Luminescent Molecularly Imprinted Polymers Based on Covalent Organic Frameworks and Quantum Dots with Strong Optical Response to Quinoxaline-2-Carboxylicacid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Synthesis of TpPa COFs
2.4. Synthesis of MIPs Based on QDs-Grafted COFs
2.5. Fluorescence Measurement
2.6. Meat and Feed Samples
3. Results and discussion
3.1. Synthesis of MIPs Based on QDs-Grafted COFs for Detection of QCA
3.2. Characterization of MIPs Based on QDs-Grafted COFs
3.3. Kinetic Adsorption
3.4. Optosensing QCA Based on MIPs
3.5. Interference Experiments for QCA Selectivity
3.6. Stability Analysis
3.7. Detection of QCA in Meat and Feed Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, H.; Wu, D.; Liu, Y.; Zhang, H.; Ma, T.; Aidaerhan, A.; Wang, J.; Sun, B. Application of an optosensing chip based on molecularly imprinted polymer coated quantum dots for the highly selective and sensitive determination of sesamol in sesame oils. J. Agric. Food Chem. 2015, 63, 2545–2549. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Feng, S.-S. Targeting and imaging cancer cells by folate-decorated, quantum dots (qds)- loaded nanoparticles of biodegradable polymers. Biomaterials 2009, 30, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Dong, C.; Peng, J.; Qiu, X.; Xu, Y.; Ren, J. High-quality and water-soluble near-infrared photoluminescent cdhgte/cds quantum dots prepared by adjusting size and composition. J. Phys. Chem. 2007, 111, 16852–16857. [Google Scholar] [CrossRef]
- Schwab, M.G.; Fassbender, B.; Spiess, H.W.; Thomas, A.; Feng, X.; Müllen, K. Catalyst-free preparation of melamine-based microporous polymer networks through schiff base chemistry. J. Am. Chem. Soc. 2009, 131, 7216–7217. [Google Scholar] [CrossRef]
- Shah, A.H.; Shah, A.; Khan, S.U.-D.; Rana, U.A.; Hussain, H.; Khan, S.B.; Qureshi, R.; Badshah, A.; Waseem, A. Probing the ph dependent electrochemistry of a novel quinoxaline carboxylic acid derivative at a glassy carbon electrode. Electrochim. Acta 2014, 147, 121–128. [Google Scholar] [CrossRef]
- Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem. 2008, 120, 8958–8962. [Google Scholar] [CrossRef]
- Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. A photoconductive covalent organic framework: Self-condensed arene cubes composed of eclipsed 2d polypyrene sheets for photocurrent generation. Angew. Chem. 2009, 121, 5547–5550. [Google Scholar] [CrossRef]
- Dalapati, S.; Jin, S.; Gao, J.; Xu, Y.; Nagai, A.; Jiang, D. An azine-linked covalent organic framework. J. Am. Chem. Soc. 2013, 135, 17310–17313. [Google Scholar] [CrossRef]
- Crowe, J.W.; Baldwin, L.A.; McGrier, P.L. Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units. J. Am. Chem. Soc. 2016, 138, 10120–10123. [Google Scholar] [CrossRef]
- Dalapati, S.; Jin, E.; Addicoat, M.; Heine, T.; Jiang, D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 2016, 138, 5797–5800. [Google Scholar] [CrossRef]
- Lin, D.; Wu, J.; Yan, F.; Deng, S.; Ju, H. Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. AnaCh 2011, 83, 5214–5221. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.F.; Ruckenstein, E. Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 2004, 4, 1463–1467. [Google Scholar] [CrossRef]
- Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 6054–6057. [Google Scholar] [CrossRef]
- Hashim, S.N.N.S.; Boysen, R.I.; Schwarz, L.J.; Danylec, B.; Hearn, M.T.W. A comparison of covalent and non-covalent imprinting strategies for the synthesis of stigmasterol imprinted polymers. J. Chromatogr. A 2014, 1359, 35–43. [Google Scholar] [CrossRef] [PubMed]
- You, Q.; Zhang, Y.; Zhang, Q.; Guo, J.; Huang, W.; Shi, S.; Chen, X. High-capacity thermo-responsive magnetic molecularly imprinted polymers for selective extraction of curcuminoids. J. Chromatogr. A 2014, 1354, 1–8. [Google Scholar] [CrossRef]
- He, H.; Zhou, L.; Wang, Y.; Li, C.; Yao, J.; Zhang, W.; Zhang, Q.; Li, M.; Li, H.; Dong, W.F. Detection of trace microcystin-lr on a 20 mhz qcm sensor coated with in situ self-assembled mips. Talanta 2015, 131, 8–13. [Google Scholar] [CrossRef]
- Urraca, J.L.; Huertas-Pérez, J.F.; Cazorla, G.A.; Gracia-Mora, J.; García-Campaña, A.M.; Moreno-Bondi, M.C. Development of magnetic molecularly imprinted polymers for selective extraction: Determination of citrinin in rice samples by liquid chromatography with uv diode array detection. Anal. Bioanal. Chem. 2016, 408, 3033–3042. [Google Scholar] [CrossRef]
- Hutchinson, M.J.; Young, P.B.; Kennedy, D.G. Confirmation of carbadox and olaquindox metabolites in porcine liver using liquid chromatography–electrospray, tandem mass spectrometry. J. Chromatogr. B 2005, 816, 15–20. [Google Scholar] [CrossRef]
- Duan, Z.; Yi, J.; Fang, G.; Fan, L.; Wang, S. A sensitive and selective imprinted solid phase extraction coupled to hplc for simultaneous detection of trace quinoxaline-2-carboxylic acid and methyl-3-quinoxaline-2-carboxylic acid in animal muscles. Food Chem. 2013, 139, 274–280. [Google Scholar] [CrossRef]
- Shah, A.H.; Shah, A.; Rana, U.A.; Khan, S.U.-D.; Hussain, H.; Khan, S.B.; Qureshi, R.; Badshah, A. Redox mechanism and evaluation of kinetic and thermodynamic parameters of 1,3-dioxolo[4,5-g]pyrido[2,3-b]quinoxaline using electrochemical techniques. Electroanalysis 2014, 26, 2292–2300. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, G.; Wang, X.; Pan, M.; Qian, H.; Liu, H.; Wang, S. Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly(pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly(o-phenylenediamine). Anal. Chim. Acta 2014, 806, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M.V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527. [Google Scholar] [CrossRef] [PubMed]
- Ni, T.; Zhang, D.; Wang, J.; Wang, S.; Liu, H.; Sun, B. Grafting of quantum dots on covalent organic frameworks via a reverse microemulsion for highly selective and aensitive protein optosensing. Sens. Actuators B Chem. 2018, 269, 340–345. [Google Scholar] [CrossRef]
- Liu, H.; Ni, T.; Mu, L.; Zhang, D.; Wang, J.; Wang, S.; Sun, B. Sensitive detection of pyrraline with a molecularly imprinted sensor based on metal-organic frameworks and quantum dots. Sens. Actuators B Chem. 2018, 256, 1038–1044. [Google Scholar] [CrossRef]
- Tu, R.; Liu, B.; Wang, Z.; Gao, D.; Wang, F.; Fang, Q.; Zhang, Z. Amine-capped zns−mn2+ nanocrystals for fluorescence detection of trace tnt explosive. Anal. Chem. 2008, 80, 3458–3465. [Google Scholar] [CrossRef] [PubMed]
Samples | Added (μmol L−1) | Found (μmol L−1) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Pork | 0 | - | - | - |
5 | 4.96 | 99.3 | 3.6 | |
10 | 9.83 | 98.3 | 4.3 | |
20 | 20.23 | 101.1 | 6.8 | |
Beef | 0 | - | - | - |
5 | 4.83 | 96.6 | 3.3 | |
10 | 10.09 | 100.9 | 5.2 | |
20 | 19.77 | 98.8 | 4.1 | |
Fish | 0 | - | - | - |
5 | 4.93 | 98.6 | 4.3 | |
10 | 9.97 | 99.7 | 5.8 | |
20 | 19.53 | 97.6 | 6.2 | |
Pork feed | 0 | - | - | - |
5 | 4.94 | 98.8 | 6.7 | |
10 | 9.46 | 94.6 | 3.8 | |
20 | 19.37 | 96.9 | 5.4 | |
Cattle feed | 0 | - | - | - |
5 | 4.72 | 94.4 | 4.7 | |
10 | 10.12 | 101.2 | 6.8 | |
20 | 18.73 | 93.8 | 3.9 | |
Fish feed | 0 | - | - | - |
5 | 4.88 | 97.6 | 3.3 | |
10 | 9.98 | 99.8 | 5.1 | |
20 | 20.09 | 100.5 | 6.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Zhang, D.; Liu, H. Luminescent Molecularly Imprinted Polymers Based on Covalent Organic Frameworks and Quantum Dots with Strong Optical Response to Quinoxaline-2-Carboxylicacid. Polymers 2019, 11, 708. https://doi.org/10.3390/polym11040708
Zhang Y, Zhang D, Liu H. Luminescent Molecularly Imprinted Polymers Based on Covalent Organic Frameworks and Quantum Dots with Strong Optical Response to Quinoxaline-2-Carboxylicacid. Polymers. 2019; 11(4):708. https://doi.org/10.3390/polym11040708
Chicago/Turabian StyleZhang, Ying, Dianwei Zhang, and Huilin Liu. 2019. "Luminescent Molecularly Imprinted Polymers Based on Covalent Organic Frameworks and Quantum Dots with Strong Optical Response to Quinoxaline-2-Carboxylicacid" Polymers 11, no. 4: 708. https://doi.org/10.3390/polym11040708
APA StyleZhang, Y., Zhang, D., & Liu, H. (2019). Luminescent Molecularly Imprinted Polymers Based on Covalent Organic Frameworks and Quantum Dots with Strong Optical Response to Quinoxaline-2-Carboxylicacid. Polymers, 11(4), 708. https://doi.org/10.3390/polym11040708