Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Pharmaceutical Compounds as Model Pollutants
2.3. Synthesis of Grafted Chitosan Adsorbents
2.3.1. Chitosan Grafted with Succinic Anhydride (CsSUC)
2.3.2. Chitosan Grafted with Maleic Anhydride (CsMAL)
2.3.3. Chitosan Grafted with Itaconic Acid (CsITA)
2.3.4. Chitosan Grafted with Trans-Aconitic Acid (CsTACON)
2.3.5. Cross-Linking of Chitosan Derivatives
2.4. Characterization Techniques
2.5. Adsorption Experimental Design
2.5.1. Single-Component DCF Solution
2.5.2. Mixtures
2.6. Desorption Experimental Design
2.7. Chromatographic Analysis
2.8. Error Analysis
3. Results and Discussion
3.1. Characterizations
3.2. Adsorption Evaluation
3.2.1. Effect of pH
3.2.2. Effect of Initial Drug Concentration and Temperature
3.2.3. Effect of Contact Time—Kinetic Modeling
- (i)
- The initial diffusion coefficient D0 increases in the following order: 0.39 × 10−13 m2 s−1 for CsITA, 0.7 × 10−13 m2 s−1 for CsTACON, 0.95 × 10−13 m2 s−1 for CsSUC and 1 × 10−13 m2 s−1 for CsMAL. The coefficient D0 is somewhat smaller for CsITA, increases for CsTACON and further increases from the rest two materials. This coefficient expresses the mobility of solute in the unloaded particle. On the other hand, the coefficient k denotes the (adverse) effect of already adsorbed material on the solute mobility in the particle.
- (ii)
- The values of k are 0 for CsTACON, 0.02 g mg−1 for CsMAL, 0.03 g mg−1 for CsITA and 0.05 g mg−1 for CsSUC. The effect of adsorbed material on solute mobility varies from zero for CsTACON to a maximum for CsSUC. The particular ordering of the material with respect to D0 and k is related to their chemical and spatial structure and to the effect of the adsorbate (DCF) on this structure. The derived adsorption kinetic model can be used for the design of adsorption process (batch or continuous) using the particular adsorbents.
3.2.4. Thermodynamic Evaluation
3.2.5. Adsorption in Mixture
3.3. Desorption
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pham, H.T.M.; Giersberg, M.; Gehrmann, L.; Hettwer, K.; Tuerk, J.; Uhlig, S.; Hanke, G.; Weisswange, P.; Simon, K.; Baronian, K.; et al. The determination of pharmaceuticals in wastewater using a recombinant arxula adeninivorans whole cell biosensor. Sens. Actuators B Chem. 2015, 211, 439–448. [Google Scholar] [CrossRef]
- Vergeynst, L.; Haeck, A.; De Wispelaere, P.; Van Langenhove, H.; Demeestere, K. Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass spectrometry: Method quality assessment and application in a belgian case study. Chemosphere 2015, 119, S2–S8. [Google Scholar] [CrossRef]
- Lambropoulou, D.A.; Nollet, L.M.L. Transformation Products of Emerging Contaminants in the Environment: Analysis, Processes, Occurrence, Effects and Risks; John Wiley & Sons Ltd.: Chichester, UK, 2014. [Google Scholar]
- Luo, Y.; Guo, W.; Ngo, H.H.; Nghiem, L.D.; Hai, F.I.; Zhang, J.; Liang, S.; Wang, X.C. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014, 473–474, 619–641. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-a review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef] [PubMed]
- Evgenidou, E.N.; Konstantinou, I.K.; Lambropoulou, D.A. Occurrence and removal of transformation products of ppcps and illicit drugs in wastewaters: A review. Sci. Total Environ. 2015, 505, 905–926. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, M.; Kosma, C.; Lambropoulou, D. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in central greece. Sci. Total Environ. 2016, 543, 547–569. [Google Scholar] [CrossRef]
- Vieno, N.; Sillanpää, M. Fate of diclofenac in municipal wastewater treatment plant—A review. Environ. Int. 2014, 69, 28–39. [Google Scholar] [CrossRef]
- European Commission. Implementing Decision 2015/495 of 20 March 2015 Establishing a Watch List of Substances for Union-Wide Monitoring in the Field of Water Policy Pursuant to Directive 2008/105/ec and Amending Directive 2000/60/ec; European Commission: Brussels, Belgium, 2015. [Google Scholar]
- Lonappan, L.; Brar, S.K.; Das, R.K.; Verma, M.; Surampalli, R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Int. 2016, 96, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Geißen, S.U.; Gal, C. Carbamazepine and diclofenac: Removal in wastewater treatment plants and occurrence in water bodies. Chemosphere 2008, 73, 1151–1161. [Google Scholar] [CrossRef]
- Dao, T.H.; Tran, T.T.; Nguyen, V.R.; Pham, T.N.M.; Vu, C.M.; Pham, T.D. Removal of antibiotic from aqueous solution using synthesized TiO2 nanoparticles: Characteristics and mechanisms. Environ. Earth Sci. 2018, 77, 359. [Google Scholar] [CrossRef]
- Pham, T.; Bui, T.; Nguyen, V.; Bui, T.; Tran, T.; Phan, Q.; Pham, T.; Hoang, T. Adsorption of polyelectrolyte onto nanosilica synthesized from rice husk: Characteristics, mechanisms, and application for antibiotic removal. Polymers 2018, 10, 220. [Google Scholar] [CrossRef]
- Píšťková, V.; Tasbihi, M.; Vávrová, M.; Štangar, U.L. Photocatalytic degradation of β-blockers by using immobilized titania/silica on glass slides. J. Photochem. Photobiol. A Chem. 2015, 305, 19–28. [Google Scholar] [CrossRef]
- Bensaadi, Z.; Yeddou-Mezenner, N.; Trari, M.; Medjene, F. Kinetic studies of β-blocker photodegradation on TiO2. J. Environ. Chem. Eng. 2014, 2, 1371–1377. [Google Scholar] [CrossRef]
- Veloutsou, S.; Bizani, E.; Fytianos, K. Photo-fenton decomposition of beta-blockers atenolol and metoprolol; study and optimization of system parameters and identification of intermediates. Chemosphere 2014, 107, 180–186. [Google Scholar] [CrossRef]
- Wilde, M.L.; Montipó, S.; Martins, A.F. Degradation of β-blockers in hospital wastewater by means of ozonation and Fe2+/ozonation. Water Res. 2014, 48, 280–295. [Google Scholar] [CrossRef]
- Tay, K.S.; Madehi, N. Ozonation of acebutolol in aqueous solution: Ozonation by-products and degradation pathway. Sep. Purif. Technol. 2014, 135, 48–63. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Deshayes, S.; Zedek, S.; Cren-Olive, C.; Cartiser, N.; Eudes, V.; Bressy, A.; Caupos, E.; et al. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res. 2015, 72, 315–330. [Google Scholar] [CrossRef]
- Nanaki, S.G.; Kyzas, G.Z.; Tzereme, A.; Papageorgiou, M.; Kostoglou, M.; Bikiaris, D.N.; Lambropoulou, D.A. Synthesis and characterization of modified carrageenan microparticles for the removal of pharmaceuticals from aqueous solutions. Colloids Surf. B Biointerfaces 2015, 127C, 256–265. [Google Scholar] [CrossRef]
- Chen, K.Y.; Zeng, S.Y. Fabrication of quaternized chitosan nanoparticles using tripolyphosphate/genipin dual cross-linkers as a protein delivery system. Polymers 2018, 10, 1226. [Google Scholar] [CrossRef]
- Chiu, C.W.; Wu, M.T.; Lee, J.C.M.; Cheng, T.Y. Isothermal adsorption properties for the adsorption and removal of reactive blue 221 dye from aqueous solutions by cross-linked β-chitosan glycan as acid-resistant adsorbent. Polymers 2018, 10, 1328. [Google Scholar] [CrossRef]
- Doench, I.; Torres-Ramos, M.E.W.; Montembault, A.; de Oliveira, P.N.; Halimi, C.; Viguier, E.; Heux, L.; Siadous, R.; Thiré, R.M.S.M.; Osorio-Madrazo, A. Injectable and gellable chitosan formulations filled with cellulose nanofibers for intervertebral disc tissue engineering. Polymers 2018, 10, 1202. [Google Scholar] [CrossRef]
- Irimia, T.; Ghica, M.V.; Popa, L.; Anuţa, V.; Arsene, A.L.; Dinu-Pîrvu, C.E. Strategies for improving ocular drug bioavailability and cornealwound healing with chitosan-based delivery systems. Polymers 2018, 10, 1221. [Google Scholar] [CrossRef]
- Kopacic, S.; Walzl, A.; Hirn, U.; Zankel, A.; Kniely, R.; Leitner, E.; Bauer, W. Application of industrially produced chitosan in the surface treatment of fibre-based material: Effect of drying method and number of coating layers on mechanical and barrier properties. Polymers 2018, 10, 1232. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Zhang, H.; Pan, Z. Nanoporous pla/(chitosan nanoparticle) composite fibrous membranes with excellent air filtration and antibacterial performance. Polymers 2018, 10, 1085. [Google Scholar] [CrossRef]
- Li, L.; Song, K.; Chen, Y.; Wang, Y.; Shi, F.; Nie, Y.; Liu, T. Design and biophysical characterization of poly (l-lactic) acid microcarriers with and without modification of chitosan and nanohydroxyapatite. Polymers 2018, 10, 1061. [Google Scholar] [CrossRef]
- Mania, S.; Tylingo, R.; Michalowska, A. The drop-in-drop encapsulation in chitosan and sodium alginate as a method of prolonging the quality of linseed oil. Polymers 2018, 10, 1355. [Google Scholar] [CrossRef]
- Shi, C.; Sun, W.; Sun, Y.; Chen, L.; Xu, Y.; Tang, M. Synthesis, characterization, and sludge dewaterability evaluation of the chitosan-based flocculant ccpad. Polymers 2019, 11, 95. [Google Scholar] [CrossRef]
- Yang, J.; Kwon, G.J.; Hwang, K.; Kim, D.Y. Cellulose-chitosan antibacterial composite films prepared from libr solution. Polymers 2018, 10, 1058. [Google Scholar] [CrossRef]
- Lessa, E.F.; Nunes, M.L.; Fajardo, A.R. Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. Carbohyd. Polym. 2018, 189, 257–266. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N.; Lazaridis, N.K. Low-swelling chitosan derivatives as biosorbents for basic dyes. Langmuir 2008, 24, 4791–4799. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K. Relating interactions of dye molecules with chitosan to adsorption kinetic data. Langmuir 2010, 26, 9617–9626. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Lazaridis, N.K. Reactive and basic dyes removal by sorption onto chitosan derivatives. J. Colloid Interface Sci. 2009, 331, 32–39. [Google Scholar] [CrossRef]
- Lazaridis, N.K.; Kyzas, G.Z.; Vassiliou, A.A.; Bikiaris, D.N. Chitosan derivatives as biosorbents for basic dyes. Langmuir 2007, 23, 7634–7643. [Google Scholar] [CrossRef]
- Pham, T.D.; Kobayashi, M.; Adachi, Y. Adsorption characteristics of anionic azo dye onto large α-alumina beads. Colloid Polym. Sci. 2015, 293, 1877–1886. [Google Scholar] [CrossRef] [Green Version]
- Kyzas, G.Z.; Deliyanni, E.A. Mercury(ii) removal with modified magnetic chitosan adsorbents. Molecules 2013, 18, 6193–6214. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K. Copper and chromium(vi) removal by chitosan derivatives-equilibrium and kinetic studies. Chem. Eng. J. 2009, 152, 440–448. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K.; Bikiaris, D.N. N-(2-carboxybenzyl) grafted chitosan as adsorptive agent for simultaneous removal of positively and negatively charged toxic metal ions. J. Hazard. Mater. 2013, 244–245, 29–38. [Google Scholar] [CrossRef]
- Nguyen, T.M.T.; Do, T.P.T.; Hoang, T.S.; Nguyen, N.V.; Pham, H.D.; Nguyen, T.D.; Pham, T.N.M.; Le, T.S.; Pham, T.D. Adsorption of anionic surfactants onto alumina: Characteristics, mechanisms, and application for heavy metal removal. Int. J. Polym. Sci. 2018, 2018, 2830286. [Google Scholar] [CrossRef]
- Pham, T.D.; Do, T.T.; Ha, V.L.; Doan, T.H.Y.; Nguyen, T.A.H.; Mai, T.D.; Kobayashi, M.; Adachi, Y. Adsorptive removal of ammonium ion from aqueous solution using surfactant-modified alumina. Environ. Chem. 2017, 14, 327–337. [Google Scholar] [CrossRef]
- Pham, T.D.; Nguyen, H.H.; Nguyen, N.V.; Vu, T.T.; Pham, T.N.M.; Doan, T.H.Y.; Nguyen, M.H.; Ngo, T.M.V. Adsorptive removal of copper by using surfactant modified laterite soil. J. Chem. 2017, 2017, 1986071. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Kostoglou, M.; Lazaridis, N.K.; Lambropoulou, D.A.; Bikiaris, D.N. Environmental friendly technology for the removal of pharmaceutical contaminants from wastewaters using modified chitosan adsorbents. Chem. Eng. J. 2013, 222, 248–258. [Google Scholar] [CrossRef]
- Milosavljević, N.B.; Ristić, M.T.; Perić-Grujić, A.A.; Filipović, J.M.; Štrbac, S.B.; Rakočević, Z.L.; Krušić, M.T.K. Removal of Cu2+ ions using hydrogels of chitosan, itaconic and methacrylic acid: Ftir, sem/edx, afm, kinetic and equilibrium study. Colloid Surf. A. 2011, 388, 59–69. [Google Scholar] [CrossRef]
- Milosavljević, N.B.; Ristić, M.T.; Perić-Grujić, A.A.; Filipović, J.M.; Štrbac, S.B.; Rakočević, Z.L.J.; Kalagasidis Krušić, M.T. Sorption of zinc by novel ph-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. J. Hazard. Mater. 2011, 192, 846–854. [Google Scholar] [CrossRef]
- Milosavljević, N.B.; Kljajević, L.M.; Popović, I.G.; Filipović, J.M.; Krušić, M.T.K. Chitosan, itaconic acid and poly(vinyl alcohol) hybrid polymer networks of high degree of swelling and good mechanical strength. Polym. Int. 2010, 59, 686–694. [Google Scholar]
- Milosavljević, N.B.; Milašinović, N.Z.; Popović, I.G.; Filipović, J.M.; Kalagasidis Krušić, M.T. Preparation and characterization of ph-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid. Polym. Int. 2011, 60, 443–452. [Google Scholar] [CrossRef]
- Xiong, T.; Yuan, X.; Wang, H.; Wu, Z.; Jiang, L.; Leng, L.; Xi, K.; Cao, X.; Zeng, G. Highly efficient removal of diclofenac sodium from medical wastewater by Mg/Al layered double hydroxide-poly(m-phenylenediamine) composite. Chem. Eng. J. 2019, 366, 83–91. [Google Scholar] [CrossRef]
- Xian, G.; Zhang, G.; Chang, H.; Zhang, Y.; Zou, Z.; Li, X. Heterogeneous activation of persulfate by Co3O4-CeO2 catalyst for diclofenac removal. J. Environ. Manag. 2019, 234, 265–272. [Google Scholar] [CrossRef]
- Oral, O.; Kantar, C. Diclofenac removal by pyrite-fenton process: Performance in batch and fixed-bed continuous flow systems. Sci. Total Environ. 2019, 664, 817–823. [Google Scholar] [CrossRef]
- Long, Y.; Feng, Y.; Li, X.; Suo, N.; Chen, H.; Wang, Z.; Yu, Y. Removal of diclofenac by three-dimensional electro-fenton-persulfate (3D electro-fenton-ps). Chemosphere 2019, 1024–1031. [Google Scholar] [CrossRef]
- Cornelius, T.; Ndawaidam; Clement, P.J. Investigating the impact of diclofenac removal from aqueous solution using metallic iron as prb reactive material. Res. J. Chem. Environ. 2019, 23, 60–65. [Google Scholar]
- Hirano, S.M. Tamotsu N-(carboxyacyl)chitosans. Carbohydr. Res. 1981, 92, 323–327. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Siafaka, P.I.; Pavlidou, E.G.; Chrissafis, K.J.; Bikiaris, D.N. Synthesis and adsorption application of succinyl-grafted chitosan for the simultaneous removal of zinc and cationic dye from binary hazardous mixtures. Chem. Eng. J. 2015, 259, 438–448. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Siafaka, P.I.; Lambropoulou, D.A.; Lazaridis, N.K.; Bikiaris, D.N. Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for pb(ii) and cd(ii) uptake. Langmuir 2014, 30, 120–131. [Google Scholar] [CrossRef]
- Michailidou, G.; Christodoulou, E.; Nanaki, S.; Barmpalexis, P.; Karavas, E.; Vergkizi-Nikolakaki, S.; Bikiaris, D.N. Super-hydrophilic and high strength polymeric foam dressings of modified chitosan blends for topical wound delivery of chloramphenicol. Carbohyd. Polym. 2019, 208, 1–13. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Bikiaris, D.N. Recent modifications of chitosan for adsorption applications: A critical and systematic review. Mar. Drugs. 2015, 13, 312–337. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Kostoglou, M. Swelling-adsorption interactions during mercury and nickel ions removal by chitosan derivatives. Sep. Purif. Technol. 2015, 149, 92–102. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Over the adsorption in solution. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar]
- Tien, C. Adsorption Calculations and Modeling; Butterworth-Heinemann: Boston, MA, USA, 1994. [Google Scholar]
- Kyzas, G.Z.; Kostoglou, M. Green adsorbents for wastewaters: A critical review. Materials 2014, 7, 333–364. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: London, UK, 1975. [Google Scholar]
- Glueckauf, E. Theory of chromatography. Part 10. Formula for diffusion into spheres and their application to chromatography. Trans. Faraday Soc. 1952, 51, 1540–1550. [Google Scholar] [CrossRef]
- Ruthven, D.M. Sorption kinetics for diffusion-controlled systems with a strongly concentration-dependent diffusivity. Chem. Eng. Sci. 2004, 59, 4531–4545. [Google Scholar] [CrossRef]
- Smith, J.M.; Van Ness, H.C. Introduction to Chemical Engineering Thermodynamics, 4th ed.; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Kyzas, G.Z.; Lazaridis, N.K.; Deliyanni, E.A. Oxidation time effect of activated carbons for drug adsorption. Chem. Eng. J. 2013, 234, 491–499. [Google Scholar] [CrossRef]
pH | T | Ci | N | t | V | m | |
---|---|---|---|---|---|---|---|
Experiment | (°C) | (mg L−1) | (rpm) | (min) | (mL) | (g) | |
Effect of pH | 4, 6, 8, 10 | 25 | 30 | 150 | 1440 | 10 | 0.005 |
Effect of contact time | 4 | 25 | 30 | 150 | 0–1440 | 10 | 0.005 |
Effect of initial drug concentration | 4 | 25 | 5–100 | 150 | 30 | 10 | 0.005 |
Effect of temperature | 4 | 25, 35, 45 | 5–100 | 150 | 30 | 10 | 0.005 |
Adsorbent | Langmuir Equation | Freundlich Equation | L-F Equation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T | Qm | KL | R2 | KF | n | R2 | Qm | KLF | b | R2 | |
(°C) | (mg g−1) | (L mg−1) | (-) | mg1−1/n L1/n g−1 | (-) | (-) | (mg g−1) | (L mg−1)1/b | (-) | (-) | |
CsSUC | 25 | 41.18 | 0.127 | 0.971 | 11.58 | 3.135 | 0.992 | 64.49 | 0.158 | 1.922 | 0.994 |
35 | 46.75 | 0.147 | 0.983 | 12.44 | 3.767 | 0.934 | 61.01 | 0.190 | 1.639 | 0.998 | |
45 | 54.20 | 0.129 | 0.977 | 13.67 | 3.195 | 0.988 | 82.22 | 0.159 | 1.852 | 0.996 | |
CsMAL | 25 | 31.48 | 0.161 | 0.969 | 9.35 | 3.631 | 0.988 | 47.07 | 0.197 | 1.964 | 0.996 |
35 | 33.18 | 0.252 | 0.957 | 12.49 | 4.381 | 0.978 | 44.68 | 0.323 | 2.033 | 0.991 | |
45 | 33.08 | 0.398 | 0.972 | 13.93 | 4.772 | 0.962 | 38.31 | 0.445 | 1.630 | 0.990 | |
CsITA | 25 | 75.43 | 0.151 | 0.972 | 19.08 | 3.136 | 0.876 | 67.12 | 0.049 | 0.573 | 0.986 |
35 | 94.93 | 0.155 | 0.967 | 22.84 | 2.942 | 0.883 | 81.45 | 0.033 | 0.467 | 0.983 | |
45 | 103.53 | 0.176 | 0.995 | 25.75 | 2.922 | 0.938 | 98.94 | 0.155 | 0.875 | 0.995 | |
CsTACON | 25 | 86.68 | 0.177 | 0.998 | 22.21 | 3.041 | 0.937 | 84.56 | 0.166 | 0.930 | 0.999 |
35 | 100.84 | 0.184 | 0.998 | 25.32 | 2.929 | 0.938 | 98.34 | 0.175 | 0.934 | 0.997 | |
45 | 102.31 | 0.232 | 0.998 | 28.55 | 3.094 | 0.939 | 102.75 | 0.233 | 1.012 | 0.999 |
Adsorbent | Langmuir Equation | Freundlich Equation | L-F Equation | |||||||
---|---|---|---|---|---|---|---|---|---|---|
T | SSE | SAE | ARE | SSE | SAE | ARE | SSE | SAE | ARE | |
(°C) | (-) | (-) | (%) | (-) | (-) | (%) | (-) | (-) | (%) | |
CsSUC | 25 | 31.69 | 10.75 | 12.48 | 13.44 | 7.94 | 6.23 | 5.18 | 4.30 | 2.88 |
35 | 24.02 | 8.40 | 10.27 | 24.09 | 10.35 | 8.82 | 2.02 | 3.23 | 2.39 | |
45 | 44.44 | 12.31 | 13.91 | 22.44 | 10.45 | 7.28 | 5.71 | 5.77 | 3.82 | |
CsMAL | 25 | 20.17 | 9.12 | 11.38 | 7.71 | 5.93 | 5.62 | 2.10 | 2.67 | 2.03 |
35 | 33.62 | 9.59 | 12.94 | 17.16 | 9.15 | 7.63 | 5.78 | 5.48 | 4.48 | |
45 | 22.75 | 9.40 | 10.19 | 32.01 | 11.92 | 10.63 | 6.62 | 5.67 | 3.72 | |
CsITA | 25 | 109.08 | 21.63 | 10.60 | 483.13 | 50.54 | 36.07 | 44.60 | 12.91 | 14.23 |
35 | 198.61 | 27.15 | 13.14 | 701.31 | 60.68 | 40.34 | 81.88 | 17.14 | 18.63 | |
45 | 34.61 | 12.59 | 8.62 | 443.89 | 49.31 | 30.20 | 27.42 | 9.63 | 10.02 | |
CsTACON | 25 | 6.45 | 5.72 | 2.86 | 323.35 | 41.51 | 29.13 | 4.43 | 4.47 | 3.81 |
35 | 16.79 | 9.11 | 3.88 | 426.33 | 49.29 | 31.97 | 14.44 | 9.15 | 5.13 | |
45 | 3.39 | 4.25 | 2.08 | 446.53 | 47.73 | 31.80 | 3.30 | 4.11 | 1.69 |
Adsorbent | Ci | T | Qe | Kc | ΔG0 | ΔH0 | ΔS0 |
---|---|---|---|---|---|---|---|
(mg L−1) | K | mg g−1 | kJ mol−1 | kJ mol−1 | kJ mol−1 K−1 | ||
CsSUC | 5 | 298 | 8.42 | 5.25 | −4.11 | 21.13 | 0.084 |
308 | 8.61 | 6.14 | −4.65 | ||||
318 | 9.05 | 9.00 | −5.81 | ||||
50 | 298 | 32.04 | 0.47 | 1.87 | 17.01 | 0.051 | |
308 | 38.21 | 0.61 | 1.25 | ||||
318 | 42.35 | 0.72 | 0.85 | ||||
100 | 298 | 38.44 | 0.23 | 3.59 | 13.85 | 0.034 | |
308 | 44.02 | 0.28 | 3.24 | ||||
318 | 50.04 | 0.33 | 2.90 | ||||
CsMAL | 5 | 298 | 8.04 | 4.04 | −3.43 | 32.28 | 0.121 |
308 | 9.13 | 9.03 | −5.63 | ||||
318 | 9.16 | 9.04 | −5.81 | ||||
50 | 298 | 26.02 | 0.35 | 2.59 | 7.91 | 0.018 | |
308 | 30.04 | 0.43 | 2.17 | ||||
318 | 30.21 | 0.44 | 2.24 | ||||
100 | 298 | 30.04 | 0.18 | 4.30 | 5.87 | 0.005 | |
308 | 32.12 | 0.19 | 4.25 | ||||
318 | 34.34 | 0.20 | 4.19 | ||||
CsITA | 5 | 298 | 8.22 | 4.56 | −3.76 | 36.32 | 0.134 |
308 | 8.61 | 6.14 | −4.65 | ||||
318 | 9.24 | 11.50 | −6.46 | ||||
50 | 298 | 62.03 | 1.63 | −1.21 | 22.06 | 0.079 | |
308 | 72.10 | 2.57 | −2.42 | ||||
318 | 74.02 | 2.85 | −2.77 | ||||
100 | 298 | 64.09 | 0.47 | 1.87 | 23.45 | 0.073 | |
308 | 82.08 | 0.69 | 0.93 | ||||
318 | 92.04 | 0.85 | 0.42 | ||||
CsTACON | 5 | 298 | 8.81 | 7.33 | −4.94 | 17.70 | 0.076 |
308 | 9.02 | 9.00 | −5.63 | ||||
318 | 9.23 | 11.50 | −6.46 | ||||
50 | 298 | 66.04 | 1.94 | −1.64 | 19.30 | 0.070 | |
308 | 72.04 | 2.57 | −2.42 | ||||
318 | 76.52 | 3.17 | −3.05 | ||||
100 | 298 | 78.01 | 0.64 | 1.11 | 12.95 | 0.040 | |
308 | 90.32 | 0.82 | 0.51 | ||||
318 | 94.21 | 0.89 | 0.32 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzereme, A.; Christodoulou, E.; Kyzas, G.Z.; Kostoglou, M.; Bikiaris, D.N.; Lambropoulou, D.A. Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures. Polymers 2019, 11, 497. https://doi.org/10.3390/polym11030497
Tzereme A, Christodoulou E, Kyzas GZ, Kostoglou M, Bikiaris DN, Lambropoulou DA. Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures. Polymers. 2019; 11(3):497. https://doi.org/10.3390/polym11030497
Chicago/Turabian StyleTzereme, Areti, Evi Christodoulou, George Z. Kyzas, Margaritis Kostoglou, Dimitrios N. Bikiaris, and Dimitra A. Lambropoulou. 2019. "Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures" Polymers 11, no. 3: 497. https://doi.org/10.3390/polym11030497
APA StyleTzereme, A., Christodoulou, E., Kyzas, G. Z., Kostoglou, M., Bikiaris, D. N., & Lambropoulou, D. A. (2019). Chitosan Grafted Adsorbents for Diclofenac Pharmaceutical Compound Removal from Single-Component Aqueous Solutions and Mixtures. Polymers, 11(3), 497. https://doi.org/10.3390/polym11030497