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Abstract: As a brand new nanomachining method, the tip-based nanomachining/nanoscratching
(TBN) method has exhibited a powerful ability at machining on polymer materials and various
structures have been achieved using this approach, ranging from the nanodot, nanogroove/channel,
bundle to 2D/3D (three-dimensional) nanostructures. The TBN method is widely used due to its
high precision, ease of use and low environmental requirements. First, the theoretical models of
machining on polymer materials with a given tip using the TBN method are presented. Second,
advances of nanostructures achieved by this method are given, including nanodots/nanodot arrays, a
nanogroove/channel, 2D/3D nanostructures and bundles. In particular, a useful approach called the
ultrasonic vibration-assisted method introduced to integrate with TBN method to reduce the wear
of the tip is also reviewed, respectively. Third, the typical applications of the TBN method and the
nanostructures achieved by it are summarized in detail. Finally, the existing shortcomings and future
prospects of the TBN method are given. It is confirmed that this review will be helpful in learning
about this method and push the technology toward industrialization.
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1. Introduction

Nanotechnology, genetic engineering and intelligent technology are known as the “the most important
three techniques of the 21st century”, among which, the rapid development of nanotechnology has brought
us to the nano age [1–4]. Micro/nano manufacturing technology has been widely used in the environment,
energy, biology, medicine, national defense and other fields, playing an increasingly important role in
promoting national development and social progress [5–11]. Up until now, nanopatterns have exhibited
huge potential applications in the areas of nano-grating sensor, nano optical, surface-enhanced Raman
scattering (SERS) and so on [12–23]. Thus, how to achieve more complex nanostructures with high
accuracy has become a hot issue. At present, various relatively mature techniques have been applied to
fabricate nanostructures, mainly including focused ion-beam lithography (FIB) [24–26], electron-beam
lithography (EBL) [27–30], ultra-violet lithography (UV lithography) [17,31–34] etc. However, various
factors limit the widely use of these techniques in fabricating nanostructures, ranging from low resolution,
high-cost of the equipment, relatively high demand for operation environment to a limited range of
materials that can be processed. Therefore, a brand new method with a low-cost, ease of use, high accuracy
and no need of vacuum environment is needed. The TBN nanofabrication method is born out of the
development of atomic force microscopy (AFM).
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AFM was first invented to characterize the surface morphology of the sample in 1986 [35].
However, in recent years it has been demonstrated to be a powerful nanomachining approach due to
its properties of low-cost, nano-scale resolution, low environmental requirement and high accuracy,
known as the TBN method [36,37]. The TBN method has exhibited a potential feasibility in fabricating
various materials, ranging from polymer, metal to semiconductor [38–44]. In spite of this, rapid wear
can be observed when using the TBN method to scratch on samples with a large normal load due to
a relatively large hardness of the material [45]. Thus, other energies such as thermal, chemical and
ultrasonic are integrated with the TBN method to reduce the wear of the tip and extend the service
life of the tip [36,46,47]. Among them, the ultrasonic vibration-assisted approach is widely used in
reducing the applied actual force between the tip and the sample so as to extend the service life of the
tip, as well as to enlarge the depth of the structure effectively [2,48–52].

Polymer materials are widely used in the fields of the Micro/Nano-Electro-Mechanical System
(MEMS/NEMS) technique, such as optical mask, flexible electronic device, nanosensor and nanofluidic
due to its relative low-cost, good light transmittance and excellent biocompatibility [53,54]. Among them,
the most important application of polymer film is as the resist of etching [52,55]. When scratching
nanostructures on hard sample such as silicon or silicon dioxide, an extreme wear of the tip can be
observed due to a relatively large hardness of the sample. The solution of above problem is using the
TBN method to fabricate nanostructures on polymer resist film first, and later the etching approach
like reactive ion etching (RIE) is utilized to transfer the nanopatterns to the hard substrates, such as
semiconductor materials like silicon [56,57] and quartz [44,58,59]. Up to now, a lot of nanopatterns
have been achieved on polymer materials using the TBN method [60,61], including nanodots/nanodot
arrays, nanogroove/channel, bundles, 2D/3D nanostructures. One point that merits attention is that
the mechanical remove process of polymer materials based on TBN method keeps the normal load
constant so as to guarantee the accuracy of the machined nanostructures. However, many scholars
were committed to applying the obtained nanostructures on polymer materials using the TBN method
for preparations of industrial production. Although a lot of applications have been achieved in the
fields of nanooptics, nanofluidic, nano-electronic devices and so on [62,63], more and more novel
applications needed to be discovered in the future so that the TBN method can be used in industrial
engineering as early as possible. Moreover, AFM exhibits a huge potential in the development of
polymer technology, especially for the emerging field of “polymer brushes”, which is a technique that
grafts polymers on to solid substrates [64] and has been applied in the field of sewage purification [65],
adsorption of charged biomolecules [66], lubrication [64], adhesion [67], colloidal stability [68] and
biotechnology [69]. However, there is also a problem that the desorption of chains during and after the
brush creation remains a common phenomenon by the existing method [68], and therefore, a reliable
approach is required. As is widely known, polymer pen lithography (PPL) as an important component
of dip-pen nanolithography (DPN) based on AFM, which has been demonstrated to be a powerful
tool in polymer molecules′ deposition [70]. With the applicable inks extending from metal to polymer
in the past 20 years, the DPN method has been developed into as a tool for creating new materials,
especially for polymers [70]. In conclusion, various techniques based on AFM are sure to make great
contributions in the field of “polymer brushes” in the days to come.

Thus, in this paper, a review of recent advances of scratching polymer materials using TBN
methods is given, which includes many current aspects, from theory to experiment and from advantages
to shortcomings. First, theoretical models of the scratching process on polymer materials are reviewed.
Then, current situation of the development in nanostructures fabricated on polymer materials by the
TBN method is summarized in detail. Moreover, a summary about the applications of TBN method and
the nanostructures achieved by it are also conducted. Finally, an overview of the existing deficiencies
and the future directions of development is given.
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2. Theoretical Modeling of the Scratching Process

2.1. Existing Theoretical Models of the Scratching Process

The scratching process on polymer materials using the TBN method is affected by several factors,
including the normal load applied on the sample surface, the friction between the tip and the sample,
the elastic recovery of the material after nanomachining and the height of the pile-up formed owing to
the accumulation of material etc. Therefore, it is necessary to establish a theoretical model to predict
the influence of these parameters on nanoscratching process. Exciting results have been achieved
during the past few years. A typical theoretical model was established by Geng et al. [71] to study the
relationship between above factors and the depth of nanogroove during the process of scratching a
nanogroove, which takes into consideration the effects of the normal load, scratching velocity, height
of pile-up, friction between the tip and the sample, elastic recovery of the polymer material and probe
geometry used in the scratching tests. In this model, in order to estimate the scratching depth of
nanogroove, the normal load and lateral force applied on the tip in Figure 1a were first calculated and
could be expressed as follows [71]: {

→
FN

=
x (
σ f n̂·ẑ + µaσ f t̂·ẑ

)
dAẑ (1)

→
FV
=

x (
σ f n̂·v̂ + µaσ f t̂·v̂

)
dAv̂ (2)

where, FN is the normal force applied on the tip and FV is the lateral force and σ f is the flow stress
during the scratching process. n̂ is the normal unit vector perpendiculars to the surface of the probe
and in the oblique upward direction. ẑ is the unit vector in the vertical direction and µa is the adhesive
friction coefficient. Moreover, t̂ is the tangential unit vectors, which is in the opposite direction of the
projection of the tip when moving on the surface of the probe. dA is the unit area of the contact field
between the tip and the polymer sample surface. v̂ is the unit vector in the lateral direction along the
moving tip.

The verification experiments were conducted on a polycarbonate (PC) bulk sample, and 10 normal
forces ranging from 23.3 to 133.8 µN and 13 scratching velocities ranging from 5 to 200 µm/s were
used to study the relationship between the applied normal force, nanoscratching velocity, the height of
pile-up and the fabricated depth of nanogroove. Finally, nanogrooves with desired depths are obtained
on the surface of the PC sample by setting the parameters to suitable value under the guidance of this
model. Results showed that the depths of nanogrooves fabricated by the TBN method in experiments
exhibit a good fit with the expected depths predicted by this model. Generally, the model in this work
provides an approach to make the dimension of nanogroove controllable so that we can achieve an
ordered nanogroove easily using the TBN method on polymer materials. The sample used in the
above work is a bulk sample, thus, the extreme wear of the tip could be neglected owing to the evident
disparity between the probe and the polymer substrate. However, an extreme wear of the tip will
occur when using the TBN method to scratch on a polymer thin-film spin-coated on a hard substrate
resulting from the direct contact between the tip and the substrate if the thin film is penetrated through
by the tip under a relatively large normal load. Therefore, in order to rise the above limitations of the
model, Zhou et al. [72] established a mathematical model for the process of scratching nanogrooves
on a poly (methyl methacrylate) (PMMA) thin film using the TBN method. This model takes the
parameters affecting the fabrication process into consideration, including the friction between the tip
and the sample, the elastic recovery of the polymer material, the height of the pile-up and the flow
stress of the sample. Another different point between this model and that proposed by Geng et al. [71]
is the tip geometry used in the model, as shown in Figure 1. The tip utilized in the model proposed
by Geng et al. [71] was regarded as a triangular pyramid, while, the tip used in model established by
Zhou et al. [72] was simplified as a rectangular pyramid with a spherical apex. Moreover, the calculation
of the model proposed by Zhou et al. [72] is dependent on the relationship between the machined depth
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and the height of the apex of the probe [73]. To achieve good control of the depth of the nanogroove,
the normal load and tangential force applied on the unit contact area between the tip and the polymer
sample were described as Equation (3) [74] and Equation (4) [74]:

→
dFN

= σ f dAn̂ (3)

→
dFt

= µaσ f dAt̂ (4)

where, σ f is the flow stress during the scratching process and µa is the adhesive friction coefficient.
n̂ is the normal unit vector and t̂ is the tangential unit vectors. dA is the unit area of the contact field
between the tip and the polymer sample surface. Moreover, the total height of the contact area between
the AFM tip and the polymer sample was also calculated by a simple method when the tip is cutting
through the polymer thin-film, which is shown in Equation (5) [72]:

Htotal = HPMMA + Hpile−up (5)

where, Htotal is the total height of the contact area between the AFM tip and the polymer sample and
HPMMA is the thickness of PMMA thin-film. Hpile−up is the height of pile-up accumulating on the side
of the nanogroove during scratching process.

This model shows an outstanding capacity in predicting the normal force that needs to be applied
on the sample surface so that the tip can just penetrate the polymer thin film without contacting with
the hard substrate directly. Under the guidance of this model, several nanochannels were fabricated
on PMMA thin films with various thicknesses to provide proofs that the tip just cut through the thin
film. These results were achieved by regulating the normal load to a suitable value using tips with
different radii. This indicates that this model can be used to predict the normal force required to obtain
a nanogroove using a tip with a given radius just cutting through the sample when nanoscratching on
polymer thin film. Therefore, this model makes a great contribution to reducing the wear of the tip
when scratching on a polymer thin-film spin-coated on a hard substrate, such as silicon and silicon
dioxide. In conclusion, there is very little study about the theoretical modeling of the scratching process
so far, which needs to be further studied in the future.
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Figure 1. A simplified model of the probe: (a) the tip is modified as a triangular pyramid when
scratching on polycarbonate (PC) bulk sample and (b) the tip is modified as a rectangular pyramid
with a spherical apex when scratching on poly (methyl methacrylate) (PMMA) film [71,72].
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2.2. Study of the Elastic Recovery of Polymer Materials in Scratching Process

When scratching a nanogroove on polymer materials using TBN method, the depth of the
nanogroove will decrease after scratching due to the elastic recovery of the polymer materials.
This phenomenon happens owing to the unique property of polymer materials, which is known
as high viscoelastic. Thus, it is necessary to study the mechanism of elastic recovery in scratching
polymer materials by the TBN method. However, most scholars were focusing on the elastic recovery
of nanodots fabricated on polymer materials by the nanoindentation method [75], and the study of
elastic recovery in nanogroove is relatively less. Geng et al. [76] established a constitutive model to
estimate the elastic recovery of a nanogroove after scratching. The schematic diagram of this method is
shown in Figure 2. Figure 2a is the modified AFM system used in this approach and Figure 2b is the
position of the tip when using a light normal load to scratch the PC bulk sample. The elastic recovery
of the sample was obtained by comparing the machined depth and the measured depth. The machined
depth in this work was achieved by observing the vertical signal change of the piezoceramic tube (PZT)
in a modified AFM system using an oscilloscope. The measured depth was achieved by imaging the
groove using AFM tapping mode. The verified experiment was conducted on a PC bulk sample, which
demonstrated the feasibility of this method in estimating the elastic recovery of polymer materials.
Moreover, the results also presented that the sample elastic recovery was affected by the speed of
scratching, while almost no influence was caused by the applied normal load. This is a simple and
easy method to estimate the elastic recovery of polymer materials in nanoscale. Using this method, we
can achieve desired nanogrooves in high accuracy by predicting the elastic recovery of the sample
in advance. In spite of this, more theoretical study is required so as to fabricate nanostructures with
higher accuracy and make the dimension of the machined structures controllable.
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3. Nanopatterns Fabricated by the Tip-Based Nanomachining/Nanoscratching (TBN) Approach

Nanodots, nanogroove/channel, bundles and 2D/3D nanostructures are widely used in high
density storage, nanofluidic, nano-electronics and nano-optics. Moreover, polymer material exhibits a
huge potential application for their relative low-cost, better translucency and excellent biocompatibility.
Thus, many scholars proposed various methods to fabricate nanopatterns on polymer materials.
The following sections will present the status of fabricating nanopatterns on polymer materials using
the TBN method.

3.1. Fabrication of Nanodots/Pits

Nowadays, nanodot arrays are widely used in the preparation of quantum dots, nano-optics
sensors and surface-enhanced Raman scattering (SERS) substrate. Nanopits exhibit huge potential
application in data storage.

There are several nanomanufacturing methods to fabricate nanodot arrays. Up to now, TBN method
have been proved to be a feasible method to fabricate nanodots arrays [77]. There are two of the main
methods based on the TBN technique utilized to fabricate nanodots arrays. One of them is the simple
nanoindentation process [75,78,79]. In this method, the size of nanodot depends on the radius of tip,
the normal load and the properties of the polymer materials. A high aspect ratio of nanodot less
than 100 nm can be obtained by controlling a small normal load using a sharp tip to penetrate into
the polymer materials. Another method is scratching on polymer materials. By using this method,
the dimension of the nanodot is mainly controlled by the pitch of the nanoscratching process, the
properties of the polymer materials and the normal load. Sun et al. [80] conducted a single zigzag
scan on polycarbonate (PC) surface to fabricate bundles structure. In their study, the influences of
the scan angle, normal load and feed between two scratching trajectories on the bundle structures
obtained were studied. Based on the formed bundles, some scholars change the scan angle to make a
second-scan on the pre-formed bundles structures. Nanodots can be formed by the overlapping of the
bundles obtained during the first- and second-scan. As shown in Figure 3, this process includes two
steps. First, a diamond tip was used to make a zigzag trace scan on PC sample surface to form bundles
based on friction-induced theory. This process was called first-scan. The scratching angle in first-scan
were set to 90◦ and 0◦ to form the first-scan bundles. Then, the scratching angle in a second scan angle
were set to 0◦and 45◦ to form the second-scan bundles. The bundles formed during the two-scan
process will be overlapped to achieve nanodot arrays. By changing the relative angle between the
first and second-scan, different oriented bundles can be easily achieved. Moreover, by controlling the
feed between two scratching trajectories, various dimensions of nanodots can be achieved easily. In
conclusion, this method based on friction-induced bundle overlapping provides a simple, relatively
low cost and feasible method to fabricate nanodots arrays on polymer materials. But there is also a
shortcoming exists in the above method, such as the poor uniform in the dimension of nanodots and
low density of nanodots arrays, which may have a negative effect on applications of nano-optics and
SERS measurement. In order to improve the density of the nanodot arrays, He et al. [81] proposed
a dynamic plowing lithography (DPL) method to fabricate nanodot arrays on PMMA thin films by
overlapping of two machined nanogrooves as shown in Figure 4. First, a nanogrooves array with
a given separation distance is fabricated. Second, another nanogrooves array is scratched on the
same area of the first-scratch. In this process, the scratching angle must be changed so that the two
nanogrooves arrays can be overlapped to form nanodot arrays. Finally, a third scratch can also be
conducted so as to form higher-density nanodots arrays. Checkerboard nanodots arrays with a density
of 1.3 × 109 dots/mm2 and diamond-shaped nanodots with density of 9.6 × 108 dots/mm2 have been
obtained by a two-step DPL method. In addition, a three-step DPL method is utilized to fabricate
hexagonal nanodots with a density of 1.9 × 109 dots/mm2. This indicates that this method based on
the DPL technique provide a possibility for fabricating higher density of nanodot arrays on polymer
materials, which has the potential in preparation of nano-optics sensors and SERS substrate.
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Figure 4. Nanodot arrays fabricated by dynamic plowing lithography (DPL) method: (a) checkerboard
nanodot arrays fabricated by two-step scanning at 30◦ and 120◦. (b) Diamond-shaped nanodot arrays
fabricated by two-step scanning at 90◦ and 150◦. (c) Hexagonal nanodot arrays fabricated by three-step
scanning at 30◦, 90◦ and 150◦ [81].
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As for fabrication of nanopits, the approach widely used now is using a tip to indent into the
sample with a relatively large normal load so as to achieve an ordered nanopit with given depth.
In this method, the dimension of the nanopit is determined by the applied normal force, the geometry
of the tip and the properties of the polymer material. In particular, the depth of the nanopit is smaller
than that predicted by the theoretical model due to the elastic recovery of the material after scratching.
Many scholars have obtained nanopits using the TBN method and studied the influence of scratching
parameters on achieved nanopits. He et al. [82] used the DPL method, which is based on the tapping
mode of AFM to scratch nanopits on PMMA thin films with high efficiency. In this study, a critical
scratching velocity was observed to form nanopit. Only when the scratching velocity larger than
100 µm/s, can nanopit be achieved, or a nanogroove be scratched. This method provides an approach to
scratch nanopits with a high throughput of 4800–5800 pits per second, as shown in Figure 5. Moreover,
in the following study of He et al. [83], they found that the mean molecular weight and driving
amplitude almost had no effect on nanopits scratched on PMMA thin film. Three kinds of polymer
film including PMMA, PC and polystyrene (PS) were used to study the influence of material on the
critical value of scratching velocity for the transformation from nanogroove to nanopit. And the result
showed that the critical velocity of PC and PS is about 20–30 µm/s, which is much smaller than that of
PMMA due to the different elastic moduli of three kinds of thin film. This study gives out a relatively
accurate critical velocity value of scratching nanopits in PMMA, PS and PC thin films, which makes
data storage on these films possible.
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3.2. Fabrication of Nanogroove/Channel

The polymer materials are widely used in the biological detection owing to its good biocompatibility
and can be used in the preparation of nanofluidic chips. The nanogroove is a key component in
nanofluidic chips, known as nanochannel, the dimension of which determines the application of the
nanofluidic chips directly. Therefore, in order to meet the requirement in the field of nanofluidics,
many scholars have proposed several approaches to obtain nanochannel structures. Scratching on
polymer materials exhibits an advantage of nanoscale machining accuracy using the TBN method. Thus,
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fabricating on polymer materials using the TBN method is becoming a hot research topic. The existing
nanogroove scratching methods by the TBN approach can be divided into three kinds of approach
according to different fabrication principles, including single-pass scratching, multi-pass scratching
and nanomilling.

3.2.1. Single/Multi-Pass Scratching Approach

First, for single-pass scratching approach, the tip scratches on sample with a given normal load
only once. Therefore, the aspect ratio of nanogroove is determined by the geometry of the tip, and the
depth depends on the applied normal force. Meanwhile, the maximum length of the nanogroove is
determined by the maximum moving range of the AFM stage. Thus, a larger depth can only be achieved
by increasing the applied normal load in single-pass scratching approach. Although this method
provides a simple and easy approach to achieve a desired nanogroove, lots of shortcomings still exist
resulting in the application of the nanogroove becoming a challenge. First, the range of the X-Y stage
for a commercial AFM system is limited by several tens of micrometers. In order to solve this problem,
Hu et al. [79] used a large-scale high-precision stage to replace the original stage in the commercial
AFM system, as shown in Figure 6. The maximum moving range of the X-Y stage is 100 mm × 100 mm.
Using this modified AFM system, the nanochannel with a length of several hundred micrometers or
even millimeter scale can be easily fabricated by the TBN method. Nanogrooves arrays with dimension
of 1 mm × 0.5 mm was fabricated by the TBN method using this system. Another problem is the
depth of the nanogroove is determined by the applied normal force, so a larger depth can only be
achieved by a larger normal load. Under this condition, extreme tip wear will be observed. Thus,
how to obtain a nanogroove with a large machined depth and less tip wear is another limitation for
the TBN method. In addition, the dimensions of nanogrooves are limited by the size of the tip and
the normal load, thus, it is difficult to achieve a nanogroove with an arbitrary aspect ratio using the
TBN method. To rise above the limitation, Geng et al. [84] compared the nanogrooves machined
on the PMMA thin film with different thicknesses by single-pass, multi-pass and vibration-assisted
scratching method. The multi-pass scratching method was used to enlarge the size of the machined
nanogroove, but an extreme tip wear was observed during the scratching process. Considering tip
wear, the multi-pass method is not the best way to scratch a wider and deeper nanogroove compared
to the vibration-assisted single-pass scratching method. For results obtained by Geng et al. [84], the
vibration-assisted method has been proved as a feasible approach to achieve a deeper and wider
nanogroove rising the limitation from the value normal load applied by the tip. Thus, this method
exhibits an outstanding capacity in reducing the tip wear occurring in the machining process.
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3.2.2. Nanomilling Method

Nanomilling was known as a rotation tip-based nanoscratching method, which is first proposed by
Gozen et al. [85]. During nanomilling process, the tip is regarded as a small cutting tool and conducts
a rotary motion just like that in traditional milling process in macroscale, as shown in Figure 7a.
Gozen et al. [85] performed nanomilling fabrication on a PMMA bulk sample. A modified AFM system
using three piezoelectric actuators to control the rotary motion of the tip was built up. Based on
the established nanomilling system, desired nanochannels with long curled chips were fabricated,
and the scanning electron microscope (SEM) images of the machined nanochannels were shown in
Figure 7b. Compared with the traditional TBN method, nanomilling exhibits an outstanding feasibility
in machining the nanochannel with arbitrary aspect ratio, improving the accuracy of the fabricated
nanostructure and the materials removal state is mainly in cutting mode, which shows huge potential
in fabricating complex nanostructure with good machining quality in a controllable way. However,
something defective also exists in that the fabrication efficiency needs to be improved furthermore
when scratching more complex structures, and the tip wear during the scratching also cannot be
neglected. A similar work was conducted by Wang et al. [54], when the original stage of commercial
AFM system was replaced by a piezoelectric actuator to generate rotational relative motion between
the tip and the sample. In this work, nanochannels with desired dimension were obtained in an easy
and controllable way, which can meet the demand of preparation of nanofluidic chips.
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(b) the scanning electron micrographs (SEMs) of nanochannels fabricated by nanomilling [85].

Li et al. [86] also used the nanomilling approach to scratch on a PMMA bulk sample. In their
work, they focused on how to reduce the pile-up accumulated on both sides of nanochannels so as
to be more suitable for the preparation of the nanofluidic chip. A two-step scratch was observed to
enlarge the depth of the nanochannel. The outer profile of nanostructure was fabricated during the
first half cycle process and the inner profile was obtained in the second half-cycle scratching process.
As shown in Figure 8, the polymer material was removed as chips but not pile-up, and the formed
chips could be cleaned up using a tip to scan on the scratch-region in the contact mode. Therefore,
nanochannels with small pile-up on both sides were obtained easily. This indicates that this method
shows a huge potential ability in reducing the height of the pile-up accumulating on both sides of
the nanochannel compared to the single-pass scratching method. Besides, nanochannel with variable
widths was fabricated using nanomilling method on PMMA bulk sample by controlling the rotation
radius of the tip [87]. The amplitude of the rotation of the tip varies from 0 to 320 nm during the
scratching process, and the machined result is shown in Figure 9.
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Figure 9. Nanochannel with variable width fabricated by nanomilling approach: (a) the schematic
diagram of variable width fabrication method, (b) the AFM image of nanochannel, (c) the cross-section
views of section A, B, C, D and E [87].

Following the study of Gozen [85], in order to satisfy the demand of achieving nanochannels with
no pile-up so as to be applied in the preparation of fluidic chips, Geng et al. [88] studied the influence
of feed direction on the formation of the pile-up on both sides of nanochannel. Three typical feed
directions were chosen to fabricate nanochannels on PMMA bulk sample by nanomilling approach
under the same machining parameters. As shown in Figure 10, chips could only be observed when
scratching with the feed along the positive direction of the y-axis, while, using the other two feed
directions, pile-up formed on both sides of the nanochannel. Moreover, the chips can be cleaned up by
scanning the scratch-region using a tip in the contact mode. Therefore, only the nanochannels obtained
with the feed along the positive direction of y-axis were fit for preparing the nanofluidic chips.
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Figure 10. The influence of three feed directions on the formation of pile-up fabricating on PMMA bulk
sample: (a) along positive direction of y-axis, (b) along positive direction of x-axis, (c) along negative
direction of x-axis, the opposite direction of (b), (d), (e), (f) the AFM image of nanochannels fabrication
along the directions of (a), (b) and (c) [88].

In order to improve the scratching efficiency of the nanomilling process, Geng et al. [89] built up a
modified AFM system based on a piezoelectric actuator to improve the scratching velocity, which can
also be used to control the width of the scratched groove, the schematic diagram is shown in Figure 11.
In this method, the piezoelectric actuator was used to control the motion of the sample. A scratching
velocity of 5 m/min could be achieved when a frequency of 40 kHz was provided by the actuator,
which is 5 times as much as that of the work conducted by Gozen [85]. This approach exhibits an
ability to improve the throughput of scratching the PMMA sample by the TBN method, which could
be considered as a potential approach used in the area of producing NEMS devices. In their study,
the influence of three typical feed directions, scratching velocity and frequency of actuator on the
depth of achieved groove and the formation of the chip were also studied in detail. But there is an
unknown issue in that the limitation of cutting speed can be achieved by this proposed method is not
clear enough and further study needs to be conducted.
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method and reciprocating motion, (b) nanogrooves obtained by the approach of (a) [89].

Besides the machining efficiency, the tip wear is also a crucial issue in the nanomilling process.
Further improving on reducing the wear of the tip is still needed to be studied. Zhang et al. [52,55,90]
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first introduced the ultrasonic frequency vibration into nanoscale fabrication based on the TBN method.
As shown in Figure 12, the scholars use three piezoelectric actuators to control the relative motion
between the tip and the PMMA thin-film sample. A relatively high ultrasonic frequency with 2 MHz is
applied to the piezoelectric actuator in the z-axis direction to generate an ultrasonic force between the
tip and the sample surface to enlarge the penetration depth of the tip. In addition, a frequency circular
vibration with 10 kHz is applied to the XY-plane stage to regulate the width of the nanostructure and
increase the speed of fabrication so as to improve the nanoscratching efficiency. Compared with the
traditional nanomilling process, the combination of nanomilling and an ultrasonic vibration-assisted
approach can obtain a wider and deeper nanogroove under an order of nanonewton normal load,
which is much smaller than that of commonly used in the nanomilling process with several tens of
micronewtons. The tip wear can be reduced accordingly. In this method, nanogrooves with various
dimensions ranging from several tens to hundreds of nanometers can be achieved easily, and the speed
of fabrication can reach tens of microns per second. Moreover, the combination of tip and cantilever
is regarded as a weak stiffness system, which is similar to the traditional macroscopic process of
ultrasonic vibration-assisted machining [91].
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3.3. Fabrication of 3D Nanostructure

Although the TBN method has been used for nanomachining nanostructures for many years,
the fabrication of 3D nanostructure in nanoscale still faces great challenges, especially a complex 3D
nanostructure [61,92]. The nanomachining mechanism based on the TBN method can be summarized
to two main ways, including the remove of the material and the deformation of the material.
The former is suitable for metallic and semiconductor materials, which can generate chips during
the nanoscratching process. However, the latter is mainly fit for polymer materials owing to its high
viscoelasticity. Therefore, without formation of any cutting chips, the polymer materials are squeezed
to deformation by the tip to form the 3D nanostructure, which is called the ploughing process. A typical
3D nanostructure is well known as bundles, which was first observed by Leung et al. on the surface
of PS in 1992 [93], exhibiting huge potential in the area of optical phase grating, diffraction grating
of spectrometer and other optical elements. It is a friction-induced periodic nanopattern that forms
perpendicular to the scanning direction when using a tip with a stiff cantilever to scratch on polymer
materials. The formation mechanism of bundles is still unknown clearly. Other 3D nanostructures like
stair-like pattern [49], logo [2], facial profile [2] and so on have been achieved in the past few years, but
have not been promoted to the application fields.

In order to reduce the tip wear during the scratching process and enlarge the size of the machined
nanostructures, other energies including ultrasonic and thermal energy were integrated with the TBN
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method to fabricate 3D nanostructures. Zhang et al. [52] first introduced the ultrasonic vibration-assisted
approach into the TBN method and have achieved various complex 3D nanostructures ranging from
the logo of the lab, the figure of Steve Jobs to stair-like patterns. After that, some studies have been
conducted by Deng [49], which follow the work of Zhang et al. in 2012 [52]. In their studies, two
nanoscratching methods are used to fabricate 3D nanostructures, including removing material in a
layer-by-layer strategy and fabricating according to every scratching path with a pre-set normal load.
The ultrasonic vibration-assisted nanoscratching experiments are conducted on a PMMA thin film,
as shown in Figure 13, a 6 layers stair-like nanostructure was obtained by using the layer-by-layer
nanoscratching method and it only took a few minutes to machine the nanostructure owing to a
high frequency of the XY-plane vibration stage. As shown in Figure 13, a concave cycle in a square
and a convex cycle in a square are also fabricated on the PMMA film by the nanoscratching method,
and each scratching pass with a given normal load relies on the pre-set grey-scale image. These two
nanostructures can also be achieved in a few minutes, which indicates that the vibration-assisted
method is a high-efficiency approach.
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Figure 13. Stair-like 3D nanostructure, a concave cycle in a square and a convex cycle in a square
were fabricated by ultrasonic vibration-assisted approach based on the TBN method: (a) schematic
of layer-by-layer based 3D fabrication process of 6 layers nanostructure, (b) atomic force microscope
(AFM) image of 6 layers nanostructure, (c) 6 layers nanostructure in a 3D view, (d) cross sectional
profile, (e) cross section view of every layer, (f) bitmap (BMP) image of a concave circle in a square and
the AFM images of concave circle in a square and convex circle in a square [49].
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Moreover, more complex 3D nanostructures like logo of a lab and facial image were fabricated
by Deng et al. [90]. As shown in Figure 14, using an ultrasonic vibration-assisted system similar to
previous used [49], 3D nanostructure of letters “ise”, “NSF” logo and 3D view of Jobs′ profile were
successfully fabricated on a PMMA thin film by a constant-height mode of the AFM system, which
is the main difference compared to previous studies. The operation can be achieved by controlling
the absolute height of Z-scanner of AFM. Using this method, desired complex nanostructures with
high-precision can be easily obtained by regulating the relative position between the tip and the
sample surface.
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Figure 14. “ise” logo, pyramid 3D structure and the profile of Steve Jobs were fabricated by the
ultrasonic vibration-assisted approach based on the TBN method: (a) 3D nanostructure of letters “ise”,
(b) 3D view of “ise”, (c) bitmap images of “ise”, (d) bitmap images of pyramid, (e) fabricated pyramid
nanostructure, (f) the image of “A-A” cross section, (g) the image of “B-B” cross section, (h) bitmap
images of Jobs’ profile, (i) the image of “C–C” cross section, (j) 3D nanostructure of Job’s profile and (k)
3D view of Jobs’ profile [90].

The above studies focused on how to improve the efficiency and precision of the nanostructures
based on the vibration-assisted method, but few scholars pay attention to the processing mechanism
by the vibration-assisted method. Kong et al. [51] established a dynamic nanofabrication force model
to predict the nanoscratching force during the fabrication process so as to obtain a high-precision
nanostructure and improve the efficiency of machining. In this model, the engagement between the tip
and the sample instantaneously was taken into account in each single rotation cycle of the tip. As a
result, an experimental dynamic fabrication force model was established based on a discrete voxel
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method, and the material remove rate was expressed as a function of nanoscratching parameters.
Nanoscratching experiments have been performed on a PMMA thin film to verify the prediction
model of the dynamic nanoscratching force. Results showed that the experimental machining force
agrees well with the theoretical force. This work first gives a theoretical model to predict the dynamic
nanoscratching force at every moment when using the vibration-assisted method, which provides a
possibility to calculate the machining force in advance so as to control the preset parameters used in
scratching and obtain nanostructures with higher precision.

In addition, thermal energy was also integrated with TBN method due to the heat-sensitivity of
the polymer materials. As shown in Figure 15, a 3D sculpture of the Matterhorn was fabricated using
thermal tip based on layer-by layer method on phenolic compound resist by controlling the combination
of heat and force. As well, the letters of IBM were fabricated for the purpose of display rather than
application by David et al. [94]. This method exhibits huge potential in fabricating 3D nanostructures,
especially on high heat-sensitivity polymer materials. Moreover, this method combines the mechanical
processing and thermal-fabrication method together, which is known as thermomechanical coupling
machining, and thermal energy plays an important role during the machining process. Therefore,
the dimension not only depends on the geometry of the tip but also the applied normal load, thus,
higher accuracy can be obtained easily compared to nanostructures fabricated by the tip without
thermal energy. Besides, it only takes several microseconds to achieve 3D nanostructures with a
dimension of several micrometers, which indicates the higher efficiency of this technique.
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To sum up, although lots of 3D nanostructures have been achieved on the polymer materials
using the TBN method, it is still a challenge to machine complex 3D nanostructures and a further
study needs to be conducted in the future. Moreover, most 3D nanostructures existing now are only
for the purpose of display rather than application. As for applying 3D nanostructures to industrial
production, there is still a long way to go.
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4. Applications

Some polymer films, such as PMMA, exhibit a potential application in nanopattern transferring
techniques owing to good etching resistance. The good machinability of some polymer thin-films leads
to lots of scholars considering using the TBN method to create nanopatterns on these films. The existing
nanostructures fabricated on polymer materials by the TBN method, including nanodot, nanogroove
and 3D structures, show a potential application in the fields of Raman detection, nanofluidics and
nanosensors. In this section, the applications of the TBN approach can be divided into three parts.
First, based on the top-down material removal process TBN method, the typical applications are
nanopatterns transferring to hard substrate, data storage on polymer sample, and preparation of
nanofluidic chips. Second, based on the mechanism of adding material after the scratching process, the
TBN method is integrated with the lift-off process to fabricate nanowires. Third, other applications
based the TBN method are discussed as well. The applications of scratching on polymers by the TBN
method are summarized into several points as shown in Table 1.

Table 1. The applications of scratching on polymers by the TBN method.

Theory Polymer Application Refs.

polymethyl methacrylate
(PMMA) film Etching resist [52]

Remove material polycarbonate (PC) bulk sample Preparation of nanofluidic chips [54]
polymethyl methacrylate

(PMMA) film Data storage [83]

Add material
polymethyl methacrylate

(PMMA) film Sacrificial layer for lift-off process [53,78,95]

polystyrene (PS) film Sacrificial layer for lift-off process [96]

Theothers polycarbonate (PC) bulk sample Resist for AFM (atomic force
microscope) scratching [97]

4.1. Applications Based on Material Removal Theory by TBN Method

Generally speaking, a classical application of the polymer thin film is employed as a resist to
be scratched using the TBN method to obtain nanopatterns on hard materials by following wet or
dry etching process, such as silicon and silicon dioxide. Zhang et al. [52] did some work based on
the above idea. As shown in Figure 16, the process can be mainly divided into eight steps. First,
the silicon substrate was cleaned in acetone and alcohol to keep clean. Then, a layer of aluminum
(Al) was deposited onto silicon substrate by a thermal evaporator and later a layer of PMMA film
was spin-coated on the Al layer. In the fourth step, desired nanopatterns were fabricated by the TBN
method on the PMMA thin film, which was then etched in O2 plasma till the Al layer was exposed.
In the sixth step, the Al layer was etched to generate a mask for the etching of silicon in the following
process. Finally, the reactive ion etching (RIE) method, a dry-etching process, was used to etch silicon
in the atmosphere of CF4 and the desired nanopatterns can be transferred to the silicon substrate
successfully. This method represents the most common application of fabrication on the polymer
materials by the TBN method and has been widely used during the past few years.
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Figure 16. The transfer procedures of nanostructures formed by the TBN method using reactive ion
etching (RIE): (a) starting from cleaned silicon substrate, (b) aluminum deposition on silicon substrate,
(c) polymethyl methacrylate (PMMA) spin-coating on aluminum layer, (d) machining patterns on
PMMA, (e) PMMA etching in O2 plasma till aluminum layer surface is exposed, (f) aluminum etching
to create mask, (g) silicon etching using reactive ion beam etching (RIE), (h) aluminum mask stripping
and sample surface cleaning [52].

Another application of the nanogrooves fabricated by TBN approach is preparation of nanofluidic
chips. Nanochannel, that is, nanogroove on the nanofluidic chips, is a key component, which is
usually utilized to conduct biological detection. Wang et al. [54] first proposed a fabrication method
for nanochannels used in nanofluidic chips by the TBN method, and the details of the preparation
procedures are shown in Figure 17. They used a piezoelectric actuator on the X-Y plane to generate a
vibration of the sample and the relative motion between the tip and the sample is like the traditional
milling process, hence, this method is named nanomilling. As shown in Figure 17, the formation of the
nanofluidic chip can be divided into five main steps. The first step is scratching nanogrooves on PC
bulk sample to generate desired nanochannels. The nanochannels on the PC surface can be used as a
mould for the following procedures. Then, a layer of polydimethylsiloxane (PDMS) was coated on the
PC sample with nanochannels and the layer of PDMS was peeled off after baking on a hot oven at
80 ◦C for 4 h. A PDMS convex mould of the nanochannel called A-PDMS, was achieved shown as
Figure 17b3, the process of which is known as the first-step transfer. In the third step, another layer
of PDMS was coated on A-PDMS, which was peeled off later to form a concave mould, as shown
in Figure 17b6. Finally, the nanochannels were transferred successfully from the PS bulk sample to
PDMS. As a result, the nanochannels scratched by TBN method and the microchannels generated by
lithography were bonded together to form a PDMS nanofluidic chip, which was then used to verify the
change of electric current in microchannels and nanochannels using KCl solution with a concentration
of 1 mM. This work indicates that the nanochannels used in nanofluidic chips can be fabricated easily by
the TBN method compared to the traditional lithography method. However, a shortcoming may exist
that the material accumulation on both sides of the nanogroove may be squeezed into the nanochannel
during the bonding process and may have a negative effect on the flow of liquid in the nanochannels.
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Figure 17. The preparation procedures of nanofluidic chip based on the TBN method: (a1)–(a6) working
steps of microchannel fabrication on a polydimethylsiloxane (PDMS) chip, (a1) silicon sheet used for
lithography substrate, (a2) spin-coating of SU8 photoresist on Si substrate, (a3) exposure of the SU8 layer
to ultraviolet (UV) light, (a4) obtained convex microstructures, (a5) PDMS coating on microchannel
mould, (a6) final PDMS chip with microchannels, (b1)–(b2) working steps of nanochannel fabrication
on a PDMS chip, (b1) AFM tip scratches on polycarbonate (PC) sheet, (b2) obtained nanochannel
mould after scratching, (b3) A-PDMS coating on nanochannel mould, (b4) A-PDMS chip with convex
nanostructures, (b5) regular PDMS coating on A-PDMS mould, (b6) final PDMS chip with nanochannels,
(c) PDMS nanofluidic chip after bonding [54].

In addition, another application proposed by He et al. [83] recently has the potential to be used in
data storage. As shown in Figure 18, several nanopits arrays were fabricated by DPL method on the
surface of the PMMA thin films with various scratching speeds. It can be observed from Figure 18b
that the scratching velocities were set to 200–900 µm/s, the interval was set to 100 µm/s and eight
nanopits arrays with different distances between two adjacent nanopits can be obtained with the
different scratching velocities. These were concave pattern symbols “1” and the flat surface without
nanopit symbols “0”, therefore, 8-bit American Standard Code for Information Interchange (ASCII )
codes of “F, q, h, V” were obtained and those of “v, 3, ?, w ” were also obtained in Figure 18d with the
scratching speeds of 200, 500, 300, 200, 700, 500, 200, 400 µm/s, respectively. This method provides a
simple approach to high-density storage of data on surface of the polymer materials.
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Figure 18. Creating 8-bit American Standard Code for Information Interchange (ASCII) codes by
DPL method scratching on PMMA thin-film using different velocities: (a) schematic of the nanoscale
pits fabrication with various scratching velocity, (b), (c), (d) and (e) morphologies and 3D images of
fabrication results for arrays of pits on polymethyl methacrylate (PMMA) film surface [83].

4.2. Applications Based on Adding Material Theory by TBN Method

For adding material after scratching process, a typical application is using TBN method combining
with the lift-off technique to generate nanowire, which was first proposed by Yu-Ju Chen et al. [78,95]
in 2005 and nanowire with a minimum width of 50 nm was obtained successfully in their work and the
process mainly includes three steps. The first step is spin-coating a PMMA thin film resist with a given
thickness onto silicon dioxide and using a tip to cut through the film with a relatively large normal
load in order to generate ordered nanogrooves. Second, a layer of metallic material, such as Au, Al and
Cu, was deposited onto the PMMA film resist by e-beam evaporation. Finally, the sample was soaked
in acetone solution to remove the PMMA thin-film resist, that is, the lift-off process, then, a nanowire
could be obtained. As a result, nanowire arrays were achieved using the combination of TBN method
and lift-off process, and the width of the nanowire is about 70 nm. In this method, the dimension of
nanowire is determined by that of the nanogroove obtained using TBN method, therefore, the size of the
nanowire is not controllable. However, the advantage is that various kinds of metal nanowire ranging
from Au, Ti to Al can be achieved using this method in a simple and easy way. The nanowire plays
an increasingly important part in nanosensor with the rapid development of NEMS. In the following
study conducted by Lin et al. [78], this method has been demonstrated as a new approach to replace
(EBL) in resolution and efficiency. Based on the above study, a novel method, which combined several
techniques including the TBN approach, lift-off and traditional photolithography, was proposed to
fabricate nanowire with electrodes [53]. As shown in Figure 19, the procedures of fabricating single Au
nanowire were mainly divided into eight steps. Moreover, using this method, a single nanowire with a
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thickness of 20 nm was achieved. In particular, the main difference between the nanowire obtained
by this method and that in the study of 2005 is that two Ti electrodes were formed on both sides
of the Au nanowire, and it could be utilized to conduct chemical sensing. The measurements were
performed on two different molecules, that are octadecanethiol (CH3(CH2)17SH) and dodecanethiol
(CH3(CH2)11-SH, DDT). The schematic diagram of the measurement process is shown in Figure 20,
the mercaptan molecular solution with given concentration was deposited on the nanowire and the
concentration of the solution can be obtained by measuring the change in resistance of nanowire before
and after depositing the solution. Results showed that the resistance of nanowire increased by about
9% when either kind of octadecanethiol was deposited to cover the nanowire with a thickness of 20 nm
completely. This method provides a simple method to detect the concentration of the chemical solution
and more applications of nanowire will be published in the days to come.
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Figure 19. The fabrication procedures of single Au nanowire using the combination of the TBN approach,
lift-off and the photolithography method: (a) polymethyl methacrylate (PMMA) was spin-coated on the
silicon/silicon dioxide substrate, (b) nanogroove was fabricated on the surface of PMMA thin-film by
the tip-based nanomachining/nanoscratching (TBN) method, (c) a layer of metal was deposited above
the PMMA thin-film, (d) metal nanowire was fabricated by lift-off process, (e) a layer of photoresist
was spin-coated on the silicon/silicon dioxide substrate with metal nanowire, (f) the photoresist was
exposed and developed, (g) a layer of metal was deposited above the substrate with metal nanowire
and photoresist, (h) the resist was removed by lift-off process [53].
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Figure 20. The process of detecting the concentration of octadecanethiol molecular solution using
a single Au nanowire: (a) Au nanowire was fabricated on the silicon/silicon dioxide substrate,
(b) self-assembled monolayers (SAMs) were deposited on the silicon/silicon dioxide substrate with Au
nanowire, (c) SAMs chemically bonded to Au nanowire, (d) other SAMs not bonding to the Au nanowire
was cleaned and (e) top-view photograph of a resistance measurement unit using Au nanowire [53].

Moreover, a similar study was conducted by Liu et al. [96] recently, whereby the lift-off process
was integrated with TBN method to fabricate MoS2 thin-film transistor. As shown in Figure 21a,
a multilayer of MoS2 thin film from crystals of molybdenite by repeating peeling was first transferred
to silicon dioxide substrate and then a layer of PS film with a thickness of 40 nm was spin-coated
on MoS2 thin film. In the third step, two pits with a given shape were scratched on the PS film
by the TBN method. Then, a layer of gold with a thickness of 10 nm was deposited on the PS film
with two pits. Finally, the sample was bathed in toluene solution then the PS film layer and gold
layer on PS film were removed from the sample; this process is known as lift-off. As shown in
Figure 21b, a sub-micrometer-dimensional MoS2 thin-film transistor with two Au electrodes was
obtained. This method makes fabricating 2-dimensional materials (2DMs) devices with sub-micrometer
dimension in as easy a fashion as possible, providing an approach to study the size effect on the
fabrication of 2DMs devices, meanwhile, which may be widely used in large-scale industrial production
in the future.
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detailed procedures of preparing transistor, (b) the SEM image of the transisitor and cross-section of
the MoS2 thin-film transistor [96].

4.3. Other Applications by the TBN Method

Another novel application has been discovered by Geng et al. [97] by the TBN method scratching
on a PC bulk sample, which is used to measure the error motions in the axial and radial direction of
a high ultra-precision spindle. When measuring the error motion in the axial direction, the tip was
regarded as a small tool to approach the surface of the PC sample with a light normal force so as to
prevent the plastic deformation of the sample. Then, the spindle rotated to make a circular motion and
the signal change in PZT could be collected; the error motion in the axial direction was then obtained.
When measuring the error motion of the spindle in radial direction, a relatively large normal force,
in the order of micronewton, was applied to the tip so as to penetrate into the sample and scratch
nanogrooves. Then, the spindle rotated to create a 360◦ circular moving and a circular groove was
obtained. By analyzing the depth of the groove and the scratched path, the error motion in the radial
direction could be calculated easily. As a result, 124 and 279 nm were measured for the axial error
motion and radial error motion, respectively, exhibiting a good fit with those provided by the vendor.
This method provides a simple and easy approach in measuring the error motion of an ultra-precision
spindle in a reliable way.
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5. Conclusions

In the past few years, the TBN method has been demonstrated as a powerful approach to fabricate
polymer materials with nanoscale resolution and high precision. In the nanoscratching process, AFM is
kept in a constant-force mode, and the dimensions of the nanostructures are mainly determined by
the tip geometry, tip trajectory and machining properties of the polymer sample. Compared with
the fabrication process of metal using the TBN method, the elastic recovery of the polymer materials
should be considered, making the establishment of a theoretical model for the machining process the
polymer materials more complicated. Therefore, the nanostructures with desired dimensions cannot
be achieved easily as the metal materials. In this paper, the current development situation of the TBN
method on the polymer materials can be summarized into the following aspects:

(1) The theoretical models of scratching on polymer materials using TBN method were summarized,
which take many factors into consideration, including the applied normal load, the scratching velocity,
the geometry of the tip, the elastic recovery of the material and so on. During the fabrication of
polymers, the elastic recovery cannot be ignored owing to high viscoelastic of polymer materials.

(2) The status in the fabrication of nanodots/pits, nanogroove/channel, bundles, 3D nanostructures
on polymer materials using the TBN method was reviewed. Up to now, nanodot arrays with high
density has been successfully fabricated through two main methods by changing the scanning angle
in multi-step scratching, and machining nanopits by the DPL approach. As for the fabrication
of a nanogroove/channel, three main TBN approaches were used, including single-pass scratching,
multi-pass scratching and nanomilling. Bundles, as a special quasi-3D structure, generate perpendicular
to the scanning direction when using a tip with stiff cantilever to scan on the surface of polymer sample
and the formation mechanism of this is still unknown clearly. Moreover, most 3D nanostructures exist
now are only for the purpose of displaying rather than application. As for applying 3D nanostructures
to industrial production, there is still a long way to go.

(3) In this review, the applications exist now of scratching on polymer materials by the TBN
method and the achieved nanostructures were reviewed, mainly including in the fields of nanosensor,
nanofluidic and the transfer of nanopatterns. Among them, the transfer of nanostructures was achieved
by the combination of TBN method and other etching techniques, such as RIE, the lift-off process [98],
EBL and FIB.

Although the nanoscale machining technique has been studied for so many years, large-scale
industrial production has not been realized yet, the case of which is the similar with the TBN method
fabricating on polymer materials. Thus, in order to rise the limitation of itself and achieve industrial
application early, more studies still need to be conducted in the future.

(1) The establishment of theoretical model. The existing models now are just suitable for
scratching nanogrooves using a given tip by the TBN method, but are not appropriate for scratching
other nanostructures, such as nanodot arrays and 3D nanostructures. Therefore, a general model is
required to be established fitting for fabricating various nanostructures under different machining
conditions by TBN method. Moreover, the formation mechanism of bundles has not been understood
clearly up to now. A widely accepted theory is necessary to be studied so as to guide the nanoscratching
of bundles on polymer materials by TBN method in a controllable way.

(2) Study of the mechanism of tip wear. In the process of scratching by the TBN method, the tip
begins to wear from the moment the tip contacts the sample. The tip wear has a large influence on the
machined results, and this point was especially reflected in the scratching process of a nanogroove.
The accuracy and uniformity of the groove cannot be guaranteed because of the extremely tip wear,
especially under a relatively large applied normal load. Therefore, it is necessary to find a new approach
to reduce the tip wear so as to improve the precision of nanostructures as much as possible. But the
mechanism of tip wear is still not very clearly understood. Though some scholars have proposed
some methods to reduce the tip wear during the scratching process, such as using a diamond tip, it is
still short of being used in most experiments due to its high-cost. Moreover, a brand-new method
called the ultrasonic vibration-assisted approach is introduced to TBN method to reduce the tip wear,
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which is a method with high precision and efficiency and is widely used in scratching deeper and
wider nanostructures.

(3) Advance the application of the TBN method. The existing applications of TBN method
scratches on polymer materials ranging from nanosensors, nanofluidics and transfer of nanopatterns,
are almost achieved by the combination of the TBN method and other fabrication methods, such as
the lift-off process [53,78,99–101], lithography and RIE. However, the existing applications remain
unused in industrial engineering owing to its own limitations. A typical example is that the pile-up
accumulating on the both sides of nanogroove fabricated by the TBN method on the polymer materials
may cause a negative effect on the following etching process and the flow of the liquid in nanofluidic
chips. Therefore, other methods should be integrated with the TBN method to generate more
brand-new applications, which may push the TBN method on polymer materials technology toward
industrialization in the near future.
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