Engineering Sustainable Antimicrobial Release in Silica-Cellulose Membrane with CaCO3-Aided Processing for Wound Dressing Application
Abstract
:1. Introduction
2. Materials and Experimental Methods
2.1. Materials
2.2. Preparation of Mesoporous SBA-15 Particles and CaCO3-Protected SBA-15
2.3. Preparation of SBA-15/Cellulose Composite Membrane
2.3.1. Using CaCO3-Protected SBA-15
2.3.2. Using Unprotected SBA-15
2.4. Characterization
2.5. Mechanical Properties Evaluation
2.6. Swelling Behavior Test
2.7. Moisture Permeability Test
2.8. Drug Loading and Releasing Experiment
2.9. Antibacterial Activity
2.10. Statistical Analysis
3. Results and Discussions
3.1. The Protect Effect of CaCO3 on SBA-15 in Cellulose Solvent
3.2. Structure of Composite Membrane
3.3. Effects of Hydrochloric Acid Treatment and Addition of SBA-15 on Mechanical Properties
3.4. Effect of Adding SBA-15 on Swelling Behavior
3.5. Water Vapor Transmission Rate
3.6. Drug Loading and Release
3.7. Drug Release Mechanism
3.8. Antibacterial Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Antonini, D.; Sibilio, A.; Dentice, M.; Missero, C. An intimate relationship between thyroid hormone and skin: Regulation of gene expression. Front. Endocrinol. 2013, 4, 104. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Luo, G.; Xia, H.; He, W.; Jian, Z.; Bo, L.; Tan, J.; Zhou, J.; Liu, D.; Wang, Y. Novel bilayer wound dressing composed of silicone rubber with particular micropores enhanced wound re-epithelialization and contraction. Biomaterials 2015, 40, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.T.S.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Kang, H.; Bielec, M.; Wu, X.; Qiao, C.; Wei, W.; Dai, H. Influence of different divalent ions cross-linking Sodium Alginate-Polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydr. Polym. 2018, 197, 292–304. [Google Scholar] [CrossRef]
- Zhang, Y.S.; Khademhosseini, A. Advances in engineering hydrogels. Science 2017, 356, eaaf3627. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wu, H.; Guo, B.; Dong, R.; Qiu, Y.; Ma, P.X. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017, 122, 34–47. [Google Scholar] [CrossRef]
- Kokabi, M.; Sirousazar, M.; Hassan, Z.M. PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polym. J. 2007, 43, 773–781. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, S.; Dhiman, A. Design of antibiotic containing hydrogel wound dressings: Biomedical properties and histological study of wound healing. Int. J. Pharm. 2013, 457, 82–91. [Google Scholar] [CrossRef]
- Cao, Z.; Luo, X.; Hao, Z.; Zhen, F.; Zhi, S.; Ning, C.; Xue, Y.; Yu, F. A facile and green strategy for the preparation of porous chitosan-coated cellulose composite membranes for potential applications as wound dressing. Cellulose 2016, 23, 1349–1361. [Google Scholar] [CrossRef]
- Morgado, P.I.; Aguiar-Ricardo, A.; Correia, I.J. Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J. Membr. Sci. 2015, 490, 139–151. [Google Scholar] [CrossRef]
- Wei, L.I.; Xueyong, L.I.; Wei, L.I.; Wang, T.; Xiaoxia, L.I.; Pan, S.; Deng, H. Nanofibrous mats layer-by-layer assembled via electrospun cellulose acetate and electrosprayed chitosan for cell culture. Eur. Polym. 2012, 48, 1846–1853. [Google Scholar]
- Na, Y.; Chen, S.; Zhe, L.; Yang, O.; Hu, W.; Lian, T.; Wen, Z.; Zhou, B.; Yang, J.; Xu, Q. Porous bacterial cellulose prepared by a facile surfactant-assisted foaming method in azodicarbonamide-NaOH aqueous solution. Mater. Lett. 2012, 81, 131–134. [Google Scholar]
- Galperin, M.Y.; Shalaeva, D.N. A bacterial coat that is not pure cotton. Science 2018, 359, 276. [Google Scholar] [CrossRef]
- Dieter, K.; Brigitte, H.; Hans-Peter, F.; Andreas, B. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem., Int. Ed. 2010, 36, 3358–3393. [Google Scholar]
- Luo, X.; Zhang, H.; Cao, Z.; Cai, N.; Xue, Y.; Yu, F. A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydr. Polym. 2016, 143, 231–238. [Google Scholar] [CrossRef]
- Maxwell, E.J.; Mazzeo, A.D.; Whitesides, G.M. Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bull. 2013, 38, 309–314. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.T.; Lakshmanan, V.K.; Anilkumar, T.V.; Ramya, C.; Reshmi, P.; Unnikrishnan, A.G.; Nair, S.V.; Jayakumar, R. Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: In vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 2012, 4, 2618–2629. [Google Scholar] [CrossRef]
- Liu, R.; Dai, L.; Si, C.; Zeng, Z. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym. 2018, 195, 63–70. [Google Scholar] [CrossRef]
- Lu, Z.; Gao, J.; He, Q.; Wu, J.; Liang, D.; Yang, H.; Chen, R. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym. 2017, 156, 460–469. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, Y.; Song, W.; Luan, J.; Wen, X.; Wu, Z.; Chen, X.; Wang, Q.; Guo, S. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing. Carbohydr. Polym. 2014, 102, 762–771. [Google Scholar] [CrossRef]
- Wu, C.N.; Fuh, S.C.; Lin, S.P.; Lin, Y.Y.; Chen, H.Y.; Liu, J.M.; Cheng, K.C. TEMPO-oxidized bacterial cellulose pellicle with silver nanoparticles for wound dressing. Biomacromolecules 2018, 19, 544–554. [Google Scholar] [CrossRef]
- Xu, L.; Bai, R.; Cheng, X.; Shao, A.; Chen, L.; Qu, S.; Chen, C. A Tiered Experimental Approach for Characterization and Silver Release of Silver-Containing Wound Dressings. J. Biomed. Nanotechnol. 2018, 14, 564–574. [Google Scholar] [CrossRef]
- Ye, S.; Jiang, L.; Wu, J.; Su, C.; Huang, C.; Liu, X.; Shao, W. Flexible Amoxicillin Grafted Bacterial Cellulose Sponges for Wound Dressing: In Vitro and in Vivo Evaluation. ACS Appl. Mater. Interfaces 2018, 10, 5862–5870. [Google Scholar] [CrossRef]
- Yang, K.; Han, Q.; Chen, B.; Zheng, Y.; Zhang, K.; Li, Q.; Wang, J. Antimicrobial hydrogels: Promising materials for medical application. Int. J. Nanomed. 2018, 13, 2217–2263. [Google Scholar] [CrossRef]
- Lidija, F.Z.; Zdenka, P.; Per, S. Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules 2009, 10, 1181–1187. [Google Scholar]
- Peršin, Z.; Maver, U.; Pivec, T.; Maver, T.; Vesel, A.; Mozetič, M.; Stana-Kleinschek, K. Novel cellulose based materials for safe and efficient wound treatment. Carbohydr. Polym. 2014, 100, 55–64. [Google Scholar] [CrossRef]
- Manzano, M.; Vallet-Regi, M. New developments in ordered mesoporous materials for drug delivery. J. Mater. Chem. 2010, 20, 5593–5604. [Google Scholar] [CrossRef]
- Paris, J.L.; Cabañas, M.V.; Miguel, M.; María, V.R. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers. Acs Nano 2015, 9, 11023–11033. [Google Scholar] [CrossRef] [Green Version]
- Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Ito, A.; Yoshiyuki, K.; Sogo, Y.; Watanabe, Y.; Yamazaki, A.; Ohno, T.; Tsuji, N.M. Hollow Structure Improved Anti-Cancer Immunity of Mesoporous Silica Nanospheres In Vivo. Small 2016, 12, 3602. [Google Scholar] [CrossRef]
- Yang, S.; Chen, D.; Li, N.; Xu, Q.; Li, H.; Gu, F.; Xie, J.; Lu, J. Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small 2016, 12, 360–370. [Google Scholar] [CrossRef]
- Namazi, H.; Rakhshaei, R.; Hamishehkar, H.; Kafil, H.S. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int. J. Biol. Macromol. 2016, 85, 327–334. [Google Scholar] [CrossRef]
- Sayari, A.; Han, B.; Yang, Y. Simple synthesis route to monodispersed SBA-15 silica rods. J. Am. Chem. Soc. 2004, 126, 14348–14349. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 407, 309–319. [Google Scholar] [CrossRef]
- Barrett, E.P.; Joyner, L.G.; Halenda, P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951, 73, 373–380. [Google Scholar] [CrossRef]
- Cai, N.; Li, C.; Luo, X.; Xue, Y.; Shen, L.; Yu, F. A strategy for improving mechanical properties of composite nanofibers through surface functionalization of fillers with hyperbranched polyglycerol. J. Mater. Sci. 2016, 51, 797–808. [Google Scholar] [CrossRef]
- Cai, N.; Han, C.; Luo, X.; Liu, S.; Yu, F. Rapidly and Effectively Improving the Mechanical Properties of Polyelectrolyte Complex Nanofibers through Microwave Treatment: Improving the Mechanical Properties of Polyelectrolyte Complex. Adv. Eng. Mater. 2017, 19, 1600483. [Google Scholar] [CrossRef]
- Cai, N.; Li, C.; Han, C.; Luo, X.; Shen, L.; Xue, Y.; Yu, F. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application. Appl. Surf. Sci. 2016, 369, 492–500. [Google Scholar] [CrossRef]
- Cao, Z.; Shen, Z.; Luo, X.; Zhang, H.; Liu, Y.; Cai, N.; Xue, Y.; Yu, F. Citrate-modified maghemite enhanced binding of chitosan coating on cellulose porous membranes for potential application as wound dressing. Carbohydr. Polym. 2017, 166, 320–328. [Google Scholar] [CrossRef]
- Cai, N.; Han, C.; Luo, X.; Chen, G.; Dai, Q.; Yu, F. Fabrication of Core/Shell Nanofibers with Desirable Mechanical and Antibacterial Properties by Pickering Emulsion Electrospinning. Macromol. Mater. Eng. 2017, 302, 1600364. [Google Scholar] [CrossRef]
- Cai, N.; Zeng, H.; Fu, J.; Chan, V.; Chen, M.; Li, H.; Yu, F. Synergistic effect of graphene oxide-silver nanofillers on engineering performances of polyelectrolyte complex nanofiber membranes. J. Appl. Polym. Sci. 2018, 135, 46238. [Google Scholar] [CrossRef]
- He, M.; Duan, B.; Xu, D.; Zhang, L. Moisture and solvent responsive cellulose/SiO2 nanocomposite materials. Cellulose 2015, 22, 553–563. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Doulabi, A.H.; Mirzadeh, H.; Imani, M.; Samadi, N. Chitosan/polyethylene glycol fumarate blend film: Physical and antibacterial properties. Carbohydr. Polym. 2013, 92, 48–56. [Google Scholar] [CrossRef]
- Rakhshaei, R.; Namazi, H. A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel. Mater. Sci. Eng. C 2017, 73, 456–464. [Google Scholar] [CrossRef]
- Ng, K.W.; Khor, H.L.; Hutmacher, D.W. In vitro characterization of natural and synthetic dermal matrices cultured with human dermal fibroblasts. Biomaterials 2004, 25, 2807–2818. [Google Scholar] [CrossRef]
- Archana, D.; Singh, B.K.; Dutta, J.; Dutta, P.K. In vivo evaluation of chitosan-PVP-titanium dioxide nanocomposite as wound dressing material. Carbohydr. Polym. 2013, 95, 530–539. [Google Scholar] [CrossRef]
- Yang, P.; Gaib, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev. 2012, 41, 3679–3698. [Google Scholar] [CrossRef]
- Abeer, M.M.; Mohd Amin, M.C.I.; Martin, C. A review of bacterial cellulose-based drug delivery systems: Their biochemistry, current approaches and future prospects. J. Pharm. Pharmacol. 2014, 66, 1047–1061. [Google Scholar] [CrossRef]
- Jeong, B.; Bae, Y.H.; Kim, S.W. Drug release from biodegradable injectable thermosensitive hydrogel of PEG–PLGA–PEG triblock copolymers. J. Control. Release 2000, 63, 155–163. [Google Scholar] [CrossRef]
- Liang, Y.; Fan, C.; Dong, H.; Zhang, W.; Tang, G.; Yang, J.; Jiang, N.; Cao, Y. Preparation of MSNs-chitosan@prochloraz nanoparticles for reducing toxicity and improving release properties of prochloraz. ACS Sustain. Chem. Eng. 2018, 6, 10211–10220. [Google Scholar] [CrossRef]
- Kayal, S.; Ramanujan, R.V. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater. Sci. Eng. C 2010, 30, 484–490. [Google Scholar] [CrossRef]
- Kabay, G.; Meydan, A.E.; Can, G.K.; Demirci, C.; Mutlu, M. Controlled release of a hydrophilic drug from electrospun amyloid-like protein blend nanofibers. Mater. Sci. Eng. C 2017, 81, 271–279. [Google Scholar] [CrossRef]
- Yang, H.; Gao, P.F.; Wu, W.B.; Yang, X.X.; Zeng, Q.L.; Li, C.; Cheng, Z.H. Antibacterials loaded electrospun composite nanofibers: Release profile and sustained antibacterial efficacy. Polym. Chem. 2014, 5, 1965–1975. [Google Scholar] [CrossRef]
- Eduardo, V.; Mariamelia, S.; Loredana, T.; Luis, C.; Omar, M.; Vittoria, V. Preparation, characterization and antibacterial activity of poly(epsilon-caprolactone) electrospun fibers loaded with amoxicillin for controlled release in biomedical applications. J. Nanosci. Nanotechnol. 2013, 13, 1717–1726. [Google Scholar]
- Visscher, L.E.; Dang, H.P.; Knackstedt, M.; Hutmacher, D.W.; Tran, P.A. Novel 3D printed Polycaprolactone scaffolds with dual macro-microporosity for applications in local delivery of antibiotics. Mater. Sci. Eng. C 2018, 87, 78–89. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, S.; Mercante, L.A.; Andre, R.S.; BrandO, H.d.M.; Mattoso, L.H.C.; Correa, D.S. Biocompatible electrospun nanofibers containing cloxacillin: Antibacterial activity and effect of pH on the release profile. React. Polym. 2018, 132, 26–35. [Google Scholar]
- Kurečič, M.; Maver, T.; Virant, N.; Ojstršek, A.; Gradišnik, L.; Hribernik, S.; Kolar, M.; Maver, U.; Kleinschek, K.S. A multifunctional electrospun and dual nano-carrier biobased system for simultaneous detection of pH in the wound bed and controlled release of benzocaine. Cellulose 2018, 25, 7277–7297. [Google Scholar] [CrossRef]
Sample | Surface (m²/g) | Pore Size (nm) | Pore Volume (cm3/g) |
---|---|---|---|
Pristine SBA-15 | 494 ± 27.5 | 8.96 ± 0.19 | 1.31 ± 0.07 |
Calcined CM-Ca3-SBA(30%) | 487 ± 9.70 | 9.08 ± 0.32 | 1.29 ± 0.02 |
Calcined CM-Ca2-SBA(30%) | 482 ± 9.73 | 9.07 ± 0.04 | 1.30 ± 0.06 |
Calcined CM-Ca1-SBA(30%) | 379 ± 43.7 | 9.23 ± 0.35 | 1.06 ± 0.08 |
Calcined CM-U-SBA(30%) | 174 ± 45.0 | 13.6 ± 2.22 | 0.71 ± 0.12 |
Matrix | Drug | Drug Delivery System | Relative Antibacterial Response* | Sustained Release Time | Ref. |
---|---|---|---|---|---|
CMC/MCM-41 | Methylene blue | Hydrogel | 2.75 | 72 h | [32] |
CMC/MCM-41/ZnO | Tetracycline | Hydrogel | 4.14 | 72 h | [45] |
Bovine Serium Albumine | Amoxillin | Electrospun nanofibers | 3 | 150 h | [53] |
PAN/Agar | Ampicillin | Electrospun nanofibers | 3.33 | 180 h | [54] |
PCL | Amoxillin | Electrospun nanofibers | 5.5 | 200 h | [55] |
PCL | Cefazolin | 3D printing Nanofibers | 5.4 | 120 h | [56] |
PLA/PBAT | Cloxacillin | Electrospun nanofibers | 3.75 | 50 h | [57] |
CA | Benzocaine | Electrospun nanofibers | - | 5 h | [58] |
Cellulose/SBA-15CM-Ca2-SBA(30%) | Chloramphenicol | Composite membranes | 4.23 | 270 h | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Cai, N.; Xue, Y.; Chan, V.; Yu, B.; Wang, J.; Song, H.; Deng, H.; Yu, F. Engineering Sustainable Antimicrobial Release in Silica-Cellulose Membrane with CaCO3-Aided Processing for Wound Dressing Application. Polymers 2019, 11, 808. https://doi.org/10.3390/polym11050808
Shen Z, Cai N, Xue Y, Chan V, Yu B, Wang J, Song H, Deng H, Yu F. Engineering Sustainable Antimicrobial Release in Silica-Cellulose Membrane with CaCO3-Aided Processing for Wound Dressing Application. Polymers. 2019; 11(5):808. https://doi.org/10.3390/polym11050808
Chicago/Turabian StyleShen, Zhi, Ning Cai, Yanan Xue, Vincent Chan, Bo Yu, Jianzhi Wang, Hao Song, Hang Deng, and Faquan Yu. 2019. "Engineering Sustainable Antimicrobial Release in Silica-Cellulose Membrane with CaCO3-Aided Processing for Wound Dressing Application" Polymers 11, no. 5: 808. https://doi.org/10.3390/polym11050808
APA StyleShen, Z., Cai, N., Xue, Y., Chan, V., Yu, B., Wang, J., Song, H., Deng, H., & Yu, F. (2019). Engineering Sustainable Antimicrobial Release in Silica-Cellulose Membrane with CaCO3-Aided Processing for Wound Dressing Application. Polymers, 11(5), 808. https://doi.org/10.3390/polym11050808