Fabrication of Water-Compatible Molecularly Imprinted Resin in a Hydrophilic Deep Eutectic Solvent for the Determination and Purification of Quinolones in Wastewaters
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Chromatography Instruments
2.2. Synthesis of Hydrophilic DES and DES-Based MIR
2.3. Characterization of DES and DES-MIR
2.4. Adsorption Behavior of OFL on the Hydrophilic Resin
2.5. DES-MIR-Based SPE for Environmental Water
3. Results and Discussion
3.1. Synthesis of DES and DES-Based Hydrophilic MIR
3.2. Characterization of DES-MIR
3.3. Hydrophilic Performance of DES-MIR
3.4. Static Adsorption and Dynamic Adsorption
3.5. Validation of the DES1-MIR-SPE in HPLC
3.6. Application of DES-MIR in SPE for the Determination of Quinolones in Wastewater
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, G.; Row, K.H. Recent applications of molecularly imprinted polymers (MIPs) on micro-extraction techniques. Sep. Purif. Rev. 2018, 47, 1–18. [Google Scholar] [CrossRef]
- Qi, M.; Zhao, K.; Bao, Q.; Pan, P.; Zhao, Y.; Yang, Z.; Wang, H.; Wei, J. Adsorption and electrochemical detection of bovine serum albumin imprinted calcium alginate hydrogel membrane. Polymers 2019, 11, 622. [Google Scholar] [CrossRef]
- Larpant, N.; Suwanwong, Y.; Boonpangrak, S.; Laiwattanapaisal, W. Exploring matrix effects on binding properties and characterization of cotinine molecularly imprinted polymer on paper-based scaffold. Polymers 2019, 11, 570. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, X.; Zhao, D. Computer-Aided design of molecularly imprinted polymers for simultaneous detection of clenbuterol and its metabolites. Polymers 2019, 11, 17. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L. Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 2019, 195, 390–400. [Google Scholar] [CrossRef]
- Sarafraz-Yazdi, A.; Razavi, N. Application of molecularly-imprinted polymers in solid-phase microextraction techniques. TrAC-Trend. Anal. Chem. 2015, 73, 81–90. [Google Scholar] [CrossRef]
- Pan, J.; Chen, W.; Ma, Y.; Pan, G. Molecularly imprinted polymers as receptor mimics for selective cell recognition. Chem. Soc. Rev. 2018, 47, 5574–5587. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Chang, R.; Zhu, Q.J. Synthesis and characterization of a molecularly imprinted polymer of spermidine and the exploration of its molecular recognition properties. Polymers 2018, 10, 1389. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Huang, C.; Jiao, Y.; Chen, J. A phenolphthalein-dummy template molecularly imprinted polymer for highly selective extraction and clean-up of bisphenol A in complex biological, environmental and food samples. Polymers 2018, 10, 1150. [Google Scholar] [CrossRef] [PubMed]
- Sergeyeva, T.; Yarynka, D.; Piletska, E.; Lynnik, R.; Zaporozhets, O.; Brovko, O.; Piletsky, S.; El’skaya, A. Fluorescent sensor systems based on nanostructured polymeric membranes for selective recognition of Aflatoxin B1. Talanta 2017, 175, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Wang, B.; Kozbial, A.; Li, L. From molecular arrangement to macroscopic wetting of ionic liquids on the mica surface: Effect of humidity. Langmuir 2018, 34, 12167–12173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Park, S.J. Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(VI) in aqueous solution. Chem. Eng. J. 2019, 369, 353–362. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, S.J. Facile construction of MoO3@ ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI). Appl. Catal. B-Environ. 2019, 240, 92–101. [Google Scholar] [CrossRef]
- Cai, J.; Chen, T.; Xu, Y.; Wei, S.; Huang, W.; Liu, R.; Liu, J. A versatile signal-enhanced ECL sensing platform based on molecular imprinting technique via PET-RAFT cross-linking polymerization using bifunctional ruthenium complex as both catalyst and sensing probes. Biosens. Bioelectron. 2019, 124, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Li, G.; Row, K.H.; Zhu, T. Preparation of hybrid molecularly imprinted polymer with double-templates for rapid simultaneous purification of theophylline and chlorogenic acid in green tea. Talanta 2016, 152, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Row, K.H. Hydrophobic ionic liquid modified thermoresponsive molecularly imprinted monolith for the selective recognition and separation of tanshinones. J. Sep. Sci. 2018, 41, 3372–3381. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Yan, H.; Cao, J.; Han, Y.; Shen, S.; Bai, L. Molecularly imprinted phloroglucinol–formaldehyde–melamine resin prepared in a deep eutectic solvent for selective recognition of clorprenaline and bambuterol in urine. Anal. Chim. Acta 2017, 951, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Row, K.H. Novel controllable hydrophilic thermo-responsive molecularly imprinted resin adsorbent prepared in water for selective recognition of alkaloids by thermal-assisted dispersive solid phase extraction. J. Pharmaceut. Biomed. 2018, 160, 386–396. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ding, J.; He, Z.; Li, J.; Liang, Z.; Li, C.; Li, Y.; Chen, Y.; Ding, L. Preparation of magnetic superhydrophilic molecularly imprinted composite resin based on multi-walled carbon nanotubes to detect triazines in environmental water. Chem. Eng. J. 2018, 334, 2293–2302. [Google Scholar] [CrossRef]
- Wang, M.; Liang, S.; Bai, L.; Qiao, F.; Yan, H. Green protocol for the preparation of hydrophilic molecularly imprinted resin in water for the efficient selective extraction and determination of plant hormones from bean sprouts. Anal. Chim. Acta 2019, 1064, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ding, J.; Ni, L.; Yu, J.; Li, H.; Ding, H.; Chen, Y.; Ding, L. Preparation of magnetic superhydrophilic molecularly imprinted resins for detection of triazines in aqueous samples. J. Chromatogr. A 2017, 1497, 38–46. [Google Scholar] [CrossRef]
- Lv, T.; Yan, H.; Cao, J.; Liang, S. Hydrophilic molecularly imprinted resorcinol–formaldehyde–melamine resin prepared in water with excellent molecular recognition in aqueous matrices. Anal. Chem. 2015, 87, 11084–11091. [Google Scholar] [CrossRef]
- Abbott, A.P.; Capper, G.; Davies, D.L.; Rasheed, R.K.; Tambyrajah, V. Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 2003, 1, 70–71. [Google Scholar] [CrossRef]
- Tang, W.; Dai, Y.; Row, K.H. Evaluation of fatty acid/alcohol-based hydrophobic deep eutectic solvents as media for extracting antibiotics from environmental water. Anal. Bioanal. Chem. 2018, 410, 7325–7336. [Google Scholar] [CrossRef]
- Tuzen, M. A new robust, deep eutectic-based floating organic droplets microextraction method for determination of lead in a portable syringe system directly couple with FAAS. Talanta 2019, 196, 71–77. [Google Scholar]
- Hu, Y.; Cai, T.; Zhang, H.; Chen, J.; Li, Z.; Qiu, H. Poly (itaconic acid)-grafted silica stationary phase prepared in deep eutectic solvents and its unique performance in hydrophilic interaction chromatography. Talanta 2019, 191, 265–271. [Google Scholar] [CrossRef]
- Yang, X.; Wang, R.; Wang, W.; Yan, H.; Qiu, M.; Song, Y. Synthesis of a novel molecularly imprinted organic–inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia. J. Chromatogr. B 2014, 945, 127–134. [Google Scholar] [CrossRef]
Abbreviation | HBA | HBD | Mole Ratio | Aspect |
---|---|---|---|---|
DES1 | ChCl | EG | HBA:HBD 1:2 | Liquid |
DES2 | TMAB | Liquid | ||
DES3 | TMAC | Liquid |
Materials | #1: Monomer1 (mmol) | Crosslinking (mmol) | Solvent2 (mL) | #2: Monomer2 (mmol) | Crosslinking (mmol) | Solvent2 (mL) | Template (mmol) |
---|---|---|---|---|---|---|---|
MIR | 30 | 60 | MeOH 10 | 10 | 30 | MeOH 20 | 0.25 |
DES1-MIR | 30 | 60 | DES1 6 | 10 | 30 | DES1 6 | 0.25 |
DES2-MIR | 30 | 60 | DES2 6 | 10 | 30 | DES2 6 | 0.25 |
DES3-MIR | 30 | 60 | DES3 6 | 10 | 30 | DES3 6 | 0.25 |
NIR | 30 | 60 | MeOH 10 | 10 | 30 | MeOH 10 | - |
DES1-NIR | 30 | 60 | DES1 6 | 10 | 30 | DES1 6 | - |
DES2-NIR | 30 | 60 | DES2 6 | 10 | 30 | DES2 6 | - |
DES3-NIR | 30 | 60 | DES3 6 | 10 | 30 | DES3 6 | - |
Isotherm Model | Parameter | MIR | NIR | DES1-MIR | DES2-MIR | DES3-MIR |
---|---|---|---|---|---|---|
Langmuir | R2 | 0.9786 | 0.9923 | 0.9618 | 0.9824 | 0.9840 |
Qmax | 15.33 | 6.85 | 32.92 | 26.39 | 23.79 | |
K | 0.027 | 0.058 | 0.047 | 0.047 | 0.042 | |
Freundlich | R2 | 0.9736 | 0.9373 | 0.9236 | 0.9663 | 0.9569 |
K | 1.31 | 1.34 | 3.63 | 3.30 | 2.60 | |
1/n | 0.45 | 0.31 | 0.44 | 0.41 | 0.43 | |
Scatchard | R2 | 0.8334 | 0.9781 | 0.5652 | 0.8215 | 0.8245 |
Qmax | 0.60 | 0.38 | 3.55 | 1.50 | 1.03 | |
K | −0.044 | −0.056 | −0.13 | −0.061 | −0.044 |
Kinetic Model | Parameters | DES1-MIR | MIR |
---|---|---|---|
Pseudo-first-order | R2 | 0.9911 | 0.8689 |
Qe | 27.31 | 4.21 | |
K1 | 0.020 | 0.018 | |
Pseudo-second-order | R2 | 0.9814 | 0.9972 |
Qe | 34.22 | 7.14 | |
K2 | 0.00034 | 0.0084 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Row, K.H. Fabrication of Water-Compatible Molecularly Imprinted Resin in a Hydrophilic Deep Eutectic Solvent for the Determination and Purification of Quinolones in Wastewaters. Polymers 2019, 11, 871. https://doi.org/10.3390/polym11050871
Tang W, Row KH. Fabrication of Water-Compatible Molecularly Imprinted Resin in a Hydrophilic Deep Eutectic Solvent for the Determination and Purification of Quinolones in Wastewaters. Polymers. 2019; 11(5):871. https://doi.org/10.3390/polym11050871
Chicago/Turabian StyleTang, Weiyang, and Kyung Ho Row. 2019. "Fabrication of Water-Compatible Molecularly Imprinted Resin in a Hydrophilic Deep Eutectic Solvent for the Determination and Purification of Quinolones in Wastewaters" Polymers 11, no. 5: 871. https://doi.org/10.3390/polym11050871
APA StyleTang, W., & Row, K. H. (2019). Fabrication of Water-Compatible Molecularly Imprinted Resin in a Hydrophilic Deep Eutectic Solvent for the Determination and Purification of Quinolones in Wastewaters. Polymers, 11(5), 871. https://doi.org/10.3390/polym11050871