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Abstract: Traditional magnetic metal and alloy materials suffer from easy oxidation and high
density, which hinders their practical application as high-performance microwave absorbers.
Lightweight and durability have become new goals in the fabrication of the next generation of
microwave absorbers. Herein, we report the synthesis of polypyrrole (PPy) nanosphere/reduced
graphene oxide (rGO) composites through chemical reduction of self-assembly PPy nanosphere/GO
hybrids. PPy nanospheres and GO are integrated effectively by π–π interaction of dual conjugated
systems. When the mass ratio of PPy nanospheres to rGO is 0.6:1, the resultant composite,
PPy/rGO-0.6, presents comparable/superior reflection loss characteristics to those magnetic metals
and their related graphene-based composites in previous studies. Electromagnetic analysis reveals
that well-matched characteristic impedance, multiple polarization loss, and good conductivity loss
are, together, responsible for the excellent microwave absorption performance of PPy/rGO-0.6.
More importantly, PPy/rGO-0.6 also exhibits good microwave absorption after being treated at 423 K
for a long time. This work provides a new idea for designing and preparing a high-performance
microwave absorber with lightweight and durable features.

Keywords: polypyrrole nanospheres; reduced graphene oxide; microwave absorption;
lightweight; durability

1. Introduction

Due to the explosive development and popularization of communication devices and computer
networks in the past decades, a large amount of electromagnetic (EM) waves have been released
into the living environment of mankind, evolving into a serious EM pollution issue that is placing
social development and human health in danger [1–4]. Numerous efforts have been devoted to
developing microwave absorbers with a powerful absorption ability in a wide frequency band,
to alleviate the negative effects of EM waves [5,6]. Traditionally, magnetic metals and their alloy
nanopowders are one kind of the most promising candidates for high-performance microwave
absorbers because of their compatible magnetic loss and dielectric loss, as well as high Snoek’s
limit in gigahertz range [7]. For example, porous coin-like Fe [8], porous Co assemblies [9], FeCo
nanoplates [10], CoNi microflowers [11], and granular FeCoNi films [12], have been confirmed to have
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strong magnetic loss characteristics and good microwave absorption. However, easy oxidation and
high density of these magnetic materials have, so far, hindered their practical application to some
extent. Therefore, developing novel and high-performance microwave absorbers with the features of
being lightweight and durable still remains a challenge in the field of microwave absorption.

As a burgeoning member in the carbon family, reduced graphene oxide (rGO) has extremely
large specific surface area and high carrier mobility, abundant defects, and numerous functional
groups [13] and, thus, it has received much attention in the pursuit of advanced microwave
absorbers [14,15]. However, pure rGO usually fails to achieve good characteristic impedance
matching, owing to its high conductivity, and this will lead to the strong reflection of incident
EM waves, rather than desirable absorption [14,15]. Recent progress in rGO-based composites
has been greatly stimulated by the discoveries of a highly efficient synergistic effect between rGO
and various incorporators. Many rGO-based composites, e.g., Co3O4/rGO [16], NiFe2O4/rGO [17],
Fe3O4/rGO [18], CoNi/rGO [19], FeNi/rGO [20], MoS2/rGO [21], ZnO/rGO [22], CoS2/rGO [23],
MnO2/rGO [24], and SiC/rGO [25], have been extensively developed as potential microwave
absorbers. Although these rGO-based composites have made considerable achievements in microwave
absorption performance, some of them with magnetic metals, alloys or ferrites are actually unable
to be used persistently, due to their poor oxidation resistance, and others with dual dielectric media
always require large absorber thickness to reach comparable microwave absorption performance
to conventional magnetic metals/alloys. More recently, conjugated polymers, such as polyaniline
(PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythioxythiophene) (PEDOT), have emerged as
fascinating incorporators for novel microwave absorbers, due to their tunable electrical conductivity,
profitable electron affinity, low density, ease of preparation, and good environmental stability [26–28].
For example, Yu et al. prepared PANI/rGO composite through orienting a perpendicular growth of
PANI nanorods on the surface of rGO, and the resultant composite presented very strong reflection loss
of −45.1 dB with the absorber thickness of only 2.5 mm [29]. Wu et al. reported that a self-assembled
spongelike ultralight aerogel, consisting of PPy and rGO, could show an effective microwave absorption
bandwidth (<−10 dB, 90% absorption) of 6.8 GHz (10.2–17.0 GHz) [30]. Zhang et al. decorated graphene
sheets with PEDOT nanofibers, whose reflection loss could reach up to −48.1 dB at 10.5 GHz [31]. It is
confirmed that the reinforced dielectric relaxation, special structural characteristics, and the charge transfer
between conjugated polymer and rGO, are primarily responsible for the enhanced microwave absorption
of these conjugated polymer/rGO composites. Among them, PPy/rGO composites are becoming the
most typical representatives rendered by their diversified assembly modes and microstructures [32,33].
In our previous work, PPy nanospheres have displayed their own functions in optimizing the characteristic
impedance and intensifying the reflection loss properties of PANI [34]. Therefore, the incorporation of rGO
with PPy nanospheres may also have a great potential for microwave absorption.

Herein, we report the fabrication of PPy nanosphere/rGO composites via a facile self-assembly
strategy and subsequent chemical reduction. The tedious functionalization steps are avoided due to
the specific π–π interaction between PPy nanospheres and GO. Compared with many previous reports
about PPy/graphene [30,32,33], the self-assembly strategy in our work has some unique advantages in
controlling composition, saving time, and increasing yield. The as-prepared PPy nanosphere/rGO
composites with different mass ratios are investigated in detail. The results indicate that the mass
ratio of PPy nanospheres to rGO plays a crucial role in deciding the morphology, microstructure,
and EM properties of the PPy nanosphere/rGO composites. With the optimized mass ratio, PPy
nanospheres and rGO can be effectively integrated, leading to improved characteristic impedance
matching. EM analysis reveals that both multiple polarization loss and conductivity loss account for
the excellent microwave absorption of PPy nanosphere/rGO composites. It is very interesting that
the low-density PPy nanosphere/rGO composite can display durable performance for microwave
absorption application, which satisfies, well, the urgent demands for novel microwave absorbers in
the future.
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2. Materials and Methods

2.1. Materials Preparation

2.1.1. Synthesis of PPy Nanospheres

PPy nanospheres were prepared as previously described [35]: first, 1.0 mL of pyrrole monomer
and 0.1 g of FeCl2·4H2O were dissolved in 60 mL of ultrapure water. Then, 5.0 mL of H2O2 was
introduced to trigger the polymerization of pyrrole monomer. The mixture was continuously stirred at
room temperature for 8 h. The dark PPy nanospheres were collected by centrifugation, washed with
acetone several times, and finally dried at 60 ◦C for 12 h.

2.1.2. Synthesis of PPy Nanosphere/rGO Composites

Commercial graphene oxide (GO) (0.05 g) was dispersed in 50 mL of ultrapure water under
ultrasonic treatment for 2 h to form suspension A. The required amounts of PPy nanospheres were
dispersed in 50 mL of ultrapure water under magnetic stirring for 30 min to form suspension B.
Suspension B was added into suspension A, and then the mixture was slowly stirred for another
30 min to complete the interfacial interactions between PPy nanospheres and GO. To obtain PPy
nanosphere/rGO composites, 25 µL of N2H4·H2O (80 wt %) as reductant was added, dropwise, into
the mixture of PPy nanospheres and GO. The composites were finally obtained by evaporating the
excess water at 80 ◦C, and were denoted as PPy/rGO-S1, PPy/rGO-S2, and PPy/rGO-S3, whose mass
ratios of PPy nanospheres to rGO corresponded to 1.2:1, 0.6:1, and 0.3:1, respectively. For comparison,
pure rGO was fabricated by using the same procedures in the absence of PPy nanospheres.

2.2. Physical Characterization

Zeta potential analyzer (Malvern Zetasizer Nano Z, Malvern Instruments, Malvern, UK) was
used to measure zeta potentials. The pH values were determined by pH meter (PHS-3E PH Meter,
Shanghai Precision & Scientific Instrument, Shanghai, China). Scanning electron microscope (SEM)
images were obtained on a Hitachi S-4300 (Hitachi, Tokyo, Japan). Transmission electron microscope
(TEM) images and high-resolution TEM (HR-TEM) were obtained on a JEM-3000F (JEOL, Tokyo,
Japan). Raman spectra were measured on a confocal Raman spectroscopic system (In Via, Renishaw,
Gloucestershire, UK) using a 532 nm laser. X-ray photoelectron spectra (XPS) were obtained with a PHI
5700 ESCA system (Physical Electronics, Chanhassen, MN, USA) equipped with an A1 Kα radiation as
the source (1486.6 eV). An Agilent N5230A vector network analyzer (Agilent, Palo Alto, CA, USA)
was used to determine the complex permittivity and complex permeability in the frequency range of
2.0–18.0 GHz, for calculating the reflection loss. A sample containing 30 wt % of as-prepared product
was pressed into a ring with an outer diameter of 7 mm, an inner diameter of 3 mm, and a thickness of
2 mm for microwave measurement, in which paraffin wax was used as the binder.

3. Results and Discussion

In general, the self-assembly of conjugated polymers and GO can be driven by the electrostatic
interaction and π–π interaction arising from dual conjugated systems [36,37]. Zeta potential
is a physical parameter that can characterize the surface charge of nanomaterials, and the
electrostatic interaction only occurs between different nanomaterials with reverse zeta potentials [38].
By considering that zeta potentials are always pH-dependent, we primarily measure the pH values of
PPy nanosphere suspension (0.6 mg/mL) and GO suspension (1.0 mg/mL). As shown in Table S1,
the pH values of PPy nanosphere and GO suspensions are 6.62 and 2.35, and their corresponding zeta
potentials are −42.4 and −35.0 mV, respectively. These results indicate that both PPy nanosphere and
GO are negatively charged in their suspensions. Even if we adjust the pH value of PPy nanosphere
suspension to 2.35, the zeta potential is still−18.2 mV, which means that the electrostatic interaction will
not contribute to the self-assembly process between PPy nanosphere and GO. By contrast, XPS spectra
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not only confirm the presence of PPy nanosphere in the PPy nanosphere/GO hybrid through discerning
the signal of the C–N bond, but also reveal a slight shift of the binding energy of N–H bond from 399.3 to
399.8 eV (Figure S1). These results suggest dual π-conjugated systems induce the strong interaction
between PPy nanosphere and GO [39]. Moreover, one can find that the PPy nanosphere suspension
and GO suspension are very stable (Figure S2a,b), and the PPy nanosphere/rGO composite inherits
the colloidal stability from its individual components, even after static treatment for 48 h since the PPy
nanosphere/GO is reduced by N2H4·H2O (Figure S2c). However, when pure GO suspension is reduced
by N2H4·H2O, the resultant rGO will sedimentate in a short time (Figure S2d), which is a hint that the
self-assembly of PPy nanospheres and rGO can suppress the aggregation of rGO effectively. In view of
these facts, the strategy for preparing PPy nanosphere/rGO composites can be schematically depicted
in Figure 1, where PPy nanospheres and GO are integrated together through π–π interactions, and then
the PPy nanosphere/GO hybrid is transformed into PPy nanosphere/rGO composite by chemical
reduction. The morphology and microstructure of the as-prepared PPy nanospheres, rGO, and PPy
nanosphere/rGO composites are investigated by SEM. As shown in Figure S3, PPy nanospheres
display smooth surfaces and an average diameter of 330 nm in terms of the statistical data of diameter.
For PPy/rGO-S1 (Figure 2a), it is clear that some PPy nanospheres with loose dispersion are concealed
under rGO, and that some other PPy nanospheres aggregate on the external surface of rGO, which
probably results from excess PPy nanospheres that hinder the self-assembly between PPy nanospheres
and GO. When the mass ratio of PPy nanospheres to rGO is properly decreased, PPy nanospheres
with good dispersion are totally covered by rGO in PPy/rGO-S2 (Figure 2b), implying full contact
between PPy nanospheres and GO through π–π interactions. However, a lower mass ratio may reduce
the relative content of PPy nanospheres greatly, and these nanospheres with loose dispersion are
completely coated by rGO (Figure 2c). The morphology and microstructure of PPy/rGO-S2 are further
studied by TEM in Figure 3a. As observed, PPy nanospheres are wrapped in rGO, and they link
with each other by rGO as a medium. The visible wrinkles of rGO on the edge of PPy nanospheres
imply the strong affinity between PPy nanospheres and rGO, which may generate considerable
interfacial effects and be quite beneficial to enhancing the dielectric loss ability of PPy nanosphere/rGO
composites [30,40]. In addition, one can find that pristine GO sheets are fully outstretched (Figure
S4a), while there is serious crimp and aggregation in pure rGO, due to the strong π–π restacking after
removing the surface functional groups (Figure 3b and Figure S4b). Compared with pure rGO, there is
less crimp and aggregation in PPy/rGO-S2 suggesting that PPy nanospheres can act as obstructions to
impede the restacking of rGO [41,42].
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Raman spectra of PPy nanospheres, rGO, and PPy nanosphere/rGO composites are depicted
in Figure 4. The characteristic bands of pure PPy nanospheres are visible at 1338 cm−1 and
1577 cm−1, due to the ring stretching mode and the stretching of the C=C backbone, respectively [43].
By comparison, two peaks at 1349 cm−1 (D-band) and 1588 cm−1 (G-band) are also observed in the
Raman spectra of rGO, where the D-band represents the defects and disorder in rGO, and the G-band
indicates its graphitic component [44]. It is found that D-bands and G-bands with similar profiles can
be easily distinguished in all PPy nanosphere/rGO composites, because PPy nanospheres cannot cover
rGO completely, and there are still quite a few rGO sheets exposed to the laser irradiation of Raman
spectra (Figure 2). Compared with pure rGO, the slight blueshifts for both D-band and G-band in PPy
nanosphere/rGO composites reveal charge redistribution and coupling between PPy nanospheres
and rGO [45]. Although the mass ratios of PPy nanospheres to rGO are completely different, these
PPy nanosphere/rGO composites exhibit almost identical ID/IG values, which demonstrates the
highly effective hybridization between PPy nanospheres and rGO. Meanwhile, the ID/IG values of
PPy nanosphere/rGO composites are lower than that of pure rGO, because the wrinkles of pure rGO,
known as physical defects, contribute to the increased ID/IG value [46]. As mentioned above, rGO
usually suffers from severe bending and aggregation towards a partial graphitic structure, owing to
strong π–π re-stacking [47], and this will result in high conductivity and unfavorable characteristic
impedance mismatching. Both TEM images and Raman data suggest that the introduction of PPy
nanospheres can effectively suppress the self-bending and self-aggregation of rGO, which will make
for the matched characteristic impedance of PPy nanosphere/rGO composites.
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XPS measurements are further performed to investigate the elemental composition and bonding
configurations of these PPy nanosphere/rGO composites. As shown in Figure 5a, the spectra show
strong signals of C and O elements for rGO, and strong signals of C, N, and O for PPy nanosphere/rGO
composites, indicating the successful incorporation of PPy nanospheres into rGO matrix. Both pure
rGO and PPy nanosphere/rGO composites show significant decreases in the relative intensity of O
element because of the removal of oxygen-containing functional groups by N2H4·H2O (Figure 5b).
There is only one peak at 400.3 eV in N1s core-level spectra for all PPy nanosphere/rGO composites
(Figure 5c) and the disappearance of –N+H– in PPy nanosphere/rGO composite is due to the fact
that rGO can act as an electron donor for PPy nanospheres and, thus, lead to further hybridization
between them. It is worth noting that when PPy nanosphere/GO hybrid is transformed into PPy
nanosphere/rGO composite, the binding energy of the N–H bond will be further shifted from 399.8 to
400.3 eV by the enhanced π–π interaction between PPy nanospheres and rGO [48].
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From the transmission line theory, the values of reflection loss (RL) can be calculated by the
following equations [49]:

RL(dB) = 20 log
∣∣∣∣Zin − 1
Zin + 1

∣∣∣∣, (1)
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Zin is the normalized input impedance of a metal-backed microwave absorption layer and is deduced
by [49],

Zin =

√
µ

ε
tan h

[
j
(

2π

c

)
f d
√

µε

]
, (2)

where ε and µ are the complex permittivity and complex permeability of the microwave absorber,
respectively, f is the microwave frequency, c is the velocity of EM waves in free space, and d is the
thickness of an absorber. Based on these two equations, the frequency-dependent RL values of PPy
nanosphere/rGO composites are plotted with varied absorber thickness (d), from 1.0–5.0 mm (the RL
values are artificially adjusted to −25.0 dB for clarity). As shown in Figure 6, all PPy nanosphere/rGO
composites can work for the consumption of incident EM waves, but their actual performances are
distinguishable and very sensitive to the mass ratios of PPy nanospheres to rGO. The minimum RL
values for PPy/rGO-S1, PPy/rGO-S2, and PPy/rGO-S3 are−19.0 dB at 18.0 GHz (Figure S5a),−59.2 dB
at 5.0 GHz (Figure S5b), and −10.9 dB at 16.0 GHz (Figure S5c), respectively, and the corresponding
effective bandwidths over −10 dB (90% absorption) of these PPy nanosphere/rGO composites are
13.8 GHz (4.2–18.0 GHz), 14.7 GHz (3.3–18.0 GHz), and 6.4 GHz (11.6–18.0 GHz), respectively. It is
clear that the microwave absorption properties of PPy/rGO-S2 are significantly superior to the
PPy/rGO-S1 and PPy/rGO-S3. In Table 1, we also list the RL properties of some magnetic metals,
magnetic metal/graphene, magnetic metal/conjugated polymer, and conjugated polymer/graphene
absorbers, and it can be seen that, even in the case of relative low loading, PPy/rGO-S2, in our work,
can produce superior/comparable microwave absorption performance to most of these examples.
These comparisons demonstrate that low-density PPy/rGO-S2 may be a better choice for microwave
absorption application.

Polymers 2018, 10, x FOR PEER REVIEW  7 of 15 

 

Zin is the normalized input impedance of a metal-backed microwave absorption layer and is 
deduced by [49], 

ܼ୧୬ = ටఓఌ tanh ቂj ቀଶగ ቁ  ቃ, (2)ߝߤ√݂݀

where ε and μ are the complex permittivity and complex permeability of the microwave absorber, 
respectively, f is the microwave frequency, c is the velocity of EM waves in free space, and d is the 
thickness of an absorber. Based on these two equations, the frequency-dependent RL values of PPy 
nanosphere/rGO composites are plotted with varied absorber thickness (d), from 1.0–5.0 mm (the 
RL values are artificially adjusted to −25.0 dB for clarity). As shown in Figure 6, all PPy 
nanosphere/rGO composites can work for the consumption of incident EM waves, but their actual 
performances are distinguishable and very sensitive to the mass ratios of PPy nanospheres to rGO. 
The minimum RL values for PPy/rGO-S1, PPy/rGO-S2, and PPy/rGO-S3 are −19.0 dB at 18.0 GHz 
(Figure S5a), −59.2 dB at 5.0 GHz (Figure S5b), and −10.9 dB at 16.0 GHz (Figure S5c), respectively, 
and the corresponding effective bandwidths over −10 dB (90% absorption) of these PPy 
nanosphere/rGO composites are 13.8 GHz (4.2–18.0 GHz), 14.7 GHz (3.3–18.0 GHz), and 6.4 GHz 
(11.6–18.0 GHz), respectively. It is clear that the microwave absorption properties of PPy/rGO-S2 
are significantly superior to the PPy/rGO-S1 and PPy/rGO-S3. In Table 1, we also list the RL 
properties of some magnetic metals, magnetic metal/graphene, magnetic metal/conjugated polymer, 
and conjugated polymer/graphene absorbers, and it can be seen that, even in the case of relative 
low loading, PPy/rGO-S2, in our work, can produce superior/comparable microwave absorption 
performance to most of these examples. These comparisons demonstrate that low-density 
PPy/rGO-S2 may be a better choice for microwave absorption application. 

 
Figure 6. Reflection loss properties of PPy/rGO-S1 (a), PPy/rGO-S2 (b), and PPy/rGO-S3 (c). 

Table 1. Microwave absorption performance of some magnetic metals, magnetic metal/graphene, 
magnetic metal/conjugated polymer, and conjugated polymer/graphene absorbers in previous 
references and this work. 

Absorber 
Loading 

(%) 

Integrated 
Thickness 

(mm) 

RLmin (dB) 
(Frequency, 
Thickness) 

Bandwidth over 
−10 dB (GHz)  

Effective 
Bandwidth (RL < 
−10 dB) (GHz) 

Ref. 

PANI 
nanorods/graphene 

50 2.0–5.0 
−51.1 dB  
(6.4 GHz,  
3.0 mm) 

5.8–18.0 12.2 [29] 

Flower-like α-Fe 
particles 

40 2.0–5.0 
−33.1 dB  

(17.5 GHz,  
5.5 mm) 

6.0–18.0 12.0 [50] 

Hollow Co 
nanoparticles 

70 1.1–3.0 
−45.06 dB  
(8.0 GHz,  
1.7 mm) 

5.2–16.5 11.3 [51] 

Fe nanoparticles 50 1.5–5.0 
−33 dB  

(1.3 GHz,  
5.0 mm) 

0.9–3.7 2.8 [52] 

Ni-10000 75 1.0–5.0 
−17.9 dB  

(17.8 GHz,  
4.2–18.0 13.8 [53] 

Figure 6. Reflection loss properties of PPy/rGO-S1 (a), PPy/rGO-S2 (b), and PPy/rGO-S3 (c).

Table 1. Microwave absorption performance of some magnetic metals, magnetic metal/graphene,
magnetic metal/conjugated polymer, and conjugated polymer/graphene absorbers in previous
references and this work.

Absorber Loading (%) Integrated
Thickness (mm)

RLmin (dB)
(Frequency, Thickness)

Bandwidth over
−10 dB (GHz)

Effective Bandwidth
(RL < −10 dB) (GHz) Ref.

PANI nanorods/graphene 50 2.0–5.0 −51.1 dB (6.4 GHz, 3.0 mm) 5.8–18.0 12.2 [29]

Flower-like α-Fe particles 40 2.0–5.0 −33.1 dB (17.5 GHz, 5.5 mm) 6.0–18.0 12.0 [50]

Hollow Co nanoparticles 70 1.1–3.0 −45.06 dB (8.0 GHz, 1.7 mm) 5.2–16.5 11.3 [51]

Fe nanoparticles 50 1.5–5.0 −33 dB (1.3 GHz, 5.0 mm) 0.9–3.7 2.8 [52]

Ni-10000 75 1.0–5.0 −17.9 dB (17.8 GHz, 1.2 mm) 4.2–18.0 13.8 [53]

Flower-like Ni 33 2.0–5.0 −17.0 dB (13.0 GHz, 3.0 mm) 11.5–14.0 2.5 [54]

Graphene–Ni composite 30 2.0–4.0 −42.0 dB (17.6 GHz, 2 mm) 8.0–18.0 10 [55]

α-Co/graphene 60 1.0–5.0 −47.5 dB (11.9 GHz, 2 mm) 3.0–15.0 12.0 [56]

FeCo/graphene 50 1.5–6.0 −40.2 dB (8.9 GHz, 2.5 mm) 3.4–18.0 14.6 [57]

Ni/PANI 50 2.0–6.0 −35.0 dB (17.2 GHz, 5.0 mm) 4.0–18.0 14.0 [58]

PANI/rGO 50 1.5–3.5 −41.4 dB (13.8 GHz, 2.0 mm) 6.0–18.0 12.0 [59]

PEDOT/rGO 10 2.0–4.0 −35.5 dB (13.3 GHz, 2.0 mm) 4.8–16.2 11.4 [60]

PPy/rGO-S2 30 1.0–5.0 −59.2 dB (5.0 GHz, 3.8 mm) 3.3–18.0 14.7 This work
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It is widely accepted that microwave absorption properties of a microwave absorber are closely
related to the complex permittivity (ε = ε′ − jε”) and complex permeability (µ = µ′ − jµ”), where
the real parts of complex permittivity (ε′) and complex permeability (µ′) represent the storage
capabilities of electric and magnetic energy, and imaginary parts (ε” and µ”) are associated with
the loss capabilities of electric and magnetic energy, respectively [61]. As observed in Figure 7a,b,
ε′ values of all PPy nanosphere/rGO composites display typical frequency-dependent behaviors,
and they gradually decrease when the frequency increases. The curves of ε” values of PPy/rGO-S1 and
PPy/rGO-S2 present similar variation trends, while ε” values of PPy/rGO-S1 shows a slight upward
trend in the studied frequency range. In terms of Debye theory, ε′ and ε” can be described as [3]

ε′ = ε∞ +
εs − ε∞

1 + ω2τ2 , (3)

ε′′ =
εs − ε∞

1 + ω2τ2 ωτ +
σac

ωε0
, (4)

where εs is the static permittivity, ε∞ is the relative dielectric permittivity at the high-frequency
limit, ω is angular frequency, τ is polarization relaxation time, σac is the alternative conductivity,
and ε0 is the dielectric constant in vacuum (ε0 = 8.85 × 10−12 F·m−1). From Equation (3), it can
be assured that the decrease of ε′ is attributed to the increase of ω in the studied frequency range.
This phenomenon can be considered as dipole orientation polarization [62]. In addition, interfacial
polarization is another important factor that is responsible for dielectric loss in nanohybrids or
nanocomposites [63]. From PPy/rGO-S1 to PPy/rGO-S3, significant enhancements in both ε′ and
ε” are observed. As revealed in our previous report [34], PPy nanospheres have poor conductivity
due to their low polymerization degree, which means that rGO will dominate the conductivity of
these composites. Considering the free electron theory [64], ε′′ ≈ 1/2πρ f ε0, where ρ is the resistivity,
high conductivity (i.e., low resistivity) will be beneficial to enhancing the imaginary parts of complex
permittivity. Thus, the increase of ε” from PPy/rGO-S1 to PPy/rGO-S3 comes from the incremental
ratios of rGO in these composites. Dielectric dissipation factor (tanδe = ε”/ε′) and magnetic dissipation
factor (tanδm = µ”/µ′), are widely utilized to evaluate the dielectric loss and magnetic loss abilities of
an absorber [61]. The tanδe of PPy/rGO-S3 is larger than that of PPy/rGO-S1 and PPy/rGO-S2 in the
whole range from 2.0 to 18.0 GHz, while the tanδe of PPy/rGO-S2 is larger than that of PPy/rGO-S1 at
2.0–9.2 GHz, and is smaller than that of PPy/rGO-S1 at 9.2–18.0 GHz. In order to study polarization
relaxation, the relationship between ε′ and ε” without the second part of Equation (4) can be deduced as(

ε ′ − εs − ε∞

2

)2
− ε′′ 2

=

(
εs − ε∞

2

)2
. (5)

Each semicircle in the plot of ε” versus ε’ may correspond to one Debye relaxation process [65].
As shown in Figure 7d–f, three semicircles, two semicircles, and one semicircle are found in
PPy/rGO-S1, PPy/rGO-S2, and PPy/rGO-S3, respectively. The gradual decrease of semicircles in
these composites suggests that Debye relaxation contribution is gradually weakened, and conductivity
loss is becoming dominant. The corresponding conductive interconnections model has been shown
in Figure 8. Specifically, the extended π-conjugated systems in both PPy nanosphere and rGO act
as microresistances, and numerous capacitor-like junctions are formed between PPy nanospheres
and rGO, owing to the accumulation and uneven distribution of space charges at their interfaces.
In addition, it can be found that all PPy nanosphere/rGO composites are unable to generate
any magnetic loss because of the absence of magnetic components, and thus, their values of µ′

and µ” and corresponding magnetic dissipation factors are approximate constants, and close to
1, 0, and 0, respectively (Figure S6). Although PPy/rGO-S3 as dielectric material has superior
dielectric loss ability, its microwave absorption performance is inferior. Apart from the attenuation
characteristics, impedance matching has to be considered, because it only occurs when the complex
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permittivity and permeability values are close [66,67]. The gap between the complex permittivity and
complex permeability of PPy/rGO-S3 is obviously larger than those of PPy/rGO-S1 and PPy/rGO-S2.
Therefore, it can be inferred that the limited microwave absorption of PPy/rGO-S3 is attributed to
its poor characteristic impedance matching. Compared with PPy/rGO-S1, PPy nanospheres with
good dispersion are totally covered by rGO in PPy/rGO-S2, which creates abundant heterogeneous
interfaces, and produces significant interfacial polarization (space charge polarization), resulting in the
significantly enhanced microwave absorption performance.
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As mentioned above, traditional magnetic metal and alloy materials usually suffer from severe
performance degradation after being used for a period of time, due to their poor oxidation resistance.
To test the durable performance of PPy nanosphere/rGO composite, PPy/rGO-S2 was treated at 423 K
for 10 days, and the product is denoted as PPy/rGO-S2-423 K. Figure 9 shows the complex permittivity,
dielectric dissipation factor, and reflection loss properties of PPy/rGO-S2-423 K. Compared with
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untreated PPy/rGO-S2, PPy/rGO-S2-423 K displays a slight increase in both ε′ and ε”, which may
be associated with the electron hopping due to heat treatment. Meanwhile, the corresponding
dielectric dissipation factor also shows a slight increase, indicating that the dielectric loss ability of
PPy/rGO-S2 even gains a bit of enhancement after the heat treatment. By calculating the RL properties,
it can be found that PPy/rGO-S2-423 K almost keeps identical microwave absorption performance,
whose minimum values and effective bandwidths are−60.6 dB at 6.4 GHz and 14.7 GHz (3.3–18.0 GHz),
respectively. These results forcefully validate the good durability of PPy/rGO-S2 as a microwave
absorber. It is unavoidable that long-time ultraviolet irradiation can also induce the degradation
of PPy chains, and result in the weakened microwave absorption performance of PPy/rGO-S2 [68],
while this novel microwave absorber may still have wide application prospects in some specific areas
(e.g., microwave dark room) that are not exposed to ultraviolet irradiation.

Polymers 2018, 10, x FOR PEER REVIEW  10 of 15 

 

 

Figure 8. The model for the formation of conductive connections. 

As mentioned above, traditional magnetic metal and alloy materials usually suffer from severe 
performance degradation after being used for a period of time, due to their poor oxidation 
resistance. To test the durable performance of PPy nanosphere/rGO composite, PPy/rGO-S2 was 
treated at 423 K for 10 days, and the product is denoted as PPy/rGO-S2-423 K. Figure 9 shows the 
complex permittivity, dielectric dissipation factor, and reflection loss properties of PPy/rGO-S2-423 
K. Compared with untreated PPy/rGO-S2, PPy/rGO-S2-423 K displays a slight increase in both ε′ 
and ε″, which may be associated with the electron hopping due to heat treatment. Meanwhile, the 
corresponding dielectric dissipation factor also shows a slight increase, indicating that the dielectric 
loss ability of PPy/rGO-S2 even gains a bit of enhancement after the heat treatment. By calculating 
the RL properties, it can be found that PPy/rGO-S2-423 K almost keeps identical microwave 
absorption performance, whose minimum values and effective bandwidths are −60.6 dB at 6.4 GHz 
and 14.7 GHz (3.3–18.0 GHz), respectively. These results forcefully validate the good durability of 
PPy/rGO-S2 as a microwave absorber. It is unavoidable that long-time ultraviolet irradiation can 
also induce the degradation of PPy chains, and result in the weakened microwave absorption 
performance of PPy/rGO-S2 [68], while this novel microwave absorber may still have wide 
application prospects in some specific areas (e.g., microwave dark room) that are not exposed to 
ultraviolet irradiation. 

 
Figure 9. Complex permittivity (a), dielectric dissipation factor (b), and reflection loss properties of 
PPy/rGO-S2-423 K in the frequency range of 2.0 to 18.0 GHz (c). 

4. Conclusions 

PPy nanosphere/rGO composites have been successfully prepared through a self-assembly 
strategy on basis of π–π interactions between PPy nanospheres and GO, and subsequent reduction 
by N2H4·H2O. The integrations of PPy nanospheres and rGO with different mass ratios have been 
investigated in detail. PPy nanospheres and rGO can be fully coupled under the optimum mass 
ratio and generate abundant heterogeneous interfaces. Well-matched characteristic impedance, in 
cooperation with multiple polarization loss and conductivity loss, accounts for the enhanced 
microwave absorption of PPy nanosphere/rGO composite. The superiority of PPy nanosphere/rGO 
composite is also addressed by a comprehensive comparison with some magnetic metals, magnetic 

Figure 9. Complex permittivity (a), dielectric dissipation factor (b), and reflection loss properties of
PPy/rGO-S2-423 K in the frequency range of 2.0 to 18.0 GHz (c).

4. Conclusions

PPy nanosphere/rGO composites have been successfully prepared through a self-assembly
strategy on basis of π–π interactions between PPy nanospheres and GO, and subsequent reduction
by N2H4·H2O. The integrations of PPy nanospheres and rGO with different mass ratios have been
investigated in detail. PPy nanospheres and rGO can be fully coupled under the optimum mass
ratio and generate abundant heterogeneous interfaces. Well-matched characteristic impedance,
in cooperation with multiple polarization loss and conductivity loss, accounts for the enhanced
microwave absorption of PPy nanosphere/rGO composite. The superiority of PPy nanosphere/rGO
composite is also addressed by a comprehensive comparison with some magnetic metals, magnetic
metal/graphene, magnetic metal/conjugated polymer, and conjugated polymer/graphene absorbers.
Additionally, the PPy nanosphere/rGO composite exhibits durable performance after a long-time
thermal treatment. This work not only provides a way to rationally design lightweight, durable,
and high-performance microwave absorbers, but also advances the understanding of microwave
absorption mechanism for graphene-based composites.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/9/998/s1,
Figure S1: XPS wide-scan spectra of GO, PPy nanospheres, and PPy nanosphere/GO hybrid (a); C1s core-level
spectra of GO, PPy nanospheres, and PPy nanosphere/GO hybrid (b); N1s core-level spectra of PPy nanospheres
and PPy nanosphere/GO hybrid (c); Figure S2: Digital photograph of commercial GO suspension (a), PPy
nanosphere suspension (b), PPy nanosphere/rGO composite (mass ratio of PPy nanospheres and rGO is 0.6)
suspension (c), and pure rGO suspension, after static treatment for 48 h; Figure S3: SEM image of PPy nanospheres,
and the inset is the corresponding statistical data on the diameters of PPy nanospheres; Figure S4: SEM images of
commercial GO (a) and as-prepared rGO (b); Figure S5: RL values of PPy/rGO-S1, PPy/rGO-S2, PPy/rGO-S3 with
absorber thicknesses of 1.46 mm, 3.82 mm, and 1.00 mm, respectively; Figure S6: Real parts µ′ (a) and imaginary
parts µ” (b) of complex permeability of PPy/rGO-S1, PPy/rGO-S2, and PPy/rGO-S3, and their corresponding
magnetic dissipation factor (c) in the frequency range of 2.0–18.0 GHz. Table S1: The pH values and zeta potentials
of the aqueous dispersions of commercial GO and PPy nanosphere.
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