Preparation and Application of Conductive Polyaniline-Coated Thermally Expandable Microspheres
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Experiment
2.2. Preparation of TEMs
2.3. Preparation of Microcapsules under Different Methods
2.4. Post-Processing
2.5. Polyaniline Coating and Ink Preparation
2.6. Characterization and Instruments
3. Results and Discussion
3.1. Microcapsule Core-Shell Analysis
3.2. Effects of Microcapsule Particle Size on Swelling Property
3.3. Investigation of Preparation Methods on the Properties of Expansion
3.4. Effects of Blowing Agent on the Expansion Performance of Microspheres
3.5. Effects of Polyaniline Coating on the Properties of Microcapsules
3.6. Screen-Printing Application of Conductive Thermally Expandable Microspheres in Flexible Substrate
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Morehouse, D.S., Jr.; Tetreault, R.J. Expansible Thermoplastic Polymer Particles Containing Volatile Fluid Foaming Agent and Method of Foaming the Same. U.S. Patent 3,615,972, 26 October 1971. [Google Scholar]
- Garner, J.L.; Tiffany, P.A. Method for Expanding Microspheres and Expandable Composition. U.S. Patent 4,179,546, 8 December 1979. [Google Scholar]
- Melber, G.E.; Oswald, W.A.; Wolinski, L.E. Composition and Process for Drying and Expanding Microspheres. U.S. Patent 4,722,943, 2 February 1988. [Google Scholar]
- Wu, H.S.; Sun, F.; Dimonie, V.L. Expandable Hollow Particles. U.S. Patent 5,834,526, 10 November 1998. [Google Scholar]
- Svedberg, L.O.; Hovland, G.; Holmlund, T. Easier Way of Expanding Thermally Expandable Microspheres is Provided Requiring Small Equipment and Reducing Transport Costs of Expanded Microspheres. U.S. Patent 7,192,989, 20 March 2007. [Google Scholar]
- Svedberg, L.; Ajdén, P. Method and a Device for Preparation of Expanded Microspheres. U.S. Patent 20,160,115,290, 28 April 2016. [Google Scholar]
- Fredlund, J. Synthesis of Thermo Expandable Microspheres. Master’s Thesis, KTH Chemical Science and Engineering, Sundsvall, Sweden, 2011. [Google Scholar]
- Hou, Z.S.; Kan, C.Y. Preparation and properties of thermally expandable polymeric microspheres. Chin. Chem. Lett. 2014, 5, 1279. [Google Scholar] [CrossRef]
- Jonson, M.; Nordin, O.; Kron, A.L.; Malmström, E. Thermally expandable microspheres with excellent expansion characteristics at high temperature. J. Appl. Polym. Sci. 2010, 117, 384. [Google Scholar] [CrossRef]
- Fujino, M.; Taniguchi, T.; Kawaguchi, Y. Mathematical models and numerical simulations of a thermally expandable microballoon for plastic foaming. Chem. Eng. Sci. 2013, 104, 220. [Google Scholar] [CrossRef]
- Safajou-Jahan Khanemlou, M.; Abbasi, F.; Salami-Kalajahi, M. Synthesis and characterization of thermally expandable PMMA-based microcapsules with different cross-linking density. Colloid Polym. Sci. 2016, 294, 1055. [Google Scholar] [CrossRef]
- Urbas, R.; Elesini, U.S. Color differences and perceptive properties of prints made with microcapsules. J. Graph. Eng. Des. 2015, 6, 15. [Google Scholar]
- Jeong, J.W.; McCall, J.G.; Shin, G.; Zhang, Y.Y.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J.Y.; Jang, K.; Shi, Y.; et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell. 2015, 162, 662. [Google Scholar] [CrossRef] [PubMed]
- Banea, M.D.; da Silva, L.F.M.; Carbas, R.J.C.; Campilhoc, R.D.S.G. Mechanical and thermal characterization of a structural polyurethane adhesive modified with thermally expandable particles. Int. J. Adhes. Adhes. 2014, 54, 191. [Google Scholar] [CrossRef]
- Banea, M.D.; Da Silva, L.F.M.; Carbas, R.J.C. Debonding on command of adhesive joints for the automotive industry. Int. J. Adhes. Adhes. 2015, 59, 14. [Google Scholar] [CrossRef]
- Jonsson, M.; Nyström, D.; Nordin, O.; Malmström, E. Surface modification of thermally expandable microspheres by grafting poly (glycidyl methacrylate) using ARGET ATRP. Eur. Polym. J. 2009, 45, 2374. [Google Scholar] [CrossRef]
- Lu, Y.; Broughton, J.; Winfield, P. Surface modification of thermally expandable microspheres for enhanced performance of disbondable adhesive. Int. J. Adhes. Adhes. 2016, 66, 33. [Google Scholar] [CrossRef]
- Cingil, H.E.; Balmer, J.A.; Armes, S.P.; Bain, P.S. Conducting polymer-coated thermally expandable microspheres. Polym. Chem. 2010, 1, 1323–1331. [Google Scholar] [CrossRef]
- Wang, H.L.; Romero, R.J.; Mattes, B.R. Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber. J. Polym. Sci. 2000, 38, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Sun, Z.C.; Li, L.H.; Xiao, Y.H.; Yu, Y.M. Preparation and characterization of conducting polymer-coated thermally expandable microspheres. Chin. Chem. Lett. 2017, 28, 662. [Google Scholar] [CrossRef]
- Jonsson, M.; Nordin, O.; Malmström, E. Increased onset temperature of expansion in thermally expandable microspheres through combination of crosslinking agents. J. Appl. Polym. Sci. 2011, 121, 369. [Google Scholar] [CrossRef]
- Jonsson, M.; Nordin, O.; Malmström, E.; Hammer, C. Suspension polymerization of thermally expandable core/shell particles. Polymer 2006, 47, 3315. [Google Scholar] [CrossRef]
- Subrahmanya, S.; Rudolf, H. Spectroelectrochemical investigations of soluble polyaniline synthesized via new inverse emulsion pathway. Chem. Mater. 2005, 17, 4078–4085. [Google Scholar]
Foaming Agent | MV (µm) | PDI | Boiling Point/°C | Tstart/°C | Tmax/°C | dL/d0 |
---|---|---|---|---|---|---|
isopentane | 66.70 | 1.21 | 30 | 89.50 | 133.48 | 2.16 |
normal hexane | 56.23 | 0.92 | 68.7 | 116.76 | 144.77 | 2.69 |
cyclohexane | 60.72 | 0.89 | 80.7 | 162.87 | 176.50 | 0.09 |
isooctane | 55.78 | 1.28 | 99.2 | 130.39 | 144.06 | 2.23 |
methyl cyclohexane | 70.23 | 0.89 | 100 | 141.47 | 187.33 | 0.29 |
normal octane | 67.25 | 0.78 | 125.6 | 160.03 | 198.36 | 0.16 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, S.-Z.; Sun, Z.-C.; Li, F.-R.; Yan, M.-J.; Cao, M.-J.; Li, D.-S.; Liu, Y.; Li, L.-H. Preparation and Application of Conductive Polyaniline-Coated Thermally Expandable Microspheres. Polymers 2019, 11, 22. https://doi.org/10.3390/polym11010022
Jiao S-Z, Sun Z-C, Li F-R, Yan M-J, Cao M-J, Li D-S, Liu Y, Li L-H. Preparation and Application of Conductive Polyaniline-Coated Thermally Expandable Microspheres. Polymers. 2019; 11(1):22. https://doi.org/10.3390/polym11010022
Chicago/Turabian StyleJiao, Shou-Zheng, Zhi-Cheng Sun, Fu-Rong Li, Mei-Jia Yan, Mei-Juan Cao, Dong-Sheng Li, Yan Liu, and Lu-Hai Li. 2019. "Preparation and Application of Conductive Polyaniline-Coated Thermally Expandable Microspheres" Polymers 11, no. 1: 22. https://doi.org/10.3390/polym11010022
APA StyleJiao, S. -Z., Sun, Z. -C., Li, F. -R., Yan, M. -J., Cao, M. -J., Li, D. -S., Liu, Y., & Li, L. -H. (2019). Preparation and Application of Conductive Polyaniline-Coated Thermally Expandable Microspheres. Polymers, 11(1), 22. https://doi.org/10.3390/polym11010022