A Self-Adhesive Elastomeric Wound Scaffold for Sensitive Adhesion to Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Thin Elastomeric Films
2.2. Protein Adsorption
2.3. Cell Culture Experiments and Staining
2.4. Analysis of Adhesion Properties: Peel and Tack Test
2.5. Peel Tests on Explanted Mouse Tympanic Membrane
2.6. Statistical Analysis
3. Results and Discussion
3.1. Physical Adsorption of Proteins on PDMS Surfaces
3.2. Cellular Adhesion and Spreading of Fibroblasts on Protein Functionalized PDMS Surfaces
3.3. Tack Analysis of Adhesion Performance on Protein Functionalized SSA Films
3.4. Tack and Peel Analysis of Protein Functionalized Composite Films
3.5. Peel Analysis of Protein Functionalized Composite Films on Explanted Tympanic Membranes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Zheng, J.; Gao, Q.; Zhang, J.; Zhang, J.; Omisore, O.; Wang, L.; Li, H. Polydimethylsiloxane (PDMS)-Based Flexible Resistive Strain Sensors for Wearable Applications. Appl. Sci. 2018, 8, 345. [Google Scholar] [CrossRef]
- Kenry; Yeo, J.C.; Lim, C.T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2016, 2, 1–19. [Google Scholar] [CrossRef]
- Thap, T.; Yoon, K.; Lee, J. Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions. Sensors 2016, 16, 542. [Google Scholar] [CrossRef]
- Thanawala, S.K.; Chaudhury, M.K. Surface Modification of Silicone Elastomer Using Perfluorinated Ether. Langmuir 2000, 16, 1256–1260. [Google Scholar] [CrossRef]
- Kwak, M.K.; Jeong, H.-E.; Suh, K.Y. Rational Design and Enhanced Biocompatibility of a Dry Adhesive Medical Skin Patch. Adv. Mater. 2011, 23, 3949–3953. [Google Scholar] [CrossRef]
- Gun Park, D.; Chul Shin, S.; Won Kang, S.; Tae Kim, Y. Development of flexible self adhesive patch for professional heat stress monitoring service. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 4, 3789–3792. [Google Scholar] [PubMed]
- Jeong, S.H.; Zhang, S.; Hjort, K.; Hilborn, J.; Wu, Z. PDMS-Based Elastomer Tuned Soft, Stretchable, and Sticky for Epidermal Electronics. Adv. Mater. 2016, 28, 5830–5836. [Google Scholar] [CrossRef] [PubMed]
- Baik, S.; Lee, H.J.; Kim, D.W.; Kim, J.W.; Lee, Y.; Pang, C. Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics. Adv. Mater. 2019, 1803309, 1–18. [Google Scholar] [CrossRef]
- Fischer, S.C.L.; Boyadzhieva, S.; Hensel, R.; Kruttwig, K.; Arzt, E. Adhesion and relaxation of a soft elastomer on surfaces with skin like roughness. J. Mech. Behav. Biomed. Mater. 2018, 80, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Thomas, X. Silicone Adhesives in Healthcare Applications. Dow Corning Corp. 2003. [Google Scholar]
- Yoshida, S.; Hagiwara, K.; Hasebe, T.; Hotta, A. Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 2013, 233, 99–107. [Google Scholar] [CrossRef]
- Ai, H.; Lvov, Y.M.; Mills, D.K.; Jennings, M.; Alexander, J.S.; Jones, S.A. Coating and Selective Deposition of Nanofilm on Silicone Rubber for Cell Adhesion and Growth. Cell Biochem. Biophys. 2003, 38, 103–114. [Google Scholar] [CrossRef]
- Bhati, R.S.; Mukherjee, D.P.; McCarthy, K.J.; Rogers, S.H.; Smith, D.F.; Shalaby, S.W. The growth of chondrocytes into a fibronectin-coated biodegradable scaffold. J. Biomed. Mater. Res. 2001, 56, 74–82. [Google Scholar] [CrossRef]
- Elbert, D.L.; Hubbell, J.A. Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chem. Biol. 1998, 5, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Dee, C.K.; Puleo, D.A.; Bizios, R. An Introduction to Tissue-Biomaterial Interactions, 1st ed.; Wiley: Hoboken, NJ, USA, 2003; ISBN 0471466621. [Google Scholar]
- Kim, D.; Herr, A.E. Protein immobilization techniques for microfluidic assays. Biomicrofluidics 2013, 7, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, J.J.; Nikolovski, J.; Lin-, J.J.; Mooney, D.J. Quantification of Fibronectin Adsorption to Research Report. Biotechniques 2002, 32, 876–887. [Google Scholar] [CrossRef] [PubMed]
- Kuddannaya, S.; Chuah, Y.J.; Lee, M.H.A.; Menon, N.V.; Kang, Y.; Zhang, Y. Surface Chemical Modification of Poly(dimethylsiloxane) for the Enhanced Adhesion and Proliferation of Mesenchymal Stem Cells. ACS Appl. Mater. Interfaces 2013, 5, 9777–9784. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.H.; Nguyen, N.-T.; Chua, Y.C.; Kang, T.G. Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 2010, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Jönsson, C.; Aronsson, M.; Rundström, G.; Pettersson, C.; Mendel-Hartvig, I.; Bakker, J.; Martinsson, E.; Liedberg, B.; MacCraith, B.; Öhman, O.; et al. Silane–dextran chemistry on lateral flow polymer chips for immunoassays. Lab Chip 2008, 8, 1191–1197. [Google Scholar] [CrossRef]
- Beal, J.H.L.; Bubendorfer, A.; Kemmitt, T.; Hoek, I.; Mike Arnold, W. A rapid, inexpensive surface treatment for enhanced functionality of polydimethylsiloxane microfluidic channels. Biomicrofluidics 2012, 6, 1–11. [Google Scholar] [CrossRef]
- Fischer, S.C.L.; Kruttwig, K.; Bandmann, V.; Hensel, R.; Arzt, E. Adhesion and Cellular Compatibility of Silicone-Based Skin Adhesives. Macromol. Mater. Eng. 2017, 302, 1–11. [Google Scholar] [CrossRef]
- Toworfe, G.K.; Composto, R.J.; Adams, C.S.; Shapiro, I.M.; Ducheyne, P. Fibronectin adsorption on surface-activated poly(dimethylsiloxane) and its effect on cellular function. J. Biomed. Mater. Res. 2004, 71A, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, D.J.; Mahan, J.T. Fibrinogen and Fibronectin as Substrates for epidermal cell migration during wound closure. J. Cell Sci 1983, 62, 117–127. [Google Scholar] [PubMed]
- Tersteeg, C.; Roest, M.; Mak-Nienhuis, E.M.; Ligtenberg, E.; Hoefer, I.E.; Groot, P.G.; Pasterkamp, G. A fibronectin-fibrinogen-tropoelastin coating reduces smooth muscle cell growth but improves endothelial cell function. J. Cell. Mol. Med. 2012, 16, 2117–2126. [Google Scholar] [CrossRef]
- Krajewski, S.; Neumann, B.; Kurz, J.; Perle, N.; Avci-Adali, M.; Cattaneo, G.; Wendel, H.P. Preclinical Evaluation of the Thrombogenicity and Endothelialization of Bare Metal and Surface-Coated Neurovascular Stents. Am. J. Neuroradiol. 2015, 36, 133–139. [Google Scholar] [CrossRef] [PubMed]
- An, Y.H.; Stuart, G.W.; McDowell, S.J.; McDaniel, S.E.; Kang, Q.; Friedman, R.J. Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coatingin vitro. J. Orthop. Res. 1996, 14, 846–849. [Google Scholar] [CrossRef] [PubMed]
- Villar-Fernandez, M.A.; Lopez-Escamez, J.A. Outlook for tissue engineering of the tympanic membrane. Audiol. Res. 2015, 5, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Bance, M.; Gratzer, P.F. Repair of tympanic membrane perforation using novel adjuvant therapies: A contemporary review of experimental and tissue engineering studies. Int. J. Pediatr. Otorhinolaryngol. 2013, 77, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Kozin, E.D.; Black, N.L.; Cheng, J.T.; Cotler, M.J.; McKenna, M.J.; Lee, D.J.; Lewis, J.A.; Rosowski, J.J.; Remenschneider, A.K. Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts. Hear. Res. 2016, 340, 191–203. [Google Scholar] [CrossRef] [Green Version]
- Boyadzhieva, S.; Fischer, S.C.L.; Lösch, S.; Rutz, A.; Arzt, E.; Kruttwig, K. Thin Film Composite Silicon Elastomers for Cell Culture and Skin Applications: Manufacturing and Characterization. J. Vis. Exp. 2018, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kroner, E.; Blau, J.; Arzt, E. Note: An adhesion measurement setup for bioinspired fibrillar surfaces using flat probes. Rev. Sci. Instrum. 2012, 83, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Bundy, K.; Schlegel, U.; Rahn, B.; Geret, V.; Perren, S. An improved peel test method for measurement of adhesion to biomaterials. J. Mater. Sci. Mater. Med. 2000, 11, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Comelles, J.; Estévez, M.; Martínez, E.; Samitier, J. The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 44–51. [Google Scholar] [CrossRef]
- Toworfe, G.; Composto, R.; Adams, C.; Shapiro, I.; Ducheyne, P. Effect of surface activated poly(dimethylsiloxane) on fibronectin adsorption and cell function. Mat. Res. Soc. Symp. Proc. 2003, 1, 781–785. [Google Scholar]
- Kottke-Marchant, K.; Anderson, J.M.; Umemura, Y.; Marchant, R.E. Effect of albumin coating on the in vitro blood compatibility of Dacron® arterial prostheses. Biomaterials 1989, 10, 147–155. [Google Scholar] [CrossRef]
- Horváthy, D.B.; Simon, M.; Schwarz, C.M.; Masteling, M.; Vácz, G.; Hornyák, I.; Lacza, Z. Serum albumin as a local therapeutic agent in cell therapy and tissue engineering. BioFactors 2017, 43, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Horváthy, D.B.; Vácz, G.; Cselenyák, A.; Weszl, M.; Kiss, L.; Lacza, Z. Albumin-Coated Bioactive Suture for Cell Transplantation. Surg. Innov. 2013, 20, 249–255. [Google Scholar] [CrossRef]
- Bernards, M.T.; Qin, C.; Jiang, S. MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin. Colloids Surf. B Biointerfaces 2008, 64, 236–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamazoe, H.; Tanabe, T. Preparation of water-insoluble albumin film possessing nonadherent surface for cells and ligand binding ability. J. Biomed. Mater. Res. Part A 2008, 86A, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Kalaskar, D.M.; Downes, J.E.; Murray, P.; Edgar, D.H.; Williams, R.L. Characterization of the interface between adsorbed fibronectin and human embryonic stem cells. J. R. Soc. Interface 2013, 10, 1–12. [Google Scholar] [CrossRef]
- Peterson, S.L.; McDonald, A.; Gourley, P.L.; Sasaki, D.Y. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells. J. Biomed. Mater. Res. 2005, 72A, 10–18. [Google Scholar] [CrossRef]
- Katsen-Globa, A.; Peter, L.; Zöllner, S.; Dörge, T.; Daffertshofer, M.; Preckel, H.; Schmitt, D.; Zimmermann, H. A novel approach for automated analysis of cell attachment and spreading based on backscattered electron imaging by scanning electron microscopy. Materials 2009, 2, 1402–1416. [Google Scholar] [CrossRef]
- Novotna, Z.; Reznickova, A.; Rimpelova, S.; Vesely, M.; Kolska, Z.; Svorcik, V. Tailoring of PEEK bioactivity for improved cell interaction: Plasma treatment in action. RSC Adv. 2015, 5, 41428–41436. [Google Scholar] [CrossRef]
- Zelzer, M.; Albutt, D.; Alexander, M.R.; Russell, N.A. The Role of Albumin and Fibronectin in the Adhesion of Fibroblasts to Plasma Polymer Surfaces. Plasma Process. Polym. 2012, 9, 149–156. [Google Scholar] [CrossRef]
- Purtov, J.; Gorb, E.V.; Steinhart, M.; Gorb, S.N. Measuring of the hardly measurable: Adhesion properties of anti-adhesive surfaces. Appl. Phys. A Mater. Sci. Process. 2013, 111, 183–189. [Google Scholar] [CrossRef]
- Davis, C.S.; Martina, D.; Creton, C.; Lindner, A.; Crosby, A.J. Enhanced adhesion of elastic materials to small-scale wrinkles. Langmuir 2012, 28, 14899–14908. [Google Scholar] [CrossRef]
- Guduru, P.R.; Bull, C. Detachment of a rigid solid from an elastic wavy surface: Experiments. J. Mech. Phys. Solids 2007, 55, 473–488. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Klatt, J.; Barcellona, P.; Bennett, R.; Bokareva, O.S.; Feth, H.; Rasch, A.; Reith, P.; Buhmann, S.Y. Strong van der Waals Adhesion of a Polymer Film on Rough Substrates. Langmuir 2017, 33, 5298–5303. [Google Scholar] [CrossRef]
- Israelachvili, J.N.; Tabor, D. The measurement of van der Waals dispersion forces in the range 1.5 to 130 nm. Proc. R. Soc. London. A. Math. Phys. Sci. 1972, 331, 19–38. [Google Scholar] [CrossRef]
- Persson, B.N.J.; Tosatti, E. The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys. 2001, 115, 5597–5610. [Google Scholar] [CrossRef] [Green Version]
- Kendall, K.; Roberts, A.D. van der Waals forces influencing adhesion of cells. Philos. Trans. R. Soc. B Biol. Sci. 2014, 370, 1–5. [Google Scholar] [CrossRef]
- Valle-Delgado, J.J.; Molina-Bolívar, J.A.; Galisteo-González, F.; Gálvez-Ruiz, M.J.; Feiler, A.; Rutland, M.W. Interaction Forces between BSA Layers Adsorbed on Silica Surfaces Measured with an Atomic Force Microscope. J. Phys. Chem. B 2004, 108, 5365–5371. [Google Scholar] [CrossRef] [Green Version]
- Creton, C.; Ciccotti, M. Fracture and adhesion of soft materials: A review. Reports Prog. Phys. 2016, 79, 1–57. [Google Scholar] [CrossRef]
- Gent, A.N.; Kaang, S.Y. Effect of peel angle upon peel force. J. Adhes. 1987, 24, 173–181. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyadzhieva, S.; Sorg, K.; Danner, M.; Fischer, S.C.L.; Hensel, R.; Schick, B.; Wenzel, G.; Arzt, E.; Kruttwig, K. A Self-Adhesive Elastomeric Wound Scaffold for Sensitive Adhesion to Tissue. Polymers 2019, 11, 942. https://doi.org/10.3390/polym11060942
Boyadzhieva S, Sorg K, Danner M, Fischer SCL, Hensel R, Schick B, Wenzel G, Arzt E, Kruttwig K. A Self-Adhesive Elastomeric Wound Scaffold for Sensitive Adhesion to Tissue. Polymers. 2019; 11(6):942. https://doi.org/10.3390/polym11060942
Chicago/Turabian StyleBoyadzhieva, Silviya, Katharina Sorg, Martin Danner, Sarah C. L. Fischer, René Hensel, Bernhard Schick, Gentiana Wenzel, Eduard Arzt, and Klaus Kruttwig. 2019. "A Self-Adhesive Elastomeric Wound Scaffold for Sensitive Adhesion to Tissue" Polymers 11, no. 6: 942. https://doi.org/10.3390/polym11060942
APA StyleBoyadzhieva, S., Sorg, K., Danner, M., Fischer, S. C. L., Hensel, R., Schick, B., Wenzel, G., Arzt, E., & Kruttwig, K. (2019). A Self-Adhesive Elastomeric Wound Scaffold for Sensitive Adhesion to Tissue. Polymers, 11(6), 942. https://doi.org/10.3390/polym11060942