
3. Results and Discussion
3.1. Synthesis of Branched Polymethylhydrosiloxanes (PMHS-Q)
3.2. Characterization of PMHS-Q by FTIR
3.3. Characterization of PMHS-Q by NMR
CH3(H)SiO | at δ −34.0–−36.0 ppm (for Q1, Q2, and Q3), |
at δ −34.0–−37.5 ppm (for Q1D, Q2D, and Q3D), | |
(CH3)2SiO | at δ −16.5–−22.0 ppm (for Q1D, Q2D, and Q3D), |
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Eaborn, C. Organosilicon Compounds; Butterworth Scientific Publications: London, UK, 1960. [Google Scholar]
- Noll, W. Chemie und Technologie der Silikone; 2 Auflage; Verlag Chemie: Weinheim Germany; GmbH: Weinheim Germany, 1968. [Google Scholar]
- Hardman, B.; Torkelson, A. Chapter Silicones. In Encyclopedia of Polymer Science and Engineering, 2nd ed.; Mark, F., Gaylord, N.G., Bikales, N.M., Eds.; J. Wiley & Sons: New York, NY, USA, 1989; Volume 15, pp. 271–289. [Google Scholar]
- Rościszewski, P.; Zielecka, M. Silikony, Właściwości i Zastosowanie; WNT: Warsaw, Poland, 2002; pp. 26–30, 38. [Google Scholar]
- Chauhan, B.P.S. (Ed.) Hybrid Nanomaterials Synthesis, Characterization, and Applications; Wiley-VCH: Weinheim, Germany, 2011. [Google Scholar]
- Kricheldorf, H.R. (Ed.) Silicon in Polymer Synthesis; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1996. [Google Scholar]
- Brook, M.A. Silicon in Organic, Organometallic and Polymer Chemistry; J Wiley & Sons: New York, NY, USA; Chichester, UK; Weinheim, Germany; Brisbane, Australia; Singapore; Toronto, Japan, 2000; ISBN 0-471-19658-4. [Google Scholar]
- Chruściel, J. Progress in chemistry of polymethylhydrosiloxanes. Polimery 1999, 44, 462–474. [Google Scholar]
- Chruściel, J. Synthesis and characterization of new liquid, branched and random poly(methyl-hydrosiloxanes). e-Polymers 2008, 8, 1–23. [Google Scholar] [CrossRef]
- Chruściel, J. Crosslinking of polydimethylsiloxane-α,ω-diols with polymethylhydrosiloxanes and some properties of prepared silicone elastomers. Polimery 1999, 44, 586–596. [Google Scholar]
- Devimille, L.; Bresson, B.; Bokobza, L. Synthesis, structure and morphology of poly(dimethyl-siloxane) networks filled with in situ generated silica particles. Polymer 2005, 46, 4135–4143. [Google Scholar] [CrossRef]
- Fejdyś, M.; Chruściel, J.; Miazga, A. Mechanical properties of silicone vulcanizates crosslinked with polymethylhydrosiloxanes containing silica and calcium carbonate. Polimery 2006, 51, 48–57. [Google Scholar]
- Jia, L.; Du, Z.; Zhang, C.; Liu, C.; Li, H. Reinforcement of polydimethylsiloxane through formation of inorganic–organic hybrid network. Polym. Eng. Sci. 2008, 48, 74–79. [Google Scholar] [CrossRef]
- Urayama, K.; Kawamura, T.; Kohjiya, S. Structure–mechanical property correlations of model siloxane elastomers with controlled network topology. Polymer 2009, 50, 347–356. [Google Scholar] [CrossRef]
- Chruściel, J.; Leśniak, E. Preparation of flexible, self-extinguishing silicone foams. J. Appl. Polym. Sci. 2011, 119, 1696–1703. [Google Scholar] [CrossRef]
- Hager, R. Phosphazene catalysis—Basic technology in silicone production. In Proceedings of the XI International Symposium on Organosilicon Chemistry, Montpellier, France, 1–6 September 1996; Universite Montpellier II: Montpellier, France, 1996. Abstracts, LD5. [Google Scholar]
- Hager, R.; Schneider, O.; Schuster, J. Process for the Condensation and/or Equilibration of Organosilicon Compounds. U.S. Patent 5,380,902, 1995. [Google Scholar]
- Razzano, J.S.; Anderson, P.P.; Perry, R.J. Production of Low Molecular Weight Linear Hydrogen Siloxanes. U.S. Patent 5,670,596, 23 September 1997. [Google Scholar]
- Nye, S.A.; Riccio, D.A.; Wutzer, B.S. Process for Preparing Hydrogen Siloxane Copolymers. U.S. Patent 5,698,654, 1997. [Google Scholar]
- Liao, W.P.; Nye, S.A. Process for Preparing Self-Curable Alkenyl Hydride Siloxane Copolymers and Coating Composition. European Patent EP 0838547 B1, 1998. [Google Scholar]
- Palaprat, G.; Ganachaud, F.; Mauzac, M.; Hemery, P. Cationic polymerization of 2,4,6,8-tetramethylcyclotetrasiloxane processed by tuning the pH of the miniemulsion. Polymer 2005, 46, 11213–11218. [Google Scholar] [CrossRef]
- Maisonnier, S.; Favier, J.C.; Masure, M.; Hemery, P. Poly(methylhydrosiloxane) synthesis in anionic aqueous emulsion. In Proceedings of the XI International Symposium on Organosilicon Chemistry, Montpellier, France, 1–6 September 1996; Universite Montpellier II: Montpellier, France, 1996. Abstracts, PB84. [Google Scholar]
- Paulasaari, J.K.; Weber, W.P. Preparation of Highly Regular Poly(1-hydrido-1,3,3,5,5- -pentamethyltrisiloxane) and Its Chemical Modification by Hydrosilylation. Macromolecules 1999, 32, 6574–6577. [Google Scholar] [CrossRef]
- Agaskar, P.A. Facile, High-Yield Synthesis of Functionalized Spherosilicates: Precursors of Novel Organolithic Macromolecular Materials. Inorg. Chem. 1990, 29, 1603. [Google Scholar] [CrossRef]
- Chruściel, J.; Kulpiński, J.; Romanowski, Z. Synthesis of Some Block Polymethylhydrosiloxanes. Zeszyty Naukowe Politechniki Śląskiej Seria Chemia 1999, 140, 109–114. [Google Scholar]
- Agaskar, P.A. New Synthetic Route to the Hydridospherosiloxanes Oh-HSi8012 and D5h-H10Si10O15. Inorg. Chem. 1991, 30, 2707–2708. [Google Scholar] [CrossRef]
- Bassindale, A.R.; Gentle, T.E. Siloxane and Hydrocarbon Octopus Molecules with Silsesquioxane Cores. J. Mater. Chem. 1993, 3, 1319–1325. [Google Scholar] [CrossRef]
- Crivello, J.V.; Malik, R. Synthesis and Photoinitiated Cationic Polymerization of Monomers with the Silsesquioxane Core. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 407–425. [Google Scholar] [CrossRef]
- Tsuchida, A.; Bolin, C.; Sernetz, F.G.; Frey, H.; Mülhaupt, R. Ethene and Propene Copolymers Containing Silsesquioxane Side Groups. Macromolecules 1997, 30, 2818–2824. [Google Scholar] [CrossRef]
- Zhang, C.; Babonneau, F.; Laine, R.M.; Soles, C.L.; Hristov, H.A.; Yee, A.F. Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. J. Am. Chem. Soc. 1998, 120, 8380–8391. [Google Scholar] [CrossRef]
- Zhang, C.; Laine, R.M. Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its Octamethacrylate Derivative as Potential Precursors to Hybrid Nanocomposites. J. Am. Chem. Soc. 2000, 122, 6979–6988. [Google Scholar] [CrossRef]
- Constantopoulos, K.; Clarke, D.; Markovic, E.; Uhrig, D.; Clarke, S.; Matisons, J.G.; Simon, G. A new family of POSS monomers suitable for forming urethane polymerizable nanocomposite coatings. Polym. Prepr. 2004, 45, 668. [Google Scholar]
- Frye, C.; Collins, W.T. The Oligomeric Silsesquioxanes, (HSiO3/2)n. J. Am. Chem. Soc. 1970, 92, 5586–5588. [Google Scholar] [CrossRef]
- Agaskar, P.A.; Day, V.W.; Klemperer, W.G. A New Route to Trimnethylsilylated Spherosilicates: Synthesis and Structure of [Si12018](OSiMe3)12, D3h-[Si14O21](OSiMe3)14, and C2v-[Si14O21](OSiMe3)14. J. Am. Chem. Soc. 1987, 109, 5554–5556. [Google Scholar] [CrossRef]
- Hasegawa, I.; Motojima, D. Dimethylvinylsilylation of Si8O208- silicate anion in methanol solutions of tetramethylammonium silicate. J. Organomet. Chem. 1992, 441, 373–380. [Google Scholar] [CrossRef]
- Majoros, I.; Marsylko, T.M.; Kennedy, J.P. Synthesis and characterization of novel well-defined stars consisting of eight polyisobutylene arms emanating from an octa(dimethylsiloxy)octasilsesquioxane core. Polym. Bull. 1997, 38, 15–22. [Google Scholar] [CrossRef]
- Provatas, A.; Luft, M.; Mu, J.C.; White, A.H.; Matisons, J.G.; Skelton, B.W. Silsesquioxanes: Part I: A key intermediate in the building of molecular composite materials. J. Organomet. Chem. 1998, 565, 159–164. [Google Scholar] [CrossRef]
- Perrin, F.X.; Nguyen, T.B.V.; Margaillan, A. Linear and branched alkyl substituted octakis(dimethylsiloxy)octasilsesquioxanes: WAXS and thermal properties. Eur. Polym. J. 2011, 47, 1370–1382. [Google Scholar] [CrossRef]
- Dutkiewicz, M.; Maciejewski, H.; Marciniec, B.; Karasiewicz, J. New Fluorocarbofunctional Spherosilicates: Synthesis and Characterization. Organometallics 2011, 30, 2149–2153. [Google Scholar] [CrossRef]
- Hasegawa, I. Co-hydrolysis products of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions. J. Sol-Gel Sci. Technol. 1993, 1, 57–63. [Google Scholar] [CrossRef]
- Moran, M.; Casado, C.M.; Cuadrado, I.; Losada, J. Ferrocenyl Substituted Octakis- (dimethylsiloxy)octasilsesquioxanes: A New Class of Supramolecular Organometallic Compounds. Synthesis, Characterization, and Electrochemistry. Organometallics 1993, 12, 4327–4333. [Google Scholar] [CrossRef]
- Sellinger, A.; Laine, R.M. Silsesquioxanes as Synthetic Platforms. 3. Photocurable, Liquid Epoxides as Inorganic/Organic Hybrid Precursors. Chem. Mater. 1996, 8, 1592–1593. [Google Scholar] [CrossRef]
- Laine, R.M. Nanobuilding blocks based on the [OSiO1.5]x (x = 6, 8, 10) Octasilsesquioxanes. J. Mater. Chem. 2005, 15, 3725–3744. [Google Scholar] [CrossRef]
- Hasegawa, I.; Ino, K.; Onishi, H. An improved procedure for syntheses of silyl derivatives of the cubeoctameric silicate anion. Appl. Organomet. Chem. 2003, 17, 287–290. [Google Scholar] [CrossRef]
- Soh, M.S.; Yap, A.U.J.; Sellinger, A. Methacrylate and epoxy functionalized nanocomposites based on silsesquioxane cores for use in dental applications. Eur. Polym. J. 2007, 43, 315–327. [Google Scholar] [CrossRef]
- Hessel, C.M.; Henderson, E.J.; Veinot, J.G.C. Hydrogen Silsesquioxane: A Molecular Precursor for Nanocrystalline Si-SiO2 Composites and Freestanding Hydride-Surface-Terminated Silicon Nano-particles. Chem. Mater. 2006, 18, 6139–6146. [Google Scholar] [CrossRef]
- Gunji, T.; Shioda, T.; Tsuchihira, K.; Seki, H.; Kajiwara, T.; Abe, Y. Preparation and properties of polyhedral oligomeric silsesquioxane–polysiloxane copolymers. Appl. Organomet. Chem. 2010, 24, 545–550. [Google Scholar] [CrossRef]
- Shioda, T.; Gunji, T.; Abe, N.; Abe, Y. Preparation and properties of polyhedral oligomeric silsesquioxane polymers. Appl. Organomet. Chem. 2011, 25, 661–664. [Google Scholar] [CrossRef]
- Handke, M.; Kowalewska, A. Siloxane and silsesquioxane molecules—Precursors for silicate materials. Spectrochim. Acta Part A 2011, 79, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Weber, W.P. Synthesis of terminal Si–H irregular tetra-branched star polysiloxanes. Pt-catalyzed hydrosilylation with unsaturated epoxides. Polysiloxane films by photo-acid catalyzed crosslinking. Polymer 2004, 45, 2941–2948. [Google Scholar] [CrossRef]
- Grunlan, M.A.; Lee, N.S.; Mansfeld, F.; Kus, E.; Finlay, J.A.; Callow, J.A.; Callow, M.E.; Weber, W.P. Minimally Adhesive Polymer Surfaces Prepared from Star Oligosiloxanes and Star Oligofluorosiloxanes. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 2551–2566. [Google Scholar] [CrossRef]
- Sargent, J.R.; Weber, W.P. Telechelic 4 and 6 branch star siloxanes by acid catalyzed incorporation of D4 units into the Si-O-Si bonds of tetra(dimethylsiloxy)silane and hexa(dimethylsiloxy)-cyclotrisiloxane. Polym. Prepr. 2000, 41, 604. [Google Scholar]
- Cai, G.; Sargent, J.R.; Weber, W.P. Preparation and reactivity of polyfunctional six- and eight-membered cyclic silicates. J. Organomet. Chem. 2004, 689, 689–693. [Google Scholar] [CrossRef]
- Saxena, K.; Bisaria, C.S.; Saxena, A.K. Studies on the synthesis and thermal properties of alkoxysilane-terminated organosilicone dendrimers. Appl. Organomet. Chem. 2010, 24, 251–256. [Google Scholar] [CrossRef]
- Zhang, R.; Dai, D.; Cui, L.; Xu, H.; Liu, C.; Xie, P. A glance at the relation of stepwise coupling polymerization to supramolecular chemistry. Mater. Sci. Eng. C 1999, 10, 13–18. [Google Scholar] [CrossRef]
- Wan, Y.; Xu, L.; Ren, L.; Zhang, L.; Xie, P.; Liu, Y.; Zhang, R. Synthesis and mesomorphic properties of fishbone-like liquid crystalline polysilsesquioxanes V. Pd-coordinating, fishbone-like azo-based liquid crystalline polysilsesquioxanes. Liquid Cryst. 1998, 24, 871–876. [Google Scholar] [CrossRef]
- Cao, M.; Li, Z.; Zhang, Y.; Xie, P.; Dai, D.; Zhang, R.; Lin, Y.; Chung, N.T. Synthesis and characterization of ladder-like copolymethyl-epoxysilsesquioxane. React. Funct. Polym. 2000, 45, 119–130. [Google Scholar] [CrossRef]
- Uchida, H.; Kabe, Y.; Yoshino, K.; Kawamata, A.; Tsumuraya, T.; Masamune, S. General Strategy for the Systematic Synthesis of Oligosiloxanes. Silicone Dendrimers. J. Am. Chem. Soc. 1990, 112, 7077–7079. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, S. Hydrogen-Containing Silicone Resin as the Crosslinking Agent of Heat-Curable Silicone Rubber. J. Appl. Polym. Sci. 2003, 88, 3066–3069. [Google Scholar] [CrossRef]
- Su, H.W.; Chen, W.C.; Lee, W.C.; King, J.S. New Photocurable Acrylic/Silsesquioxane Hybrid Optical Materials: Synthesis, Properties, and Patterning. Macromol. Mater. Eng. 2007, 292, 666–673. [Google Scholar] [CrossRef]
- Seino, M.; Hayakawa, T.; Ishida, Y.; Kakimoto, M. Hydrosilylation Polymerization of Double-Decker-Shaped Silsesquioxane Having Hydrosilane with Diynes. Macromolecules 2006, 39, 3473–3475. [Google Scholar] [CrossRef]
- Soraru, G.D.; D’Andrea, G.; Campostrini, R.; Baboneau, F. Characterization of Methyl-substituted Silica Gels with Si-H Functionalities. J. Mater. Chem. 1995, 5, 1363–1374. [Google Scholar] [CrossRef]
- Campostrini, R.; D’Andrea, G.; Carturan, G.; Ceccato, R.; Soraru, G.D. Pyrolysis study of methyl-substituted Si-H containing gels as precursors for oxycarbide glasses, by combined thermo-gravimetry, gas chromatographic and mass spectrometric analysis. J. Mater. Chem. 1996, 6, 585–594. [Google Scholar] [CrossRef]
- Bažant, V.; Chvalovský, V.; Rathouský, I. Silikony; PWT: Warsaw, Poland, 1955; p. 153. [Google Scholar]
- Morikawa, A.; Kakimoto, M.; Imai, Y. Synthesis and Characterization of New Polysiloxane Starburst Polymers. Macromolecules 1991, 24, 3469–3474. [Google Scholar] [CrossRef]
- Chang, H.T.; Frechet, J.M.J. Proton-Transfer Polymerization: A New Approach to Hyperbranched Polymers. J. Am. Chem. Soc. 1999, 121, 2313–2314. [Google Scholar] [CrossRef]
- Innoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci. 2000, 25, 453–571. [Google Scholar] [CrossRef]
- Paulasaari, J.K.; Weber, W.P. Synthesis of Hyperbranched Polysiloxanes by Base-Catalyzed Proton-Transfer Polymerization. Comparison of Hyperbranched Polymer Microstructure and Properties to Those of Linear Analogues Prepared by Cationic or Anionic Ring-Opening Polymerization. Macromolecules 2000, 33, 2005–2010. [Google Scholar] [CrossRef]
- Paulasaari, J.K.; Weber, W.P. Base catalyzed proton transfer polymerization of 1-hydroxy- pentamethylcyclotrisiloxane. Comparison of hyperbranched polymer microstructure and properties to those of highly regular linear analogs. Macromol. Chem. Phys. 2000, 201, 1585–1592. [Google Scholar] [CrossRef]
- Jikei, M.; Kakimoto, M. Hyperbranched polymers: A promising new class of materials. Prog. Polym. Sci. 2001, 26, 1233–1285. [Google Scholar] [CrossRef]
- Servaty, S.; Köhler, W.; Meyer, W.H.; Rosenauer, C.; Spickermann, J.; Räder, H.J.; Wegner, G. MALDI-TOF-MS Copolymer Analysis: Characterization of a Poly(dimethylsiloxane)- -co-Poly(hydromethylsiloxane) as a Precursor of a Functionalized Silicone Graft Copolymer. Macromolecules 1998, 31, 2468–2474. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spektroskopowe Metody Identyfikacji Związków Organicznych; PWN: Warsaw, Poland, 1969; pp. 72–118. [Google Scholar]
- Glaser, R.H.; Wilkes, G.L.; Bronnimann, C.E. Solid-state 29Si NMR of TEOS-based multifunctional sol-gel materials. J. Non-Cryst. Solids 1989, 113, 73–87. [Google Scholar] [CrossRef]
- Harris, R.K.; Kimber, B.J. 29Si nuclear magnetic resonance studies of some oligo- and polymeric siloxanes. J. Organomet. Chem. 1974, 70, 43–49. [Google Scholar] [CrossRef]
Substrates, solvent, and reaction conditions | Predicted molecular formulas of PMHS-Q * | ||||||
---|---|---|---|---|---|---|---|
QDH48M4 | Q2DH49M6 | Q3DH50M8 | QD52DH52M4 | Q2D49DH49M6 | Q3D50DH50M8 | ||
Amounts of reagents and a solvent | |||||||
Si(OEt)4 | (mol) | 0.01 | 0.04 | 0.06 | 0.01 | 0.02 | 0.03 |
(cm3) | 2.2 | 8.9 | 13.4 | 2.2 | 4.6 | 6.7 | |
MeHSiCl2 (MDS) | (mol) | 0.48 | 0.98 | 1.0 | 0.52 | 0.49 | 0.50 |
(cm3) | 50.0 | 102.0 | 104.1 | 54.1 | 51.5 | 52.1 | |
Me2SiCl2 (DDS) | (mol) | - | - | - | 0.52 | 0.49 | 0.50 |
(cm3) | - | - | - | 63.1 | 59.8 | 60.6 | |
Me3SiCl (TMCS) | (mol) | 0.04 | 0.12 | 0.16 | 0.04 | 0.06 | 0.08 |
(cm3) | 5.1 | 15.2 | 20.3 | 5.1 | 7.6 | 10.2 | |
H2O | (mol) | 9.11 | 18.94 | 19.66 | 19.33 | 18.38 | 18.94 |
(cm3) | 164 | 341 | 354 | 348 | 331 | 341 | |
(4-dimethylamino)-pyridine (DMAP) | (mol) | - | - | 0.003 | 0.0109 | 0.0108 | 0.01 |
(g) | - | - | 0.3665 | 1.3316 | 1.3194 | 1.2217 | |
Et3N | (mol) | - | - | 0.03 | 0.109 | 0.108 | 0.10 |
(cm3) | - | - | 4.2 | 101.2 | 15.1 | 13.9 | |
Diethyl ether | (cm3) | 50 | 80 | 60 | 100 | 80 | 90 |
Addition time of chlorosilanes and Si(OEt)4 | (min) | 50 | 60 | 95 | 80 | 55 | 95 |
Temperature during addition of chlorosilanes and Si(OEt)4 | (°C) | −4–−2 | −1–3 | −1–3 | −1–3 | −1–6 | −2–2 |
Stirring time after addition of chlorosilanes and Si(OEt)4 | (min) | 170 | 130 | 130 | 130 | 120 | 120 |
Drying of products: | with anhydrous MgSO4 | by cooling in a fridge |
PMHS-Q | Dynamic viscosity | Evacuation conditions | Volatile products | ||||
---|---|---|---|---|---|---|---|
Predicted molecular formula (polymer abreviation) | Yield | Bath temp. | Time | B.p./pressure | Mass | ||
(g) | (wt%) | (cP) | (°C) | (min) | (°C/mm Hg) | (g) | |
QDH48M4 (Q1) | 20.14 | 62 | 12.8 | 152 | 190 | 24/16–79/3.5 | 9.27 |
Q2DH49M6 (Q2) | 48.70 | 68 | 11.0 | 154 | 200 | 23/16–77/3.5 | 18.14 |
Q3DH50M8 (Q3) | 52.82 | 69 | 13.1 | 155 | 190 | 23/18–70/3.5 | 16.71 |
QD52DH52M4 (Q1D) | 40.29 | 55 | 12.5 | 150 | 210 | 21/21–80/5 | 34.84 |
Q2D49DH49M6 (Q2D) | 40.49 | 56 | 11.8 | 155 | 200 | 27/19–78/4 | 31.06 |
Q3D50DH50M8 (Q3D) | 43.77 | 58 | 10.7 | 155 | 190 | 21/16–74/4.5 | 28.22 |
PMHS-Q | Mn (calc.) | Mn | Mw | Mw/Mn | % C | % H | % Si | |||
---|---|---|---|---|---|---|---|---|---|---|
calc. | found | calc. | found | calc. | found | |||||
QDH48M4 | 3271 | 6310 | 17,750 | 2.81 | 22.03 | 21.51 21.76 | 7.03 | 6.61 6.90 | 45.50 | 44.87 |
Q2DH49M6 | 3554 | 3220 | 8330 | 2.59 | 22.64 | 22.01 22.11 | 7.09 | 6.92 7.01 | 45.05 | 45.15 |
Q3DH50M8 | 3836 | 3840 | 10,350 | 2.69 | 23.16 | 22.03 22.14 | 7.14 | 7.02 6.85 | 44.65 | 43.81 |
QD52DH52M4 | 7367 | 2650 | 6280 | 2.36 | 27.39 | 28.89 28.70 | 7.60 | 7.89 8.03 | 41.55 | 41.54 |
Q2D49DH49M6 | 7187 | 2440 | 5750 | 2.35 | 27.57 | 28.15 28.40 | 7.63 | 7.69 7.88 | 41.42 | 41.40 |
Q3D50DH50M8 | 7544 | 5100 | 10,210 | 2.00 | 27.07 | 27.78 27.92 | 7.65 | 8.35 7.98 | 41.32 | 41.30 |
Wave number [cm−1] | Group or bond | Vibration | |
---|---|---|---|
found | literature data [72] | ||
2965 | 2975–2950 | CH3 | ν asym C-H |
2878 | 2885–2860 | CH3 | ν sym C-H |
2164 | 2300–2100 | Si-H | ν Si-H |
1450 | 1470–1420 | CH3 | δ asym C-H |
1410 | 1390–1365 | CH3 | δ sym C-H |
1260 | 1265–1250 | Si-CH3 | δ asym Si-C |
1115–1027 | 1100–1000 | Si-O-Si | ν asym Si-O |
910 | 950–800 | Si-H | δ Si-H |
864 | 860–750 | Si-CH3 | ν asym Si-C |
830 | 910–830 | Si-O | ν asym Si-O |
800 | 800 | Si-CH3 | δ sym Si-C |
759 | 755 | Si-(CH3)3 | δ asym Si-C |
PMHS-Q | δ (ppm) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1H-NMR | 29Si-NMR | ||||||||||
INEPT | INVGATE | INEPT | INVGATE | INEPT | INVGATE | INEPT | INVGATE | ||||
Si–H | Si–CH3 | Me3SiO0.5 | Me2SiO | MeHSiO | MeSiO3/2 | SiO4/2 | |||||
QDH48M4 | 4.90 | 0.01–0.22 | 9.75–11.03 | 9.98–10.96 | - | - | −31.51–−37.42 | −31.85–−35.90 | −64.51 | −64.58 | −101.40–−108.13 |
Q2DH49M6 | 4.80 | 0.01–0.12 | 9.40–11.24 | 9.70–10.32 | - | - | −31.62–−39.97 | −31.83–−36.25 | −62.60–−64.61 | - | −101.37–−112.33 |
Q3DH50M8 | 4.80 | 0.01–0.12 | 9.40–11.25 | 9.42–11.28 | - | - | −37.46–−31.16 | −32.16–−35.87 | −62.97–−64.56 | −64.54 | −100.31–−110.20 |
QD52DH52M4 | 4.92 | 0.05–0.22 | 9.92–7.27 | 7.30–9.96 | −18.48–−21.74 | −18.67–−21.44 | −33.27–−38.87 | −34.56–−37.30 | −63.12–−65.39 | −63.72–−65.89 | −102.92–−109.92 |
Q2D49DH49M6 | 4.92 | 0.01–0.30 | 9.92–7.26 | 7.32–9.98 | −18.43–−21.85 | −18.70–−21.69 | −34.54–−37.33 | −34.61–−37.03 | −62.95–−65.26 | −62.35–−66.16 | −101.81–−109.71 |
Q3D50DH50M8 | 4.83 | 0.01–0.23 | 9.91–7.27 | 7.32–9.98 | −18.77–−21.75 | −18.72–−21.29 | −34.61–−37.57 | −34.54–−36.10 | −64.73 | −63.35–−65.16 | −102.84–−109.61 |
δ 29Si-NMR (ppm) | |||||
---|---|---|---|---|---|
9–11 | 7–8 | −18–−19 | −20–−22 | −33–−37 | −101–−109 |
MDHDHDH MDHDHQ MDHQDH MDHDHD MDHDHDH MDHDDH MDHDD | MDDD MDDDH MDDHD MDDHDH MDDQ MDQD MQDD MQDDH | DDHDDHD DDHDDHDH DHDHDDHDH DDHDDHQ QDHDDHQ MDHDDHD MDHDDHDH MDHDDHQ MDHDDHD | DHDDDHDH DHDDDHD DDDDHDH DDDDHD DHDDDQ DHDDQD DDHDDQ DDHDQD DDDDQ DDDQD QDDDQ QDDQD DQDQD DQDDQ MDDDQ MDDQD MQDDD MDDDQ MQDQD | DHDHDHDHDH DDHDHDHDH DHDDHDHDH DDHDHDHD DDHDHDDH DHDDHD DH DHDDHDHQ DHDHDHQDH DDHDHDHQ DHDDHDHQ DHDDHQDH DDHDHHQDH DDDHQDH DHDHDHDQ DHDHDHQD DDHDHDQ DDHDHQD DHDDHDQ DHDDHQD DDDHDHQ DDDHDQ MDHDHDHDH MDHDHDH D MDHDHDDH MDDHDHDH MDDHDHD MDDHDDH MDHDHDHQ MDDHDHQ MDHDHDQ MDHDHQD MDHDHQDH MDDHQDH MDDHDQ | D DQD D D DQD M D DQM M D DQDH D D DQDH DH M DQD DH |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chruściel, J.J.; Fejdyś, M.; Fortuniak, W. Synthesis, Characterization and Microstructure of New Liquid Poly(methylhydrosiloxanes) Containing Branching Units SiO4/2. Polymers 2018, 10, 484. https://doi.org/10.3390/polym10050484
Chruściel JJ, Fejdyś M, Fortuniak W. Synthesis, Characterization and Microstructure of New Liquid Poly(methylhydrosiloxanes) Containing Branching Units SiO4/2. Polymers. 2018; 10(5):484. https://doi.org/10.3390/polym10050484
Chicago/Turabian StyleChruściel, Jerzy J., Marzena Fejdyś, and Witold Fortuniak. 2018. "Synthesis, Characterization and Microstructure of New Liquid Poly(methylhydrosiloxanes) Containing Branching Units SiO4/2" Polymers 10, no. 5: 484. https://doi.org/10.3390/polym10050484
APA StyleChruściel, J. J., Fejdyś, M., & Fortuniak, W. (2018). Synthesis, Characterization and Microstructure of New Liquid Poly(methylhydrosiloxanes) Containing Branching Units SiO4/2. Polymers, 10(5), 484. https://doi.org/10.3390/polym10050484