Potato Starch Hydrogels Produced by High Hydrostatic Pressure (HHP): A First Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Protocol
2.2.1. Samples Preparation
2.2.2. HHP Treatments
2.2.3. Optical Measurements
2.2.4. Rheological Measurements
Flow Measurement Tests
Frequency Tests
2.2.5. Fourier Transform Infrared Spectroscopy (FT-IR) Measurements
2.2.6. Thermal Properties
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effects of Starch–Water Concentration on Gel Formation and Structural Properties of Potato Starch Suspensions Treated by HHP
3.2. Effects of Particle Size Distribution on Gel Formation and Structural Properties of Potato Starch Suspensions Treated by HHP
3.3. Effects of Combined HHP-Thermal Treatments on Gel Formation, Structural and Mechanical Properties of Potato Starch Suspensions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Biduski, B.; Ferreira da Silva, W.M.; Colussi, R.; El Halal, S.L.-M.; Loong-Tak, L.; Guerra Dias, A.R.; Zavareze, E.R. Starch hydrogels: The influence of the amylose content and gelatinization method. Int. J. Biol. Macromol. 2018, 113, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Mahinroosta, M.; Farsangi, Z.J.; Allahverdi, A.; Shakoori, Z. Hydrogels as intelligent materials: A brief of synthesis, properties and applications. Mater. Today Chem. 2018, 8, 42–45. [Google Scholar] [CrossRef]
- McClements, D.J. Recent progress in hydrogel delivery systems for improving nutraceutical bioavailability. Food Hydrocoll. 2017, 68, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Nieuwenhove, I.V.; Salamon, A.; Adam, S.; Dubruel, P.; Vlierberghe, S.V.; Peters, K. Gelatin-and starch-based hydrogels. Part B: In vitro mesenchymal stem cell behaviour on the hydrogels. Carbohydr. Polym. 2017, 161, 295–305. [Google Scholar] [CrossRef]
- García-Astrain, C.; Avérous, L. Synthesis and evaluation of functional alginate hydrogels based on click chemistry for drug delivery applications. Carbohydr. Polym. 2018, 190, 271–280. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, L.; Xie, F.; Bao, X.; Liu, H.; Ji, Z.; Chen, L. One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chem. Eng. J. 2017, 309, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Wei, W.; Li, J.; Su, T.; Pan, X.; Zuo, G.; Zhang, J.; Dong, W. Design of Salecan-containing semi-IPN hydrogel for amoxicillin delivery. Mater. Sci. Eng. C 2017, 75, 487–494. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. Recent advances in edible polymer based hydrogels as a sustainable alternative to conventional polymers. J. Agric. Food Chem. 2018, 66, 6940–6967. [Google Scholar] [CrossRef]
- Mun, S.; Kim, Y.-R.; McClements, D.J. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chem. 2015, 173, 454–461. [Google Scholar] [CrossRef]
- Caló, E.; Khutoryanskiy, V. Biomedical applications of hydrogels: A review patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef]
- Chan, A.W.; Whitneym, R.A.; Neufeld, R.J. Semisynthesis of a controlled stimuli-responsive alginate hydrogel. Biomacromolecules 2009, 10, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Gattás-Asfura, K.M.; Weisman, E.; Andreopoulos, F.M.; Micic, M.; Muller, B.M.; Sirpal, S.; Pham, S.M.; Leblanc, R. Nitrocinnamate-functionalized gelatin: Synthesis and “smart” hydrogel formation via photo-cross-linking. Biomacromolecules 2005, 6, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, S.; Pen, Y.; Wang, J. The swelling behaviors and network parameters of cationic starch-g-acrylic acid/poly (dimethyl diallyl ammonium chloride) semi-interpenetrating polymer networks hydrogels. J. Appl. Polym. Sci. 2008, 110, 1828–1836. [Google Scholar] [CrossRef]
- Moura, M.J.; Figueiredo, M.M.; Gil, M.H. Rheological study of genipin cross-linked chitosan hydrogels. Biomacromolecules 2007, 8, 3823–3829. [Google Scholar] [CrossRef]
- Yamazaki, S.; Takegawa, A.; Kaneko, Y.; Kadokawa, J.; Yamagata, M.; Ishikawa, M. An Acidic Cellulose-Chitin Hybrid Gel as Novel Electrolyte for an Electric Double Layer Capacitor. Electrochem. Commun. 2009, 11, 68–70. [Google Scholar] [CrossRef]
- Varaprasad, K.; Reddy, N.N.; Kumar, N.M.; Vimala, K.; Ravindra, S.; Raju, K.M. Hydrogel–silver nanoparticle composites: A new generation of antimicrobials. J. Appl. Polym. Sci. 2010, 115, 1199–1207. [Google Scholar] [CrossRef]
- Peng, Z.; Chen, F. Synthesis and properties of lignin-based polyurethane hydrogels. J. Appl. Polym. Sci. 2011, 60, 674–683. [Google Scholar] [CrossRef]
- Chang, C.; Duan, B.; Cai, J.; Zhang, L. Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur. Polym. J. 2010, 46, 92–100. [Google Scholar] [CrossRef]
- Zhou, J.; Chang, C.; Zhang, R.; Zhang, L. Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol. Biosci. 2007, 7, 804–809. [Google Scholar] [CrossRef]
- Ismail, H.; Irani, M.; Ahmad, Z. Starch-based hydrogels: Present status and applications. Int. J. Polym. Mater. Polym. 2013, 62, 411–420. [Google Scholar] [CrossRef]
- Xiao, C. Current advances of chemical and physical starch-based hydrogels. Starch-Starke 2013, 65, 82–88. [Google Scholar] [CrossRef]
- Yoshimura, T.; Yoshimura, R.; Seki, C.; Fujioka, R. Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride. Carbohydr. Polym. 2006, 64, 345–349. [Google Scholar] [CrossRef]
- Xiao, C.; Yang, M. Controlled preparation of physical cross-linked starch-g-PVA hydrogel. Carbohydr. Polym. 2006, 64, 37–40. [Google Scholar] [CrossRef]
- Schirmer, M.; Jekle, M.; Becker, T. Starch gelatinization and its complexity for analysis. Starch-Starke 2015, 67, 30–41. [Google Scholar] [CrossRef]
- Jenkins, P.J.; Donald, A.M. Gelatinisation of starch: Combined SAXS/WAXS/DSC and SANS study. Carbohydr. Res. 1998, 308, 133–147. [Google Scholar] [CrossRef]
- Szepes, A.; Makai, Z.; Blumer, C.; Mader, K.; Kása, P., Jr.; Szabó-Révész, P. Characterization and drug delivery behaviour of starch-based hydrogels prepared via isostatic ultrahigh pressure. Carbohydr. Polym. 2008, 72, 571–578. [Google Scholar] [CrossRef]
- Carlstedt, J.; Wojtasz, J.; Fyhr, P.; Kocherbitov, V. Understanding starch gelatinization: The phase diagram approach. Carbohydr. Polym. 2015, 129, 62–69. [Google Scholar] [CrossRef]
- Xie, F.; Yu, L.; Su, B.; Liu, P.; Wang, J.; Liu, H.; Chen, L. Rheological properties of starches with different amylose/amylopectin ratios. J. Cereal Sci. 2009, 49, 371–377. [Google Scholar] [CrossRef]
- Van Soest, J.J.G.; Tournois, H.; de Wit, D.; Vliegenthart, J.F.G. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr. Res. 1995, 279, 201–214. [Google Scholar] [CrossRef] [Green Version]
- Blaszczak, W.; Bucinski, A.; Gorecki, A. In vitro release of theophylline from starch-based matrices prepared via high hydrostatic pressure treatment and autoclaving. Carbohydr. Polym. 2015, 117, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Fukami, K.; Yamamoto, K. Effect of temperature on gelatinization and retrogradation in high hydrostatic pressure treatment of potato starch–water mixtures. Carbohydr. Polym. 2012, 87, 314–321. [Google Scholar] [CrossRef]
- Balny, C. High pressure and protein oligomeric dissociation. High Press. Res. 2002, 22, 737–741. [Google Scholar] [CrossRef]
- Buckow, R.; Jankowiak, L.; Knorr, D.; Versteeg, C. Pressure-temperature phase diagrams of maize starches with different amylose contents. J. Agric. Food Chem. 2009, 57, 11510–11516. [Google Scholar] [CrossRef] [PubMed]
- Hibi, Y.; Matsumoto, T.; Hagiwara, S. Effect of high pressure on the crystalline structure of various starch granules. Cereal Chem. 1993, 70, 671–676. [Google Scholar]
- Li, W.; Bai, Y.; Moussa, S.A.S.; Zhang, Q.; Shen, Q. Effect of high hydrostatic pressure on physicochemical and structural properties of rice starch. Food Bioprocess Technol. 2012, 5, 2233–2241. [Google Scholar] [CrossRef]
- Yang, Z.; Chaib, S.; Gu, Q.; Hemar, Y. Impact of pressure on physicochemical properties of starch dispersions. Food Hydrocoll. 2017, 68, 164–177. [Google Scholar] [CrossRef]
- Pei-Ling, L.; Xiao-Song, H.; Qun, S. Effect of high hydrostatic pressure on starches: A review. Starch-Stärke 2010, 62, 615–628. [Google Scholar] [CrossRef]
- Bauer, B.A.; Knorr, D. The impact of pressure, temperature and treatment time on starches: Pressure-induced starch gelatinization as pressure time temperature indicator for high hydrostatic pressure processing. J. Food Eng. 2005, 68, 329–334. [Google Scholar] [CrossRef]
- Stute, R.; Heilbronn; Klingler, R.W.; Boguslawski, S.; Eshtiaghi, M.N.; Knorr, D. Effects of high pressures treatment on starches. Starch-Stärke 1996, 12, 399–408. [Google Scholar] [CrossRef]
- Katopo, H.; Song, Y.; Jane, J. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starches. Carbohydr. Polym. 2002, 47, 233–244. [Google Scholar] [CrossRef]
- Buckow, R.; Heinz, V.; Knorr, D. High pressure phase transition kinetics of maize starch. J. Food Eng. 2007, 81, 469–475. [Google Scholar] [CrossRef]
- Oh, H.E.; Pinder, D.N.; Hemar, Y.; Anema, S.G.; Wong, M. Effect of high-pressure treatment on various starch-in-water suspensions. Food Hydrocoll. 2008, 22, 150–155. [Google Scholar] [CrossRef]
- Li, W.; Tian, X.; Liu, L.; Wang, P.; Wu, G.; Zheng, J.; Ouyang, S.; Luo, Q.; Zhang, G. High pressure induced gelatinization of red azuki bean starch and its effects on starch physicochemical and structural properties. Food Hydrocoll. 2015, 45, 132–139. [Google Scholar] [CrossRef]
- Kawai, K.; Fukami, K.; Yamamoto, K. State diagram of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydr. Polym. 2007, 67, 530–535. [Google Scholar] [CrossRef]
- Kawai, K.; Fukami, K.; Yamamoto, K. Effects of treatment pressure, holding time, and starch content on gelatinization and retrogradation properties of potato starch–water mixtures treated with high hydrostatic pressure. Carbohydr. Polym. 2007, 69, 590–596. [Google Scholar] [CrossRef]
- Vasanthan, T.; Bergthaller, W.; Driedger, D.; Yeung, J.; Sporns, P. Starch from Alberta potatoes: Wet-isolation and some physicochemical properties. Food Res. Int. 1999, 32, 355–365. [Google Scholar] [CrossRef]
- Muhr, A.H.; Wetton, R.E.; Blanshard, J.M.V. Effect of hydrostatic pressure on starch gelatinisation, as determined by DTA. Carbohydr. Polym. 1982, 2, 91–102. [Google Scholar] [CrossRef]
- Maresca, P.; Ferrari, G. Modeling of the microbial inactivation by high hydrostatic pressure freezing. Food Control 2017, 73, 8–17. [Google Scholar] [CrossRef]
- Rubens, P.; Snauwaert, J.; Heremans, K.; Stute, R. In situ observation of pressure-induced gelation of starches studied with FTIR in the diamond anvil cell. Carbohydr. Polym. 1999, 39, 231–235. [Google Scholar] [CrossRef]
- Blaszczak, W.; Fornal, J.; Kiseleva, V.I.; Yuryev, V.P.; Sergeev, A.I.; Sadowska, J. Effect of high pressure on thermal, structural and osmotic properties of waxy maize and hylon VII starch blends. Carbohydr. Polym. 2007, 68, 387–396. [Google Scholar] [CrossRef]
- Blaszczak, W.; Valverde, S.; Fornal, J. Effect of high pressure on the structure of potato starch. Carbohydr. Polym. 2005, 59, 377–383. [Google Scholar] [CrossRef]
- Larrea-Wachtendorff, D.; Tabilo-Munizaga, G.; Moreno-Osorio, L.; Villalobos-Carvajal, R.; Pérez-Won, M. Protein changes caused by high hydrostatic pressure (HHP): A study using differential scanning calorimetry (DSC) and Fourier transform Infrared (FTIR) spectroscopy. Food Eng. Rev. 2015, 7, 222–230. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DCS study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Flores-Morales, A.; Jimenez-Estrada, M.; Mora-Escobedo, R. Determination of the structural changes by FT-IR, Raman, and CP/MAS13C NMR spectroscopy on retrograded starch of maize tortillas. Carbohydr. Polym. 2012, 87, 61–68. [Google Scholar] [CrossRef]
- Van Soest, J.J.G.; de Wit, D.; Tournois, H. Retrogradation of potato starch as studied by Fourier transform infrared spectroscopy. Starch-Stärke 1994, 12, 453–457. [Google Scholar] [CrossRef]
- Wilson, R.H.; Goodfellow, B.J.; Belton, P.S. Fourier transform infrared spectroscopy for the study of food biopolymers. Food Hydrocoll. 1988, 2, 169–178. [Google Scholar] [CrossRef]
- Lizuka, K.; Aishima, T. Starch gelation process observed by FT-IR/ATR spectrometry with multivariate data analysis. J. Food Sci. 1999, 64, 653–658. [Google Scholar]
- Ahmed, J.; Thomas, L.; Arfat, Y.A.; Joseph, A. Rheological, structural and functional properties of high-pressure treated quinoa starch in dispersions. Carbohydr. Polym 2018, 197, 649–657. [Google Scholar] [CrossRef]
- Waterschoot, J.; Gomand, S.V.; Delcour, J.A. Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocoll. 2016, 52, 69–77. [Google Scholar] [CrossRef]
- Vasanthan, T.; Bhatty, R.S. Physicochemical properties of small- and large-granules starches of waxy, regular and high-amylose barleys. Cereal Chem. 1996, 73, 199–207. [Google Scholar]
- Zeng, J.; Gao, H.; Li, G. Functional properties of wheat starch with different particle size distribution. J. Sci. Food Agric. 2014, 94, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Douzals, J.; Marechal, P.; Coquille, J.; Gervais, P. Microscopic study of starch gelatinization under high hydrostatic pressure. J. Agric. Food Chem. 1996, 44, 1403–1408. [Google Scholar] [CrossRef]
- Jiang, B.; Li, W.; Shen, Q.; Hu, X.; Wu, J. Effects of High Hydrostatic Pressure on Rheological Properties of Rice Starch. Int. J. Food Prop. 2015, 18, 1334–1344. [Google Scholar] [CrossRef]
- Nurul, I.M.; Azemi, B.M.N.M.; Manan, D.M.A. Rheological behaviour of sago (metroxylon sagu) starch paste. Food Chem. 1999, 64, 501–505. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Jensen, C.T.B.; Kristensen, P.G. Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem. Eng. J. 1998, 70, 165–171. [Google Scholar] [CrossRef]
- Nezhad, N.A.K.; Ghanbarzadeh, B.; Dehghannya, J. Flow and viscoelastic behavior of Iranian starch-based low calorie dessert (Palda). Food Meas. 2018, 12, 301–310. [Google Scholar] [CrossRef]
- Torres, M.D.; Chenlo, F.; Moreira, R. Rheological Effect of Gelatinisation Using Different Temperature-Time Conditions on Potato Starch Dispersions: Mechanical Characterisation of the Obtained Gels. Food Bioprocess Technol. 2018, 11, 132–140. [Google Scholar] [CrossRef]
- Galkowska, D.; Pycia, K.; Juszczak, L.; Pajak, P. Influence of cassia gum on rheological and textural properties of native potato and corn starch. Starch-Stärke 2014, 66, 1060–1070. [Google Scholar] [CrossRef]
- Douglas, J.F. Weak and Strong gels and the emergence of the amorphous solid state. Gels 2018, 4, 19. [Google Scholar] [CrossRef]
- Lapasin, R. Rheological characterization of hydrogels. In Polysaccharide Hydrogels: Characterization and Biomedical Applications, 1st ed.; Matricardi, P., Alhaique, F., Coviello, T., Eds.; Pan Stanford Publishing Pte. Ltd.: Boca Raton, FL, USA, 2016; pp. 83–138. [Google Scholar]
Starch–Water Concentration | |||
---|---|---|---|
10% w/w | 20% w/w | 30% w/w | |
Samples | Average Granule Size (µm) | ||
Native | 50.9 ± 24.4 a | ||
HHP-treated | 59.9 ± 32.4 Ab | 62.5 ± 20.9 Ab | 56.7 ± 27.1 Aa |
HHP-treated | Swelling % | ||
17.7 | 22.8 | 11.4 | |
% of Gelatinization | |||
18.5 ± 8.2 A | 16.6 ± 7.5 A | 12.6 ± 6.9 A | |
WHC | |||
70.1 ± 2.3 A | 71.2 ± 2.6 A | 48.2 ± 6.3 B | |
% of Structured Part in the Sample | |||
33.5 ± 2.6 B | 69.9 ± 6.3 A | 58.3 ± 7.1 A |
Mean Size | |||
---|---|---|---|
<25 µm | 50 µm | Unsieved | |
Samples | Average Granule Size (µm) | ||
Native | 28.0 ± 8.6 Cb | 70.0 ± 6.3 Ab | 50.9 ± 24.4 Bb |
HHP-treated | 48.9 ± 14.0 Ca | 80.4 ± 13.2 Aa | 62.5 ± 20.9 Ba |
HHP-treated | Swelling % | ||
74.6 | 14.9 | 22.8 | |
% of Gelatinization | |||
30.2 ± 4.3 A | 13.8 ± 0.8 B | 16.6 ± 7.5 B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Larrea-Wachtendorff, D.; Tabilo-Munizaga, G.; Ferrari, G. Potato Starch Hydrogels Produced by High Hydrostatic Pressure (HHP): A First Approach. Polymers 2019, 11, 1673. https://doi.org/10.3390/polym11101673
Larrea-Wachtendorff D, Tabilo-Munizaga G, Ferrari G. Potato Starch Hydrogels Produced by High Hydrostatic Pressure (HHP): A First Approach. Polymers. 2019; 11(10):1673. https://doi.org/10.3390/polym11101673
Chicago/Turabian StyleLarrea-Wachtendorff, Dominique, Gipsy Tabilo-Munizaga, and Giovanna Ferrari. 2019. "Potato Starch Hydrogels Produced by High Hydrostatic Pressure (HHP): A First Approach" Polymers 11, no. 10: 1673. https://doi.org/10.3390/polym11101673
APA StyleLarrea-Wachtendorff, D., Tabilo-Munizaga, G., & Ferrari, G. (2019). Potato Starch Hydrogels Produced by High Hydrostatic Pressure (HHP): A First Approach. Polymers, 11(10), 1673. https://doi.org/10.3390/polym11101673