Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis and Characterization of CCPAM
2.3. Sludge Dewatering Tests
3. Results
3.1. Synthesis of CCPAD
3.2. CCPAD Characterization
3.2.1. FTIR Spectra
3.2.2. 1H NMR Characterization
3.2.3. XRD Characterization
3.2.4. TG-DTG Characterization
3.3. Sludge Dewatering Performance
3.3.1. Effect of Cationic Degree
3.3.2. Effect of Intrinsic Viscosity
3.3.3. Effect of pH
3.3.4. Settleability of Sludge after Flocculation
3.5. Sludge Morphology
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Ma, J. Bioflocculant from pre-treated sludge and its applications in sludge dewatering and swine wastewater pretreatment. Bioresour. Technol. 2015, 196, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Kurade, M.B.; Murugesan, K.; Selvam, A.; Yu, S.; Wong, J.W.C. Ferric biogenic flocculant produced by Acidithiobacillus ferrooxidans enable rapid dewaterability of municipal sewage sludge: A comparison with commercial cationic polymer. Int. Biodeter. Biodegr. 2014, 96, 105–111. [Google Scholar] [CrossRef]
- Sun, Y.; Fan, W.; Zheng, H.; Zhang, Y.; Li, F.; Chen, W. Evaluation of Dewatering Performance and Fractal Characteristics of Alum Sludge. PLoS ONE 2015, 10, e01306836. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Li, X.; Lu, S.; Wang, F.; Chen, T.; Yan, J. Influence of organic and inorganic flocculants on the formation of PCDD/Fs during sewage sludge incineration. Environ. Sci. Pollut. R. 2015, 22, 14629–14636. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Yue, Q.; Song, F.; Liu, X.; Gao, B.; Zhang, T.; Li, Q.; Wang, Y. A study on the deep dewatering of urban dewatered-sewage sludge by aluminum chloride. Desalin. Water Treat. 2016, 57, 545–552. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Piecuch, T. Sludge dewatering in a decanter centrifuge aided by cationic flocculant Praestol 855BS and essential oil of waste orange peels. Arch. Environ. Prot. 2016, 42, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Pan, Z.; Hao, N.; Peng, W. A novel acrylamide-free flocculant and its application for sludge dewatering. Water Res. 2014, 57, 304–312. [Google Scholar] [CrossRef]
- Guerdat, T.C.; Losordo, T.M.; DeLong, D.P.; Jones, R.D. An evaluation of solid waste capture from recirculating aquaculture systems using a geotextile bag system with a flocculant-aid. Aquacult. Eng. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Wang, J.; Yuan, S.; Wang, Y.; Yu, H. Synthesis, characterization and application of a novel starch-based flocculant with high flocculation and dewatering properties. Water Res. 2013, 47, 2643–2648. [Google Scholar] [CrossRef]
- Guo, J.; Du, J.; Chen, P.; Tan, X.; Huang, X.; Gan, P.; Fu, L. Enhanced efficiencies of sludge dewatering and domestic wastewater treatment by using the bioflocculant from rice stover. Water Environ. J. 2017, 31, 120–126. [Google Scholar] [CrossRef]
- Peng, H.; Zhong, S.; Xiang, J.; Lin, Q.; Yao, C.; Dong, J.; Yin, G.; Yao, K.; Zeng, S.; Zhong, J. Characterization and secondary sludge dewatering performance of a novel combined aluminum-ferrous-starch flocculant (CAFS). Chem. Eng. Sci. 2017, 173, 335–345. [Google Scholar] [CrossRef]
- Cobbledick, J.; Zhang, V.; Rollings-Scattergood, S.; Latulippe, D.R. Investigation of the role of flocculation conditions in recuperative thickening on dewatering performance and biogas production. Environ. Technol. 2017, 38, 2650–2660. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, H.; Wang, Y.; Sun, Y.; Xu, B.; Zhao, C. Fabricating an enhanced sterilization chitosan-based flocculants: Synthesis, characterization, evaluation of sterilization and flocculation. Chem. Eng. J. 2017, 319, 119–130. [Google Scholar] [CrossRef]
- Guo, J.; Chen, C. Sludge conditioning using the composite of a bioflocculant and PAC for enhancement in dewaterability. Chemosphere 2017, 185, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Matos, J.S.; Rosa, M.J. Performance indicators and indices of sludge management in urban wastewater treatment plants. J. Environ. Manag. 2016, 184, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zheng, X.; Zhang, Z.; Xu, B.; Sun, Y.; Liu, Y.; Zheng, H. Ultrasound-assisted polymerization of P(AM-DMDAAC): Synthesis, characterization and sludge dewatering performance. J. Environ. Chem. Eng. 2017, 5, 5439–5447. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, H.; Xiong, Z.; Wang, Y.; Tang, X.; Chen, W.; Ding, Y. Algae removal from raw water by flocculation and the fractal characteristics of flocs. Desalin. Water Treat. 2015, 56, 894–904. [Google Scholar] [CrossRef]
- Sun, Y.; Ren, M.; Zhu, C.; Xu, Y.; Zheng, H.; Xiao, X.; Wu, H.; Xia, T.; You, Z. UV-Initiated Graft Copolymerization of Cationic Chitosan-Based Flocculants for Treatment of Zinc Phosphate-Contaminated Wastewater. Ind. Eng. Chem. Res. 2016, 55, 10025–10035. [Google Scholar] [CrossRef]
- Sun, J.; Ma, X.; Li, X.; Fan, J.; Chen, Q.; Liu, X.; Pan, J. Synthesis of a Cationic Polyacrylamide under UV Initiation and Its Flocculation in Estrone Removal. Int. J. Polym. Sci. 2018, 2018, 8230965. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, C.; Sun, W.; Xu, Y.; Xiao, X.; Zheng, H.; Wu, H.; Liu, C. Plasma-initiated polymerization of chitosan-based CS-g-P(AM-DMDAAC) flocculant for the enhanced flocculation of low-algal-turbidity water. Carbohyd. Polym. 2017, 164, 222–232. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, P.; Zhang, G.; Li, J. Study of sludge moisture distribution and dewatering characteristic after cationic polyacrylamide (C-PAM) conditioning. Desalin. Water. Treat. 2016, 57, 29377–29383. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.; Sun, W.; Shah, K.J.; Xu, Y.; Zheng, H. Efficient cationic flocculant MHCS-g-P(AM-DAC) synthesized by UV-induced polymerization for algae removal. Sep. Purif. Technol. 2019, 210, 10–19. [Google Scholar] [CrossRef]
- Wang, M.; Feng, L.; Fan, X.; Li, D.; Qu, W.; Jiang, S.; Li, S. Fabrication of Bifunctional Chitosan-Based Flocculants: Characterization, Assessment of Flocculation, and Sterilization Performance. Materials 2018, 11, 2009. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Li, H.; Yan, H.; Wu, H.; Yang, H.; Wu, Q.; Li, H.; Li, A.; Cheng, R. Evaluation of a novel chitosan-based flocculant with high flocculationperformance, low toxicity and good floc properties. J. Hazard. Mater. 2014, 276, 480–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, Y.; Wang, Y.; Yuan, S.; Sheng, G.; Yu, H. A novel efficient cationic flocculant prepared through grafting two monomers onto chitosan induced by Gamma radiation. RSC Adv. 2012, 2, 494–500. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, C.; Xu, Y.; Zheng, H.; Xiao, X.; Zhu, G.; Ren, M. Comparison of initiation methods in the structure of CPAM and sludge flocs properties. J. Appl. Polym. Sci. 2016, 133, 44071. [Google Scholar] [CrossRef]
- Feng, L.; Zheng, H.; Tang, X.; Zheng, X.; Liu, S.; Sun, Q.; Wang, M. The investigation of the specific behavior of a cationic block structure and its excellent flocculation performance in high-turbidity water treatment. RSC Adv. 2018, 8, 15119. [Google Scholar] [CrossRef]
- Feng, L.; Liu, S.; Zheng, H.; Liang, J.; Sun, Y.; Zhang, S.; Chen, X. Using ultrasonic (US)-initiated template copolymerization for preparation of an enhanced cationic polyacrylamide (CPAM) and its application in sludge dewatering. Ultrason. Sonochem. 2018, 44, 53–63. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, H.; Tan, M.; Wang, Y.; Tang, X.; Feng, L.; Xiang, X. Synthesis and Characterization of Composite Flocculant PAFS-CPAM for the Treatment of Textile Dye Wastewater. J. Appl. Polym. Sci. 2014, 131. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, Y.; Zhu, C.; Guo, J.; Zhao, C.; Liao, Y.; Guan, Q. UV-initiated polymerization of hydrophobically associating cationic flocculants: Synthesis, characterization, and dewatering properties. Chem. Eng. J. 2013, 234, 318–326. [Google Scholar] [CrossRef]
- Lu, X.; Xu, Y.; Sun, W.; Sun, Y.; Zheng, H. UV-initiated synthesis of a novel chitosan-based flocculant with high flocculation efficiency for algal removal. Sci. Total Environ. 2017, 609, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.Z.; Chen, X.G.; Li, Y.Y.; Liu, C.S.; Liu, C.G.; Zheng, B.; Gong, Z.H.; Sun, J.J.; Chen, H.; Li, J.; et al. Preparation and Properties of Amphiphilic Chitosan Derivative as a Coagulation Agent. Environ. Eng. Sci. 2008, 25, 1325–1332. [Google Scholar] [CrossRef]
- Zhu, G.; Liu, J.; Yin, J.; Li, Z.; Ren, B.; Sun, Y.; Wan, P.; Liu, Y. Functionalized polyacrylamide by xanthate for Cr (VI) removal from aqueous solution. Chem. Eng. J. 2016, 288, 390–398. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Yuan, S.; Zhang, S.; Tang, Y.; Yu, H. Gamma radiation-induced dispersion polymerization in aqueous salts solution for manufacturing a cationic flocculant. Chem. Eng. J. 2009, 149, 118–122. [Google Scholar] [CrossRef]
- Ma, J.; Fu, K.; Fu, X.; Guan, Q.; Ding, L.; Shi, J.; Zhu, G.; Zhang, X.; Zhang, S.; Jiang, L. Flocculation properties and kinetic investigation of polyacrylamide with different cationic monomer content for high turbid water purification. Sep. Purif. Technol. 2017, 182, 134–143. [Google Scholar] [CrossRef]
- Ma, J.; Fu, K.; Jiang, L.; Ding, L.; Guan, Q.; Zhang, S.; Zhang, H.; Shi, J.; Fu, X. Flocculation performance of cationic polyacrylamide with high cationic degree in humic acid synthetic water treatment and effect of kaolin particles. Sep. Purif. Technol. 2017, 181, 201–212. [Google Scholar] [CrossRef]
- Ma, J.; Fu, K.; Shi, J.; Sun, Y.; Zhang, X.; Ding, L. Ultraviolet-assisted synthesis of polyacrylamide-grafted chitosan nanoparticles and flocculation performance. Carbohyd. Polym. 2016, 151, 565–575. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Zhang, S.; Yu, H. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Bioresour. Technol. 2008, 99, 3397–3402. [Google Scholar] [CrossRef]
- Wang, J.; Chen, Y.; Yuan, S.; Sheng, G.; Yu, H. Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res. 2009, 43, 5267–5275. [Google Scholar] [CrossRef]
- Liu, B.; Chen, X.; Zheng, H.; Wang, Y.; Sun, Y.; Zhao, C.; Zhang, S. Rapid and efficient removal of heavy metal and cationic dye by carboxylaterich magnetic chitosan flocculants: Role of ionic groups. Carbohyd. Polym. 2018, 181, 327–336. [Google Scholar] [CrossRef]
- You, Z.; Xu, H.; Sun, Y.; Zhang, S.; Zhang, L. Effective Treatment of Emulsified Oil Wastewater by Coagulation–Flotation Process. RSC Adv. 2018, 8, 40639–40646. [Google Scholar] [CrossRef]
- Ma, J.; Shi, J.; Ding, H.; Zhu, G.; Fu, K.; Fu, X. Synthesis of cationic polyacrylamide by low-pressure UV initiation for turbidity water flocculation. Chem. Eng. J. 2017, 312, 20–29. [Google Scholar] [CrossRef]
- Sun, Y.; Zhu, C.; Zheng, H.; Sun, W.; Xu, Y.; Xiao, X.; You, Z.; Liu, C. Characterization and coagulation behavior of polymeric aluminum ferric silicate for high-concentration oily wastewater treatment. Chem. Eng. Res. Des. 2017, 119, 23–32. [Google Scholar] [CrossRef]
- Li, X.; Zheng, H.; Gao, B.; Zhao, C.; Sun, Y. UV-initiated polymerization of acid-and alkali-resistant cationic flocculant P(AM-MAPTAC): Synthesis, characterization, and application in sludge dewatering. Sep. Purif. Technol. 2017, 187, 244–254. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, H.; Gao, B.; Gu, Y.; Li, X.; Liu, B.; Jimenez, A.M. Waste activated sludge (WAS) dewatering properties of an original hydrophobically modified polyacrylamide containing a cationic microblock structure. RSC Adv. 2017, 7, 28733–28745. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zheng, H.; Zhai, J.; Teng, H.; Zhao, C.; Zhao, C.; Liao, Y. Effects of Surfactants on the Improvement of Sludge Dewaterability Using Cationic Flocculants. PLoS ONE 2014, 9, e11103610. [Google Scholar] [CrossRef]
- Zheng, H.; Sun, Y.; Guo, J.; Lo, F.; Fan, W.; Liao, Y.; Guan, Q. Characterization and Evaluation of Dewatering Properties of PADB, a Highly Efficient Cationic Flocculant. Ind. Eng. Chem. Res. 2014, 53, 2572–2582. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, W.; Wang, D.; Ma, T.; Bai, R.; Yu, D. Enhancement of waste activated sludge dewaterability using calcium peroxide pre -oxidation and chemical re-flocculation. Water Res. 2018, 128, 424–425. [Google Scholar] [CrossRef]
- Zheng, C.; Zheng, H.; Wang, Y.; Sun, Y.; An, Y.; Liu, H.; Liu, S. Modified magnetic chitosan microparticles as novel superior adsorbents with huge “force field” for capturing food dyes. J. Hazard. Mater. 2019, 367, 492–503. [Google Scholar] [CrossRef]
- Wei, H.; Gao, B.Q.; Ren, J.; Li, A.M.; Yang, H. Coagulation/flocculation in dewatering of sludge: A review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
Indices | Parameters |
---|---|
Moisture content | 97.9% |
pH | 7.13 |
Organic matter content (g/kg) | 308.73 |
Sludge specific resistance to filtration (m/kg) | 3.74 × 1013 |
Physical condition | Dark brown with fine particles and a foul stench |
Initiation Methods | Reaction Conditions | Advantages | Disadvantages | References |
---|---|---|---|---|
Photoinitiated polymerization | Normal temperature, normal pressure, reaction time 0.5–2.0 h | Simple operation, a product with high purity, good solubility, fast polymerization speed, environmentally friendly process, energy saving, low production costs. | The initiation mechanism needs further study. Ultraviolet light is easily attenuated in the reaction solution. | [22] |
Plasma-initiated polymerization | Normal temperature and pressure, polymerization temperature 10–60 °C, discharge time 0–120 s | No requirement of external initiator, high purity of polymerization product, low cost. | Expensive equipment, Complicated operation. It is still in the laboratory stage with the high investment and requiring vacuum experimental conditions. | [23] |
Thermal initiation polymerization | Polymerization temperature 10–100 °C, reaction time 3–24 h | The initiator is thermally decomposed to generate free radicals to initiate polymerization, and the technology is mature and easy to realize industrial production. | Long reaction time with heating, high energy consumption, low product purity, poor solubility. | [24] |
Radiation initiated polymerization | Normal temperature and pressure, Radiation time 0–600 s | Low cost, easy operation, uniform reaction, no need to add initiator, fast reaction rate and high product purity; being carried out at room temperature | It is difficult to control the polymerization, and the product is difficult to separate with many residual monomers. | [25] |
Microwave initiated polymerization | Normal temperature and pressure, Reaction time 0–10 min | High efficiency, sensitive reaction, uniform molecular weight distribution, fast polymerization rate and short reaction time. | Local overheating, prone to explosion or cross-linking, poor solubility of the product | [26] |
Ultrasonic initiated polymerization | Frequency 20 kHz–500 MHz, Reaction time 0–240 min | The short time and efficiency not only accelerate the chemical reaction, increase the reaction yield, shorten the reaction time, but also make it possible to carry out chemical reactions that are difficult or impossible. | The acoustic cavitation effect can produce local high temperature and high pressure, making flocculant prone to explosion or cross-linking, and the product has poor solubility. | [27,28] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, C.; Sun, W.; Sun, Y.; Chen, L.; Xu, Y.; Tang, M. Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD. Polymers 2019, 11, 95. https://doi.org/10.3390/polym11010095
Shi C, Sun W, Sun Y, Chen L, Xu Y, Tang M. Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD. Polymers. 2019; 11(1):95. https://doi.org/10.3390/polym11010095
Chicago/Turabian StyleShi, Chunhong, Wenquan Sun, Yongjun Sun, Lei Chen, Yanhua Xu, and Mengdan Tang. 2019. "Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD" Polymers 11, no. 1: 95. https://doi.org/10.3390/polym11010095
APA StyleShi, C., Sun, W., Sun, Y., Chen, L., Xu, Y., & Tang, M. (2019). Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD. Polymers, 11(1), 95. https://doi.org/10.3390/polym11010095