



# **Supplementary Materials: Fabrication of** Water-Compatible Molecularly Imprinted Resin in a Hydrophilic Deep Eutectic Solvent for the Determination and Purification of Quinolones in Wastewaters

## Weiyang Tang and Kyung Ho Row

### **1. HPLC Conditions**

HPLC was performed using YL9110 equipment from Younglin Co. Ltd. (Daegu, Korea), which included a YL9110 quaternary pump, YL9101 vacuum degasser, YL9131 column compartment, and YL9120 ultraviolet-visible dual channel detector. The analysis was conducted on a Chromatography Data System Autochro-3000 (Younglin Co. Ltd., Daegu, Korea) using an Optima pak C<sub>18</sub> column (5  $\mu$ m, 250 × 4.6 mm, RS Tech Corporation, Daejeon, Korea). The mobile phase was a 0.02 mol/L TMAB-ACN-TFA (90:10:0.06, v/v/v) solution with a flow rate of 1.0 mL/min. The injection volume was 10 $\mu$ L and the detection wavelength was set to 280 nm. The column temperature was set to 25 °C.

#### 2. Synthesis of DES-based MIR

First, a 30 mmol resorcinol and 60 mmol formaldehyde solution (37%) was added to 6 mL of the DES (DES-1, DES-2, or DES-3) as the reaction solvent at 40 °C with stirring (bottle #1). Subsequently, 10 mmol melamine and 30 mmol formaldehyde were dissolved in 6 mL of DES and stirred at 80 °C until the solution became transparent (bottle #2). Bottle #2 was then allowed to cool to room temperature. The solution in bottle #2 was poured into bottle #1 with stirring. The next step was achieved by adding 0.25 mmol template (OFL) into bottle #1 for self-assembly for 1h at 40 °C. Subsequently, bottle #1 was heated to 80 °C for 24 h. The resulting solid was collected by suction filtration and washed several times with ultrapure water to remove the un-reacted reagents and DES. The obtained solid particles were eluted with methanol-water-acetic acid (8/1/1, v/v/v) until the elution did not contain the template, which was then checked by HPLC. Finally, the DES-MIR was washed with methanol to neutrality and dried at 50 °C for 24 h

| Specimens             | N content<br>(wt%) | Br or Cl content<br>(wt%) |
|-----------------------|--------------------|---------------------------|
| MIR                   | 12.48              | -                         |
| DES <sup>1</sup> -MIR | 11.04              | 14.40(Cl)                 |
| DES <sup>2</sup> -MIR | 7.34               | 36.13(Br)                 |
| DES <sup>3</sup> -MIR | 8.21               | 25.42(Cl)                 |

Table S1. Properties of the adsorbents.

| Compound | Calibration<br>equation (µg/mL) | Linear<br>range<br>(µg/mL) | LOD<br>(µg/mL) | LOQ<br>(µg/mL) | R <sup>2</sup> |
|----------|---------------------------------|----------------------------|----------------|----------------|----------------|
| OFL      | y = 56.3x + 13.8                | 0.1 - 100                  | 0.012          | 0.040          | 0.9995         |
| CIP      | y = 48.5x + 8.2                 | 0.1-100                    | 0.018          | 0.060          | 0.9989         |

**Table S2.** Calibration equation, linear ranges, LOD and LOQ for the OFL and CIP with DES<sup>1</sup>-MIR-SPE method.

**Table S3.** Intra-day and inter-day precision, accuracy and recovery of OLF and CIP at three different concentrations (n = 3) with DES<sup>1</sup>-MIR-SPE method.

| Analyts | Spiked<br>(µg/mL) | Intra-day    |         | Inter-day       |         | Method<br>Recovery(%) |
|---------|-------------------|--------------|---------|-----------------|---------|-----------------------|
|         |                   | Recovery (%) | RSD (%) | Recovery<br>(%) | RSD (%) | -                     |
| OLF     | 1                 | 93.4         | 3.3     | 91.7            | 3.1     | 92.3                  |
|         | 10                | 94.5         | 2.4     | 93.2            | 2.4     | 93.9                  |
|         | 100               | 93.5         | 1.9     | 94.5            | 2.2     | 94.0                  |
| CIP     | 1                 | 89.2         | 3.7     | 91.5            | 4.6     | 90.4                  |
|         | 10                | 92.6         | 2.5     | 94.4            | 3.4     | 93.5                  |
|         | 100               | 91.4         | 2.1     | 88.7            | 3.0     | 90.1                  |

Table S4. Comparison of the present method with previously reported methods.

| Adsorbents        | Sample     | Linearity<br>(µg/mL) | Recovery<br>(%) | LOD<br>(µg/mL) | RSD<br>(%) | Ref.                    |
|-------------------|------------|----------------------|-----------------|----------------|------------|-------------------------|
| MIP               | Serum      | 0.35-150             | 90.7-101.2      | 0.07           | 2.9-4.1    | Qiao et al <sup>1</sup> |
| Hybrid-MIP        | Tilapia    | 0.05-25              | 87.3-100.6      | 0.0072         | 1.9-2.5    | Yan et al <sup>2</sup>  |
| Magnetic graphene | Food (Egg) | 0.2–2                | 96.5-98.0       | 0.2            | 2.3-3.0    | Wang et al <sup>3</sup> |
| MIP particle      | Milk       | 0.02-1               | 78.3-97.7       | 0.01           | 2.4        | Wang et al <sup>4</sup> |
| DES-MIR           | Wastewater | 0.1-100              | 90.1-94.0       | 0.012          | 1.9-4.6    | This study              |

**Table S5.** Extraction and determination of OLF and CIP in real water sample from local environment with DES<sup>1</sup>-MIR-SPE method (n=3).

| Sample              | Analytes | Concentration<br>before SPE<br>(µg/mL) | Concentration<br>after SPE<br>(µg/mL) | Recovery<br>(%) | RSD<br>(%) |
|---------------------|----------|----------------------------------------|---------------------------------------|-----------------|------------|
| Sample <sup>a</sup> | OLF      | *                                      | *                                     | *               | *          |
|                     | CIP      | *                                      | *                                     | *               | *          |
| Sample <sup>b</sup> | OLF      | 0.35                                   | *                                     | 93.0            | 2.6        |
|                     | CIP      | 0.45                                   | *                                     | *               | *          |
| Sample <sup>c</sup> | OLF      | 0.91                                   | 0.850                                 | 93.4            | 2.0        |
|                     | CIP      | 1.32                                   | 1.21                                  | 91.8            | 1.5        |

a: tap water; b: lake water; c: seafood market water; \*: not detected.

#### References

- Qiao, F.; Yan, H. Simultaneous analysis of fluoroquinolones and xanthine derivatives in serum by molecularly imprinted matrix solid-phase dispersion coupled with liquid chromatography. *J. Chromatogr.* B, 2011, 879, 3551–3555.
- 2. Yang, X.; Wang, R.; Wang, W.; Yan, H.; Qiu, M.; Song, Y. Synthesis of a novel molecularly imprinted organic–inorganic hybrid polymer for the selective isolation and determination of fluoroquinolones in tilapia. *J. Chromatogr. B* **2014**, *945*, 127–134.
- 3. He, X.; Wang, G.N.; Yang, K.; Liu, H.Z.; Wu, X.J.; Wang, J.P. Magnetic graphene dispersive solid phase extraction combining high performance liquid chromatography for determination of fluoroquinolones in foods. *Food Chem.* **2017**, *221*, 1226–1231.
- 4. Wang, G.N.; Yang, K.; Liu, H.Z.; Feng, M.X.; Wang, J.P. Molecularly imprinted polymer-based solid phase extraction combined high performance liquid chromatography for determination of fluoroquinolones in milk. *Anal. Methods* **2016**, *8*, 5511–5518.



© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).