Molecularly Imprinted Polymer Materials as Selective Recognition Sorbents for Explosives: A Review
Abstract
:1. Introduction
2. Sensors
2.1. Electrochemical Sensors
2.2. Fluorescence and Chemiluminescence Sensors
2.3. Surface Plasmon Resonance (SPR) and Localized Surface Plasmon Resonance (LSPR) Sensors
2.4. Surface-Enhanced Raman Scattering (SERS)
2.5. Colorimetric Sensors
2.6. Integrated-Optical-Waveguide (IOW)
2.7. Quartz Crystal Microbalance (QCM)
3. Sample Preparation
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Ag-SMNs | Silver molybdate nanowires |
CPE | Carbon paste electrode |
EQCM | Electrochemical quartz crystal microbalance |
GCE | Glassy carbon electrode |
IOW | Integrated-Optical-Waveguide |
LSPR | Localized surface plasmon resonance |
NACs | Nitroaromatic compounds |
2D-MIMs | Two-dimensional molecularly imprinted monolayers |
PS | Polystyrene |
PCs | Photonic crystals |
POFs | plastic optical fibers |
SPR | Surface plasmon resonance |
SERS | Surface-enhanced Raman scattering |
References
- Wulff, G. Molecular imprinting in cross-linked materials with the aid of molecular templates—A way towards artificial antibodies. Angew. Chem. 1995, 34, 1812–1832. [Google Scholar] [CrossRef]
- Wulff, G. Fourty years of molecular imprinting in synthetic polymers: Origin, features and perspectives. Microchim. Acta 2013, 180, 1359–1370. [Google Scholar] [CrossRef]
- McCluskey, A.; Holdsworth, C.I.; Bowyer, M.C. Molecularly imprinted polymers (mips): Sensing, an explosive new opportunity? Org. Biomol. Chem. 2007, 5, 3233–3244. [Google Scholar] [CrossRef] [PubMed]
- Martin-Esteban, A. Molecularly-imprinted polymers as a versatile, highly selective tool in sample preparation. TrAC-Trends Anal. Chem. 2013, 45, 169–181. [Google Scholar] [CrossRef]
- Beyazit, S.; Bui, B.T.S.; Haupt, K.; Gonzato, C. Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization. Prog. Polym. Sci. 2016, 62, 1–21. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ganjali, M.R.; Norouzi, P.; Zare, M.; Zeraatkar, A. A novel high selective and sensitive para-nitrophenol voltammetric sensor, based on a molecularly imprinted polymer-carbon paste electrode. Talanta 2009, 79, 1197–1203. [Google Scholar] [CrossRef]
- Zarejousheghani, M.; Schrader, S.; Moder, M.; Lorenz, P.; Borsdorf, H. Ion-exchange molecularly imprinted polymer for the extraction of negatively charged acesulfame from wastewater samples. J. Chromatogr. A 2015, 1411, 23–33. [Google Scholar] [CrossRef]
- Alizadeh, T.; Ganjali, M.R.; Zare, M.; Norouzi, P. Development of a voltammetric sensor based on a molecularly imprinted polymer (mip) for caffeine measurement. Electrochim. Acta 2010, 55, 1568–1574. [Google Scholar] [CrossRef]
- Zarejousheghani, M.; Schrader, S.; Moder, M.; Schmidt, M.; Borsdorf, H. A new strategy for accelerated extraction of target compounds using molecularly imprinted polymer particles embedded in a paper-based disk. J. Mol. Recognit. 2018, 31. [Google Scholar] [CrossRef]
- Zarejousheghani, M.; Schrader, S.; Moder, M.; Mayer, T.; Borsdorf, H. Negative electrospray ionization ion mobility spectrometry combined with paper-based molecular imprinted polymer disks: A novel approach for rapid target screening of trace organic compounds in water samples. Talanta 2018, 190, 47–54. [Google Scholar] [CrossRef]
- Zarejousheghani, M.; Fiedler, P.; Moder, M.; Borsdorf, H. Selective mixed-bed solid phase extraction of atrazine herbicide from environmental water samples using molecularly imprinted polymer. Talanta 2014, 129, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Zarejousheghani, M.; Moder, M.; Borsdorf, H. A new strategy for synthesis of an in-tube molecularly imprinted polymer-solid phase microextraction device: Selective off-line extraction of 4-nitrophenol as an example of priority pollutants from environmental water samples. Anal. Chim. Acta 2013, 798, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.H.; Zhang, Q.Y.; Xue, M.; Wang, D.; Wang, A. Removal of 2,4,6-trinitrotoluene from “pink water” using molecularly-imprinted absorbent. Propellants Explos. Pyrotech. 2012, 37, 100–106. [Google Scholar] [CrossRef]
- Zhu, W.; Wang, C.; Wang, H.; Li, G.T. Theory and simulation of diffusion-adsorption into a molecularly imprinted mesoporous film and its nanostructured counterparts. Experimental application for trace explosive detection. RSC Adv. 2014, 4, 40676–40685. [Google Scholar] [CrossRef]
- Zhao, H.X.; Ma, X.L.; Li, Y.B.; Du, R.K.; Zhang, Z.G.; An, F.Q.; Gao, B.J. Selective detection of tnt using molecularly imprinted polymer microsphere. Desalin. Water Treat. 2015, 55, 278–283. [Google Scholar] [CrossRef]
- Stringer, R.C.; Gangopadhyay, S.; Grant, S.A. Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics. Anal. Chim. Acta 2011, 703, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.G.; Liu, B.H.; Wang, Z.Y.; Gao, D.M.; Guan, G.J.; Zhang, Z.P. Molecular imprinting at walls of silica nanotubes for tnt recognition. Anal. Chem. 2008, 80, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Lazau, C.; Iordache, T.V.; Florea, A.M.; Orha, C.; Bandas, C.; Radu, A.L.; Sarbu, A.; Rotariu, T. Towards developing an efficient sensitive element for trinitrotoluene detection: TiO2 thin films functionalized with molecularly imprinted copolymer films. Appl. Surf. Sci. 2016, 384, 449–458. [Google Scholar] [CrossRef]
- Gao, D.M.; Zhang, Z.P.; Wu, M.H.; Xie, C.G.; Guan, G.J.; Wang, D.P. A surface functional monomer-directing strategy for highly dense imprinting of tnt at surface of silica nanoparticles. J. Am. Chem. Soc. 2007, 129, 7859–7866. [Google Scholar] [CrossRef]
- Guan, G.J.; Liu, R.Y.; Mei, Q.S.; Zhang, Z.P. Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres. Chemistry 2012, 18, 4692–4698. [Google Scholar] [CrossRef]
- Niu, Q.Y.; Gao, K.Z.; Lin, Z.H.; Wu, W.H. Surface molecular-imprinting engineering of novel cellulose nanofibril/conjugated polymer film sensors towards highly selective recognition and responsiveness of nitroaromatic vapors. Chem. Commun. 2013, 49, 9137–9139. [Google Scholar] [CrossRef] [PubMed]
- Huynh, T.P.; Sosnowska, M.; Sobczak, J.W.; Kc, C.B.; Nesterov, V.N.; D’Souza, F.; Kutner, W. Simultaneous chronoamperometry and piezoelectric microgravimetry determination of nitroaromatic explosives using molecularly imprinted thiophene polymers. Anal. Chem. 2013, 85, 8361–8368. [Google Scholar] [CrossRef] [PubMed]
- Pesavento, M.; D’Agostino, G.; Alberti, G.; Biesuz, R.; Merli, D. Voltammetric platform for detection of 2,4,6-trinitrotoluene based on a molecularly imprinted polymer. Anal. Bioanal. Chem. 2013, 405, 3559–3570. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh, T.; Zare, M.; Ganjali, M.R.; Norouzi, P.; Tavana, B. A new molecularly imprinted polymer (MIP)-based electrochemical sensor for monitoring 2,4,6-trinitrotoluene (TNT) in natural waters and soil samples. Biosens. Bioelectron. 2010, 25, 1166–1172. [Google Scholar] [CrossRef]
- Alizadeh, T. Preparation of magnetic tnt-imprinted polymer nanoparticles and their accumulation onto magnetic carbon paste electrode for tnt determination. Biosens. Bioelectron. 2014, 61, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Shahdost-fard, F.; Roushani, M. Impedimetric detection of trinitrotoluene by using a glassy carbon electrode modified with a gold nanoparticle@fullerene composite and an aptamer-imprinted polydopamine. Microchim. Acta 2017, 184, 3997–4006. [Google Scholar] [CrossRef]
- Nie, D.X.; Jiang, D.W.; Zhang, D.; Liang, Y.; Xue, Y.; Zhou, T.S.; Jin, L.T.; Shi, G.Y. Two-dimensional molecular imprinting approach for the electrochemical detection of trinitrotoluene. Sens. Actuators B Chem. 2011, 156, 43–49. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Bourenko, T.; Granot, E.; Willner, I. Imprinting of molecular recognition sites through electropolymerization of functionalized au nanoparticles: Development of an electrochemical tnt sensor based on pi-donor-acceptor interactions. J. Am. Chem. Soc. 2008, 130, 9726–9733. [Google Scholar] [CrossRef]
- Stringer, R.C.; Gangopadhyay, S.; Grant, S.A. Detection of nitroaromatic explosives using a fluorescent-labeled imprinted polymer. Anal. Chem. 2010, 82, 4015–4019. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.G.; Zhang, Z.P.; Wang, D.P.; Guan, G.J.; Gao, D.M.; Liu, J.H. Surface molecular self-assembly strategy for tnt imprinting of polymer nanowire/nanotube arrays. Anal. Chem. 2006, 78, 8339–8346. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Tao, S.Y.; Tao, C.A.; Li, W.N.; Lin, C.X.; Li, M.; Wen, Y.Q.; Li, G.T. Hierarchically imprinted porous films for rapid and selective detection of explosives. Langmuir 2011, 27, 8451–8457. [Google Scholar] [CrossRef]
- Hassanzadeh, J.; Khataee, A.; Oskoei, Y.M.; Fattahi, H.; Bagheri, N. Selective chemiluminescence method for the determination of trinitrotoluene based on molecularly imprinted polymer-capped zno quantum dots. New J. Chem. 2017, 41, 10659–10667. [Google Scholar] [CrossRef]
- Cennamo, N.; D’Agostino, G.; Galatus, R.; Bibbo, L.; Pesavento, M.; Zeni, L. Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene. Sens. Actuators B Chem. 2013, 188, 221–226. [Google Scholar] [CrossRef]
- Cennamo, N.; Dona, A.; Pallavicini, P.; D’Agostino, G.; Dacarro, G.; Zeni, L.; Pesavento, M. Sensitive detection of 2,4,6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars. Sens. Actuators B Chem. 2015, 208, 291–298. [Google Scholar] [CrossRef]
- Holthoff, E.L.; Stratis-Cullum, D.N.; Hankus, M.E. A nanosensor for tnt detection based on molecularly imprinted polymers and surface enhanced raman scattering. Sensors 2011, 11, 2700–2714. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.B.; Ma, L.A.; Chen, G.Y.; Liu, J.H.; Tian, Z.Q. Ultrasensitive sers detection of tnt by imprinting molecular recognition using a new type of stable substrate. Chemistry 2010, 16, 12683–12693. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Asher, S.A.; Meng, Z.H.; Yan, Z.Q.; Xue, M.; Qiu, L.L.; Yi, D. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal. J. Hazard. Mater. 2016, 316, 87–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, W.; Dong, X.; Qiu, L.L.; Yan, Z.Q.; Meng, Z.H.; Xue, M.; He, X.; Liu, X.Y. Colorimetric sensor arrays based on pattern recognition for the detection of nitroaromatic molecules. J. Hazard. Mater. 2017, 326, 130–137. [Google Scholar] [CrossRef]
- Walker, N.R.; Linman, M.J.; Timmers, M.M.; Dean, S.L.; Burkett, C.M.; Lloyd, J.A.; Keelor, J.D.; Baughman, B.M.; Edmiston, P.L. Selective detection of gas-phase tnt by integrated optical waveguide spectrometry using molecularly imprinted sol-gel sensing films. Anal. Chim. Acta 2007, 593, 82–91. [Google Scholar] [CrossRef]
- Edmiston, P.L.; Campbell, D.P.; Gottfried, D.S.; Baughman, J.; Timmers, M.M. Detection of vapor phase trinitrotoluene in the parts-per-trillion range using waveguide interferometry. Sens. Actuators B Chem. 2010, 143, 574–582. [Google Scholar] [CrossRef]
- Bunte, G.; Hurttlen, J.; Pontius, H.; Hartlieb, K.; Krause, H. Gas phase detection of explosives such as 2,4,6-trinitrotoluene by molecularly imprinted polymers. Anal. Chim. Acta 2007, 591, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Bunte, G.; Heil, M.; Roseling, D.; Hurttlen, J.; Pontius, H.; Krause, H. Trace detection of explosives vapours by molecularly imprinted polymers for security measures. Propellants Explos. Pyrotech. 2009, 34, 245–251. [Google Scholar] [CrossRef]
- Trammell, S.A.; Zeinali, M.; Melde, B.J.; Charles, P.T.; Velez, F.L.; Dinderman, M.A.; Kusterbeck, A.; Markowitz, M.A. Nanoporous organosilicas as preconcentration materials for the electrochemical detection of trinitrotoluene. Anal. Chem. 2008, 80, 4627–4633. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Li, H.Y.; Meng, Z.H.; Liang, X.X.; Xue, M.; Wang, Q.H.; Dong, X. Detection of nitrobenzene compounds in surface water by ion mobility spectrometry coupled with molecularly imprinted polymers. J. Hazard. Mater. 2014, 280, 588–594. [Google Scholar] [CrossRef]
- Bianchi, F.; Giannetto, M.; Mori, G.; D’Agostino, G.; Careri, M.; Mangia, A. Solid-phase microextraction of 2,4,6-trinitrotoluene using a molecularly imprinted-based fiber. Anal. Bioanal. Chem. 2012, 403, 2411–2418. [Google Scholar] [CrossRef]
- Alizadeh, T.; Atashi, F.; Ganjali, M.R. Molecularly imprinted polymer nano-sphere/multi-walled carbon nanotube coated glassy carbon electrode as an ultra-sensitive voltammetric sensor for picomolar level determination of rdx. Talanta 2019, 194, 415–421. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Z.H.; Xue, M.; Qiu, L.L.; Zhang, C.F. Separation of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane and 1,3,5-trinitro-1,3,5-triazacyclohexane by molecularly imprinted solid-phase extraction. J. Sep. Sci. 2017, 40, 1201–1208. [Google Scholar] [CrossRef]
- Mamo, S.K.; Gonzalez-Rodriguez, J. Development of a molecularly imprinted polymer-based sensor for the electrochemical determination of triacetone triperoxide (tatp). Sensors 2014, 14, 23269–23282. [Google Scholar] [CrossRef]
- Huynh, T.P.; Wojnarowicz, A.; Kelm, A.; Woznicki, P.; Borowicz, P.; Majka, A.; D’Souza, F.; Kutner, W. Chemosensor for selective determination of 2,4,6-trinitrophenol using a custom designed imprinted polymer recognition unit cross-linked to a fluorophore transducer. ACS Sens. 2016, 1, 636–639. [Google Scholar] [CrossRef]
- Wang, J.; Xue, M.; Meng, Z.H.; Xu, Z.B.; Luo, J. Application of molecularly imprinted polymers for the solid-phase extraction of hexanitrohexaazaisowurtzitane (cl-20) from soil samples. Anal. Methods 2016, 8, 4413–4420. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Z.H.; Xue, M.; Qiu, L.L.; Dong, X.; Xu, Z.B.; He, X.; Liu, X.; Li, J.S. Simultaneous selective extraction of nitramine explosives using molecularly imprinted polymer hollow spheres from post blast samples. New J. Chem. 2017, 41, 1129–1136. [Google Scholar] [CrossRef]
- Nie, D.X.; Han, Z.; Yu, Y.Y.; Shi, G.Y. Composites of multiwalled carbon nanotubes/polyethyleneimine (mwcnts/pei) and molecularly imprinted polymers for dinitrotoluene recognition. Sens. Actuators B Chem. 2016, 224, 584–591. [Google Scholar] [CrossRef]
- Dai, J.J.; Dong, X.Q.; de Cortalezzi, M.F. Molecularly imprinted polymers labeled with amino-functionalized carbon dots for fluorescent determination of 2,4-dinitrotoluene. Microchim. Acta 2017, 184, 1369–1377. [Google Scholar] [CrossRef]
- Apodaca, D.C.; Pernites, R.B.; Del Mundo, F.R.; Advincula, R.C. Detection of 2,4-dinitrotoluene (dnt) as a model system for nitroaromatic compounds via molecularly imprinted short-alkyl-chain sams. Langmuir 2011, 27, 6768–6779. [Google Scholar] [CrossRef] [PubMed]
- Lordel, S.; Chapuis-Hugon, F.; Eudes, V.; Pichon, V. Development of imprinted materials for the selective extraction of nitroaromatic explosives. J. Chromatogr. A 2010, 1217, 6674–6680. [Google Scholar] [CrossRef]
- Lordel, S.; Chapuis-Hugon, F.; Eudes, V.; Pichon, V. Selective extraction of nitroaromatic explosives by using molecularly imprinted silica sorbents. Anal. Bioanal. Chem. 2011, 399, 449–458. [Google Scholar] [CrossRef] [PubMed]
- Lordel-Madeleine, S.; Eudes, V.; Pichon, V. Identification of the nitroaromatic explosives in post-blast samples by online solid phase extraction using molecularly imprinted silica sorbent coupled with reversed-phase chromatography. Anal. Bioanal. Chem. 2013, 405, 5237–5247. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Willner, I. Imprinted au-nanoparticle composites for the ultrasensitive surface plasmon resonance detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (rdx). Adv. Mater. 2010, 22, 1387–1391. [Google Scholar] [CrossRef]
- Riskin, M.; Ben-Amram, Y.; Tel-Vered, R.; Chegel, V.; Almog, J.; Willner, I. Molecularly imprinted au nanoparticles composites on au surfaces for the surface plasmon resonance detection of pentaerythritol tetranitrate, nitroglycerin, and ethylene glycol dinitrate. Anal. Chem. 2011, 83, 3082–3088. [Google Scholar] [CrossRef]
- Shi, L.; Hou, A.G.; Chen, L.Y.; Wang, Z.F. Electrochemical sensor prepared from molecularly imprinted polymer for recognition of tnt. Polym. Compos. 2015, 36, 1280–1285. [Google Scholar] [CrossRef]
- Xu, S.F.; Lu, H.Z.; Li, J.H.; Song, X.L.; Wang, A.X.; Chen, L.X.; Han, S.B. Dummy molecularly imprinted polymers-capped cdte quantum dots for the fluorescent sensing of 2,4,6-trinitrotoluene. ACS Appl. Mater. Interface 2013, 5, 8146–8154. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.F.; Lu, H.Z. Ratiometric fluorescence and mesoporous structure dual signal amplification for sensitive and selective detection of tnt based on mip@qd fluorescence sensors. Chem. Commun. 2015, 51, 3200–3203. [Google Scholar] [CrossRef]
- Xu, S.F.; Lu, H.Z. Mesoporous structured mips@cds fluorescence sensor for highly sensitive detection of tnt. Biosens. Bioelectron. 2016, 85, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Riskin, M.; Tel-Vered, R.; Lioubashevski, O.; Willner, I. Ultrasensitive surface plasmon resonance detection of trinitrotoluene by a bis-aniline-cross-linked au nanoparticles composite. J. Am. Chem. Soc. 2009, 131, 7368–7378. [Google Scholar] [CrossRef]
- Ebrahimzadeh, H.; Abedi, H.; Yamini, Y.; Adlnasab, L. Molecular-imprinted polymer extraction combined with dispersive liquid-liquid micro-extractionfor ultra-preconcentration of mononitrotoluene. J. Sep. Sci. 2010, 33, 3759–3766. [Google Scholar] [CrossRef] [PubMed]
- Fatah, A.A.; Arcilesi, R.D.; McClintock, J.A.; Lattin, C.H.; Helinski, M.; Hutchings, M. Guide for the Selection of Explosives Detection and Blast Mitigation Equipment for Emergency First Responders; Department of Homeland Security: Washington, WA, USA, 2008.
- Borsdorf, H.; Mayer, T.; Zarejousheghani, M.; Eiceman, G.A. Recent developments in ion mobility spectrometry. Appl. Spectrosc. Rev. 2011, 46, 472–521. [Google Scholar] [CrossRef]
- Crockett, A.B.; Craig, H.D.; Jenkins, T.F. Field Sampling and Selecting On-Site Analytical Methods for Explosives in Water; United States Environmental Protection Agency: Washington, WA, USA, 1999; p. 47.
- Roh, S.; Chung, T.; Lee, B. Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors 2011, 11, 1565–1588. [Google Scholar] [CrossRef] [PubMed]
- Zarejousheghani, M.; Walte, A.; Borsdorf, H. Sprayed liquid-gas extraction of semi-volatile organophosphate malathion from air and contaminated surfaces. Anal. Methods 2018, 10, 2503–2511. [Google Scholar] [CrossRef]
- Reinecke, T.; Walter, J.G.; Kobelt, T.; Ahrens, A.; Scheper, T.; Zimmermann, S. Design and evaluation of split-ring resonators for aptamer-based biosensors. J. Sens. Sens. Syst. 2018, 101–111. [Google Scholar] [CrossRef]
- Reinecke, T.; Walter, J.G.; Kobelt, T.; Ahrens, A.; Scheper, T.; Zimmermann, S. Biosensor based on a split-ring resonator. In Proceedings of the AMA Conferences 2017, Nürnberg, Germany, 30 May–1 June 2017; pp. 78–83. [Google Scholar]
Chemicals | Abbreviation | Name | Application | Used in |
---|---|---|---|---|
Explosive | TNT | 2,4,6-Trinitrotoluene | Secondary explosive (dumped) | [13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] |
RDX | 1,3,5-Trinitro-1,3,5-triazine | Secondary explosive (dumped) | [46,47] | |
PETN | Pentaerythritol tetranitrate | Secondary explosive (boosters) | - | |
NG | Nitroglycerin | Propellants, smokeless powders ingredient | - | |
EGDN | Ethylene glycol dinitrate | Propellants, smokeless powders ingredient | - | |
HMX | 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane | Secondary explosive | [47] | |
TATP | Triacetone triperoxide | Primary explosive | [48] | |
1,3,5-TNB | 1,3,5-Trinitrobenzene | Explosive and also Biological degradation product of TNT | [22] | |
TNP or Picric acid | 2,4,6-Trinitrophenol | Explosive | [22,49] | |
Tetryl | N-methyl-N-2,4,6-trinitroaniline | Secondary explosive (boosters) | - | |
CL-20 | Hexanitrohexaazaisowurtzitane | Rocket propellants | [50,51] | |
HMTD | Hexamethylene triperoxide diamine | primary explosive | - | |
Explosive marker | DNT | 2,4-Dinitrotoluene | It is a precursor to trinitrotoluene and can be used as an explosive marker. DNT is environmentally more stable than 1,3-DNB | [16,21,22,29,38,52,53,54,55,56,57] |
1,3-DNB | 1,3-Dinitrobenzene | It is a precursor to trinitrotoluene and can be used as an explosive marker. | - | |
4-amino-2,6-DNT | 4-Amino-2,6-dinitrotoluene | Reduction product of TNT due to degredation | - | |
Dummy template | Kemp’s Triacid | Cis,cis-1,3,5-Trimethyl-1,3,5-cyclohexanetricarboxylic acid | It is used as dummy template for RDX. | [58] |
Citric acid | 2-Hydroxypropane-1,2,3-tricarboxylic acid | It is used as dummy template for PETN and NG. | [59] | |
Maleic acid | Cis-butenedioic acid | It is used as dummy template for EGDN. | [59] | |
Fumaric acid | Trans-butenedioic acid | It is used as dummy template for EGDN. | [59] | |
TNP or Picric acid | 2,4,6-Trinitrophenol | It is used as dummy template for TNT. | [60,61,62,63,64] | |
2,6-DNT | 2,6-Dinitrotoluene | - | [38] | |
4-NT | 4-Nitrotoluene | - | [38] | |
3-NT | 3-Nitrotoluene | - | [65] |
Target | LOD (mol L−1) | Sensitivity | Linear Range (mol L−1) | Analysis Time | Sensor | Ref. |
---|---|---|---|---|---|---|
TNP | CA: 0.69 × 10−3 PM:0.02 × 10−3 | CA: 7.34 µA mM−1 PM: 27.3 Hz mM−1 | (0.7–5.6) × 10−3 | 10 min | EQCM | [22] |
TNT | CA: 0.62 × 10−3 PM: 0.07 × 10−3 | CA: 5.65 µA mM−1 PM: 21.4 Hz mM−1 | ||||
TNB | CA: 0.27 × 10−3 PM: 0.15 × 10−3 | CA: 6.33 µA mM−1 PM: 8.6 Hz mM−1 | ||||
DNT | PM: 0.76 × 10−3 | PM: 1.3 Hz mM−1 | ||||
TNT | 0.50 × 10−6 | 25-200 µA mM−1 | - | ≈3 min | SCPE | [23] |
TNT | 1.5 × 10−9 | 1.33 × 104 µA mM−1 | (0.005–1) × 10−6 | ≈11 min | CPE | [24] |
TNT | 0.5 × 10−9 | 4.423 × 104 µA mM−1 | (0.001–0.13) × 10−6 | ≈5 min | CPE | [25] |
TATP | 0.36 × 10−6 | 7.25 × 101 µA mM−1 | (0.37–199) × 10−6 | - | GCE | [48] |
RDX | 20 × 10−12 | 7.1 × 106 µA mM−1 | (0.1–10) × 10−9 | ≈15 min | GCE | [46] |
DNT | 1.0 × 10−9 | 0.6 × 104 µA mM−1 | (0.0022–1) × 10−6 | ≈11 min | GCE | [52] |
TNT | 1.3 × 10−8 | 3.0205 × 102 µA mM−1 | (0.04–3.2) × 10−6 | 30 s | Modified GCE | [27] |
TNT | 3.5 × 10−18 | −1.148 × 1012 Ω mM−1 | (0.01–10000) × 10−15 | ≈35 min | Modified GCE | [26] |
TNT | 2.0 × 10−10 | ≈6.1 × 103 µA mM-1 | - | ≈1.5 min | Modified gold electrode | [28] |
TNT DNT | TNT: 4.07 × 10−5 DNT: 3.01 × 10−5 | - | - | TNT: 1 min DNT: 10 min | QD-MIP particle | [29] |
DNT | 3.01 × 10−6 | a ≈20.27 mM−1 | (5.5–82.4) × 10−6 | ≈30 min | QD-MIP porous film | [53] |
TNT | 0.28 × 10−6 | a ≈61.2 mM−1 | (0.8–30) × 10−6 | ≈10 min | QDs@MIP | [61] |
TNT | 1.5 × 10−8 | a ≈1818 mM−1 | (5–60) × 10−8 | ≈10 min | Red-QDs@ green-QDs/MIP | [62] |
TNT | 1.7 × 10−8 | a 940 mM−1 | (5–200) × 10−8 | 4 min | QD-NH2-MIP | [63] |
TNP | 0.87 × 10−12 | 13.7 × 106 mM−1 | (0.87–89) × 10−12 | - | MIP-modified ITO electrode | [49] |
TNT | 30 × 10−12 | 2.16 × 106 mM−1 | (8.81–22000) × 10−11 | ≈18 s | Imprinted QDs@SiO2 act as catalyzer | [32] |
Target | LOD (mol L−1) | Sensitivity | Linear Range (mol L−1) | Analysis Time | Sensor | Ref. |
---|---|---|---|---|---|---|
TNT | 51 × 10−6 | 27 nm mM−1 | (83–130) × 10−6 | 5 min | SPR/MIP layer-Gold layer-POF | [33] |
TNT | GNS-MIP/ POF: 2.4 × 10−6 GNS-MIP/tapered POF: 0.72 × 10−6 | b GNS-MIP/ POF: 85 nm mM−1; b GNS-MIP/tapered POF: 830 nm mM−1 | - | 5 min | LSPR/MIP_GNC layer-POF | [34] |
TNT | 10 × 10−15 | C ≈1.2 × 1012 mM-1 | (10–100) × 10−15 | ≈15 s | SPR-LSPR/Gold layer-Prism | [64] |
RDX | 12 × 10−15 | C ≈0.4 × 1012 mM−1 | ≈(12–300) × 10−15 | ≈15 s | SPR-LSPR/Gold layer-Prism | [58] |
PETN NG EGDN | PETN: 200 × 10−15 NG: 20 × 10−12 EGDN: 400 × 10−15 | PETN: C ≈7.4 × 109 mM−1 NG: C ≈0.071 × 109 mM−1 EGDN: C ≈3.5 × 109 mM−1 | P: ≈(0.2–8) × 10−12 N: ≈(20–400) × 10−12 E: ≈(0.2–5) × 10−12 | ≈15 s | SPR-LSPR/Gold layer-Prism | [59] |
TNT | 3 × 10−6 | D ≈4 × 104 mM−1 | ≈(?–5) × 10−5 | Incubation time: 24 h | SERS | [35] |
TNT | 1 × 10−12 | - | (1–10000) × 10−11 | ≈ 60 s | SERS | [36] |
TNT | e 5 ppb V | 0.13 × 1012 mM−1 | e (4–10) ppb V | 100 s | IOW | [39] |
TNT | e 2.4 ppt V | 8 × 10-4 (ppt V) −1 | e (20–140) ppt V | 120 s | IOW | [40] |
DNT | - | ≈900 Hz mM−1 | (20–100) × 10−6 | ≈200 min | QCM | [54] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarejousheghani, M.; Lorenz, W.; Vanninen, P.; Alizadeh, T.; Cämmerer, M.; Borsdorf, H. Molecularly Imprinted Polymer Materials as Selective Recognition Sorbents for Explosives: A Review. Polymers 2019, 11, 888. https://doi.org/10.3390/polym11050888
Zarejousheghani M, Lorenz W, Vanninen P, Alizadeh T, Cämmerer M, Borsdorf H. Molecularly Imprinted Polymer Materials as Selective Recognition Sorbents for Explosives: A Review. Polymers. 2019; 11(5):888. https://doi.org/10.3390/polym11050888
Chicago/Turabian StyleZarejousheghani, Mashaalah, Wilhelm Lorenz, Paula Vanninen, Taher Alizadeh, Malcolm Cämmerer, and Helko Borsdorf. 2019. "Molecularly Imprinted Polymer Materials as Selective Recognition Sorbents for Explosives: A Review" Polymers 11, no. 5: 888. https://doi.org/10.3390/polym11050888
APA StyleZarejousheghani, M., Lorenz, W., Vanninen, P., Alizadeh, T., Cämmerer, M., & Borsdorf, H. (2019). Molecularly Imprinted Polymer Materials as Selective Recognition Sorbents for Explosives: A Review. Polymers, 11(5), 888. https://doi.org/10.3390/polym11050888