Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Test Methods of Interface Properties
2.3. Test Method of Shear Strength of Asphalt Binder
3. Test Results
3.1. Interface Properties
3.2. Shear Strength of Asphalt Binder
4. Relationship between Interface Properties and Shear Strength
5. Discussion
6. Summary and Conclusion
- (1)
- The shear strength of asphalt binder can be increased significantly by the addition of fiber, which is closely related to the types of asphalt and fiber. For the same asphalt, basalt fiber has the best reinforcement effect among the four fibers, followed by the two lignin fibers, and the FRP. For the same fiber, asphalt rubber has been the most effectively reinforced, followed by the SBS modified asphalt, asphalt No.70 and asphalt No.90;
- (2)
- For the same asphalt, there is a good positive correlation between the surface energy of fiber and the performance of fiber-reinforced asphalt. The higher the surface energy of fiber, the better the effect of fiber-reinforced asphalt. There is a good correlation between the work of adhesion between asphalt and fiber and the effect of fiber reinforcement, but there are still significant differences according to the type of asphalt;
- (3)
- This study presented a basis for material selection in performance-oriented fiber-reinforced asphalt design. It can be concluded that fibers can be selected according to surface energy. High surface energy fibers have good reinforcement effect.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, W.; Cheng, Y.; Tan, G. Design optimization of SBS-Modified asphalt mixture reinforced with Eco-Friendly basalt fiber based on response surface methodology. Materials 2018, 11, 1311. [Google Scholar] [CrossRef] [PubMed]
- Takaikaew, T.; Tepsriha, P.; Horpibulsuk, S.; Hoy, M.; Kaloush, K.E.; Arulrajah, A. Performance of Fiber-Reinforced asphalt concretes with various asphalt binders in Thailand. J. Mater. Civil Eng. 2018, 30, 04018193. [Google Scholar] [CrossRef]
- Tapkın, S. The effect of polypropylene fibers on asphalt performance. Build. Environ. 2008, 43, 1065–1071. [Google Scholar] [CrossRef]
- Khattak, M.J.; Khattab, A.; Rizvi, H.R.; Zhang, P. The impact of carbon nano-fiber modification on asphalt binder rheology. Constr. Build. Mater. 2012, 30, 257–264. [Google Scholar] [CrossRef]
- Yoo, P.J.; Kim, K. Thermo-plastic fiber’s reinforcing effect on hot-mix asphalt concrete mixture. Constr. Build. Mater. 2014, 59, 136–143. [Google Scholar] [CrossRef]
- Xiang, Y.; Xie, Y.; Long, G. Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: From macro-mechanical performance to micro-interfacial mechanism. Constr. Build. Mater. 2018, 179, 107–116. [Google Scholar] [CrossRef]
- Chen, H.; Xu, Q.; Chen, S.; Zhang, Z. Evaluation and design of fiber-reinforced asphalt mixtures. Mater Des. 2009, 30, 2595–2603. [Google Scholar] [CrossRef]
- Fakhri, M.; Hosseini, S.A. Laboratory evaluation of rutting and moisture damage resistance of glass fiber modified warm mix asphalt incorporating high RAP proportion. Constr. Build. Mater. 2017, 134, 626–640. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, H.; Prozzi, J.A. Performance of fiber reinforced asphalt concrete under environmental temperature and water effects. Constr. Build. Mater. 2010, 24, 2003–2010. [Google Scholar] [CrossRef]
- Qian, S.; Ma, H.; Feng, J.; Yang, R.; Huang, X. Fiber reinforcing effect on asphalt binder under low temperature. Constr. Build. Mater. 2014, 61, 120–124. [Google Scholar] [CrossRef]
- Gibson, N.; Li, X. Characterizing cracking of asphalt mixtures with fiber reinforcement use of cyclic fatigue and direct tension strength tests. Transport. Res. Rec. 2015, 2507, 57–66. [Google Scholar] [CrossRef]
- Giustozzi, F.; Crispino, M.; Toraldo, E.; Mariani, E. Mix design of Polymer-Modified and Fiber-Reinforced Warm-Mix asphalts with high amount of reclaimed asphalt pavement achieving sustainable and High-Performing pavements. Transport. Res. Rec. 2015, 2523, 3–10. [Google Scholar] [CrossRef]
- Kamaruddin, I.; Napiah, M.; Nahi, M.H. The influence of moisture on the performance of polymer Fibre-Reinforced asphalt mixture. MATEC Web Conf. 2016, 78, 1040. [Google Scholar] [CrossRef]
- Klinsky, L.M.G.; Kaloush, K.E.; Faria, V.C.; Bardini, V.S.S. Performance characteristics of fiber modified hot mix asphalt. Constr. Build. Mater. 2018, 176, 747–752. [Google Scholar] [CrossRef]
- Wang, H.; Yang, Z.; Zhan, S.; Ding, L.; Jin, K. Fatigue performance and model of polyacrylonitrile fiber reinforced asphalt mixture. Appl. Sci. 2018, 8, 1818. [Google Scholar] [CrossRef]
- Xiong, R.; Fang, J.; Xu, A.; Guan, B.; Liu, Z. Laboratory investigation on the brucite fiber reinforced asphalt binder and asphalt concrete. Constr. Build. Mater. 2015, 83, 44–52. [Google Scholar] [CrossRef]
- Kassem, H.A.; Saleh, N.F.; Zalghout, A.A.; Chehab, G.R. Advanced characterization of asphalt concrete mixtures reinforced with synthetic fibers. J. Mater. Civil Eng. 2018, 30, 04018307. [Google Scholar] [CrossRef]
- Sun, X.; Qin, X.; Chen, Q.; Ma, Q. Investigation of enhancing effect and mechanism of basalt fiber on toughness of asphalt material. Petrol. Sci. Technol. 2018, 36, 1710–1717. [Google Scholar] [CrossRef]
- Tanzadeh, J.; Shahrezagamasaei, R. Laboratory assessment of hybrid fiber and nano-silica on reinforced porous asphalt mixtures. Constr. Build. Mater. 2017, 144, 260–270. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J.; Yoo, D. Effects of amorphous metallic fibers on the properties of asphalt concrete. Constr. Build. Mater. 2016, 128, 176–184. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, X.; Lv, J. Effect of basalt fiber distribution on the flexural-tensile rheological performance of asphalt mortar. Constr. Build. Mater. 2018, 179, 307–314. [Google Scholar] [CrossRef]
- Tan, Y.; Guo, M. Using surface free energy method to study the cohesion and adhesion of asphalt mastic. Constr. Build. Mater. 2013, 47, 254–260. [Google Scholar] [CrossRef]
- Van Oss, C.J.; Chaudhury, M.K.; Good, R.J. Interfacial lifshitz-van der Waals and polar interactions in macroscopic systems. Chem. Rev. 1988, 88, 927–941. [Google Scholar] [CrossRef]
- Singh, D.; Mishra, V. Different methods of selecting probe liquids to measure the surface free energy of asphalt binders. Constr. Build. Mater. 2018, 175, 448–457. [Google Scholar] [CrossRef]
- Bhasin, A.; Little, D.N.; Vasconcelos, K.L.; Masad, E. Surface free energy to identify moisture sensitivity of materials for asphalt mixes. Transp. Res. Rec. J. Transp. Res. Board. 2007, 2001, 37–45. [Google Scholar] [CrossRef]
- Koumoto, T.; Houlsby, G.T. Theory and practice of the fall cone test. Geotechnique 2001, 51, 701–712. [Google Scholar] [CrossRef]
- Rajasekaran, G.; Narasimha Rao, S. Falling cone method to measure the strength of marine clays. Ocean Eng. 2004, 31, 1915–1927. [Google Scholar] [CrossRef]
- Wu, M.M.; Li, R.; Zhang, Y.Z.; Fan, L.; Lv, Y.C.; Wei, J.M. Stabilizing and reinforcing effects of different fibers on asphalt mortar performance. Petroleum Sci. 2015, 12, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Shen, A.; Guo, Y.; Li, Z.; Lv, Z. Characterization of asphalt mastics reinforced with basalt fibers. Constr. Build. Mater. 2018, 159, 508–516. [Google Scholar] [CrossRef]
Liquid | |||
---|---|---|---|
Deionized water | 72.8 | 51 | 21.8 |
Ethylene glycol | 48 | 19 | 29 |
Glycerol | 63.4 | 26.4 | 37 |
Formamide | 58.2 | 18.7 | 39.5 |
Liquid | (MJ/m2) | (MJ/m2) | (MJ/m2) | (MJ/m2) | (MJ/m2) | (Pa·s) |
---|---|---|---|---|---|---|
Positive ethane | 18.4 | 18.4 | 0 | 0 | 0 | 3 |
Diiodomethane | 50.8 | 50.8 | 0 | 0 | 0 | 28 |
Toluene | 28.3 | 28.3 | 0 | 0 | 2.7 | 6 |
Trichloromethane | 27.3 | 27.3 | 0 | 3.8 | 0 | 5 |
Asphalt Binder | Deionized Water | Ethylene Glycol | Glycerol | Formamide |
---|---|---|---|---|
Asphalt No. 90 | 107.45 | 84.94 | 93.54 | 88.48 |
Asphalt No. 70 | 101.60 | 81.82 | 90.99 | 85.63 |
SBS modified | 102.15 | 77.55 | 87.39 | 81.92 |
Asphalt rubber | 101.87 | 81.98 | 91.08 | 87.02 |
Asphalt Binder | |||
---|---|---|---|
Asphalt No. 90 | 18.138 | 17.435 | 0.704 |
Asphalt No. 70 | 20.099 | 19.379 | 0.720 |
SBS modified | 21.999 | 20.932 | 1.068 |
Asphalt rubber | 23.497 | 22.412 | 1.085 |
Fiber | |||
---|---|---|---|
FRP | 30.554 | 20.119 | 10.436 |
Lignin fiber A | 45.278 | 32.908 | 12.370 |
Lignin fiber B | 40.419 | 28.942 | 11.477 |
Basalt fiber | 53.023 | 39.967 | 13.056 |
Fiber | Asphalt No. 90 | Asphalt No. 70 | SBS Modified | Asphalt Rubber |
---|---|---|---|---|
FRP | 31.840 | 34.596 | 35.980 | 36.620 |
Lignin fiber A | 38.996 | 40.702 | 44.041 | 45.253 |
Lignin fiber B | 37.317 | 38.958 | 42.120 | 43.285 |
Basalt fiber | 41.515 | 43.32 | 46.919 | 48.203 |
Asphalt Binder | No Fiber | FRP | Lignin Fiber A | Lignin Fiber B | Basalt Fiber |
---|---|---|---|---|---|
Asphalt No. 90 | 0.17122 | 0.21782 | 0.31890 | 0.26896 | 0.33045 |
Asphalt No. 70 | 0.24628 | 0.28150 | 0.37403 | 0.28936 | 0.42458 |
SBS modified | 0.43842 | 0.46390 | 0.69185 | 0.56665 | 0.73261 |
Asphalt rubber | 0.78458 | 0.99179 | 1.83520 | 1.36836 | 2.23454 |
Asphalt | Asphalt No. 90 | Asphalt No. 70 | SBS Modified | Asphalt Rubber |
---|---|---|---|---|
Correlation coefficient | 0.9672 | 0.9199 | 0.9722 | 0.9864 |
Fiber | FRP | Lignin Fiber A | Lignin Fiber B | Basalt Fiber |
---|---|---|---|---|
Correlation coefficient | −0.1966 | 0.4616 | 0.2643 | 0.5885 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Wang, T.; Wang, L. Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder. Polymers 2019, 11, 542. https://doi.org/10.3390/polym11030542
Miao Y, Wang T, Wang L. Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder. Polymers. 2019; 11(3):542. https://doi.org/10.3390/polym11030542
Chicago/Turabian StyleMiao, Yinghao, Ting Wang, and Linbing Wang. 2019. "Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder" Polymers 11, no. 3: 542. https://doi.org/10.3390/polym11030542
APA StyleMiao, Y., Wang, T., & Wang, L. (2019). Influences of Interface Properties on the Performance of Fiber-Reinforced Asphalt Binder. Polymers, 11(3), 542. https://doi.org/10.3390/polym11030542