Synthesis and Acoustic Study of a New Tung Oil-Based Polyurethane Composite Foam with the Addition of Miscanthus Lutarioriparius
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiment Design
2.3. Measurement Method
3. Results and Discussion
3.1. FTIR Analysis
3.2. Morphological Characterization
3.3. Acoustic Properties Analysis
3.3.1. Acoustic Properties Analysis of TOPUF Adding Different Forms of ML
3.3.2. Acoustic Properties Analysis of TOPUF Adding Different Mass of ML Powders
3.4. Mechanical Properties Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Uprety, B.K.; Reddy, J.V.; Dalli, S.S.; Rakshit, S.K. Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams. Bioresour. Technol. 2017, 235, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jung, I. Tuning sound absorbing properties of open cell polyurethane foam by impregnating graphene oxide. Appl. Acoust. 2019, 15, 110–121. [Google Scholar] [CrossRef]
- Shi, X.; Yang, P.; Peng, X.; Huang, C.; Qian, Q.; Wang, B.; He, J.; Liu, X.; Li, Y.; Kuang, T. Bi-phase fire-resistant polyethylenimine/graphene oxide/melanin coatings using layer by layer assembly technique: Smoke suppression and thermal stability of flexible polyurethane foams. Polymer 2019, 170, 65–75. [Google Scholar] [CrossRef]
- Sonnenschein, M.F.; Wendt, B.L. Design and formulation of soybean oil derived flexible polyurethane foams and their underlying polymer structure/property relationships. Polymer 2013, 54, 2511–2520. [Google Scholar] [CrossRef]
- Bonnaillie, L.M.; Wool, R.P. Thermosetting foam with a high bio-based content from acrylated epoxidized soybean oil and carbon dioxide. J. Appl. Polym. Sci. 2007, 105, 1042–1052. [Google Scholar] [CrossRef]
- Spontón, M.; Casis, N.; Mazo, P.; Raud, B.; Simonetta, A.; Ríos, L.; Estenoz, D. Biodegradation study by Pseudomonas sp. of flexible polyurethane foams derived from castor oil. Int. Biodeter. Biodegr. 2013, 85, 85–94. [Google Scholar] [CrossRef]
- Rojek, P.; Prociak, A. Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J. Appl. Polym. Sci. 2012, 125, 2936–2945. [Google Scholar] [CrossRef]
- Prociak, A.; Rojek, P.; Pawlik, H. Flexible polyurethane foams modified with natural oil based polyols. J. Cell. Plast. 2012, 48, 489–499. [Google Scholar] [CrossRef]
- Lopes, R.V.V.; Loureiro, N.P.D.; Pezzin, A.P.T.; Gomes, A.C.M.; Resck, I.S.; Sales, M.J.A. Synthesis of polyols and polyurethanes from vegetable oils–kinetic and characterization. J. Polym. Res. 2013, 20, 238. [Google Scholar] [CrossRef]
- Marcovich, N.E.; Kurańska, M.; Prociak, A.; Malewska, E.; Bujok, S. The effect of different palm oil-based bio-polyols on foaming process and selected properties of porous polyurethanes. Polym. Int. 2017, 66, 1522–1529. [Google Scholar] [CrossRef]
- Prociak, A.; Malewska, E.; Kurańska, M.; Bąk, S.; Budny, P. Flexible polyurethane foams synthesized with palm oil-based bio-polyols obtained with the use of different oxirane ring opener. Ind. Crops Prod. 2018, 115, 69–77. [Google Scholar] [CrossRef]
- Zhang, C.; Kessler, M.R. Bio-based polyurethane foam made from compatible blends of vegetable-oil-based polyol and petroleum-based polyol. ACS Sustain. Chem. Eng. 2015, 3, 743–749. [Google Scholar] [CrossRef]
- Mosiewicki, M.A.; Casado, U.; Marcovich, N.E.; Aranguren, M.I. Moisture dependence of the properties of composites made from tung oil based polyurethane and wood flour. J. Polym. Res. 2012, 19, 9776. [Google Scholar] [CrossRef]
- Huang, Y.; Pang, L.; Wang, H.; Zhong, R.; Zeng, Z.; Yang, J. Synthesis and properties of UV-curable tung oil based resins via modification of Diels–Alder reaction, nonisocyanate polyurethane and acrylates. Prog. Org. Coat. 2013, 76, 654–661. [Google Scholar] [CrossRef]
- Pfister, D.P.; Baker, J.R.; Henna, P.H.; Lu, Y.; Larock, R.C. Preparation and properties of tung oil-based composites using spent germ as a natural filler. J. Appl. Polym. Sci. 2008, 108, 3618–3625. [Google Scholar] [CrossRef]
- Pauzi, N.N.P.N.; Majid, R.A.; Dzulkifli, M.H.; Yahya, M.Y. Development of rigid bio-based polyurethane foam reinforced with nanoclay. Compos. B Eng. 2014, 67, 521–526. [Google Scholar] [CrossRef]
- Linul, E.; Vălean, C.; Linul, P.A. Compressive behavior of aluminum microfibers reinforced semi-rigid polyurethane foams. Polymers 2018, 10, 1298. [Google Scholar] [CrossRef] [PubMed]
- Huo, S.; Wu, G.; Chen, J.; Korean, J. Constructing polyurethane foams of strong mechanical property and thermostability by two novel environment friendly bio-based polyols. Chem. Eng. 2016, 33, 1088. [Google Scholar] [CrossRef]
- Leng, W.; Li, J.; Cai, Z. Synthesis and characterization of cellulose nanofibril-reinforced polyurethane foam. Polymers 2017, 9, 597. [Google Scholar] [CrossRef]
- Wang, X.; Pan, Y.; Shen, C.; Liu, C.; Liu, X. Facile thermally impacted water-induced phase separation approach for the fabrication of skin-free thermoplastic polyurethane foam and its recyclable counterpart for Oil–Water separation. Macromol. Rapid Commun. 2018, 39, 1800635. [Google Scholar] [CrossRef]
- Sung, G.; Kim, J.H. Influence of filler surface characteristics on morphological, physical, acoustic properties of polyurethane composite foams filled with inorganic fillers. Compos. Sci. Technol. 2017, 146, 147–154. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, Y. The acoustic property study of polyurethane foam with addition of bamboo leaves particles. Polym. Compos. 2018, 39, 1370–1381. [Google Scholar] [CrossRef]
- Santos, O.S.H.; Silva, M.C.; Silva, V.R.; Mussel, W.N.; Yoshida, M.I. Polyurethane foam impregnated with lignin as a filler for the removal of crude oil from contaminated water. J. Hazard. Mater. 2017, 324, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Xiang, A.; Tian, H.; Rajulu, A.V. Water-blown Castor oil-based polyurethane foams with soy protein as a reactive reinforcing filler. J. Polym. Environ. 2018, 26, 15–22. [Google Scholar] [CrossRef]
- Merlini, C.; Pegoretti, A.; Vargas, P.C.; da Cunha, T.F.; Ramôa, S.D.A.S.; Soares, B.G.; Barra, G.M.O. Electromagnetic interference shielding effectiveness of composites based on polyurethane derived from castor oil and nanostructured carbon fillers. Polym. Compos. 2017, 40, E78–E87. [Google Scholar] [CrossRef]
- Chung, J.H.; Kim, D.S. Miscanthus as a potential bioenergy crop in East Asia. J. Crop Sci. Biotechnol. 2012, 15, 65–77. [Google Scholar] [CrossRef]
- Nges, I.A.; Li, C.; Wang, B.; Xiao, L.; Yi, Z.; Liu, J. Physio-chemical pretreatments for improved methane potential of Miscanthus lutarioriparius. Fuel 2016, 166, 29–35. [Google Scholar] [CrossRef]
- Gwon, J.G.; Kim, S.K.; Kim, J.H. Sound absorption behavior of flexible polyurethane foams with distinct cellular structures. Mater. Des. 2016, 89, 448–454. [Google Scholar] [CrossRef]
- Salissou, Y.; Panneton, R. Pressure/mass method to measure open porosity of porous solids. J. Appl. Phys. 2007, 101, 124913. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, C.; Ren, L.; Ichchou, M.; Galland, M.A.; Bareille, O. Influences of rice hull in polyurethane foam on its sound absorption characteristics. Polym. Compos. 2013, 34, 1847–1855. [Google Scholar] [CrossRef]
- Chen, W.H.; Lee, F.C.; Chiang, D.M. On the acoustic absorption of porous materials with different surface shapes and perforated plates. J. Sound Vib. 2000, 237, 337–355. [Google Scholar] [CrossRef]
- Zhu, X.; Kim, B.J.; Wang, Q.; Wu, Q. Recent advances in the sound insulation properties of bio-based materials. BioResources 2014, 9, 1764–1786. [Google Scholar] [CrossRef]
- Mansour, M.B.; Ogam, E.; Jelidi, A.; Cherif, A.S.; Jabrallah, S.B. Influence of compaction pressure on the mechanical and acoustic properties of compacted earth blocks: An inverse multi-parameter acoustic problem. Appl. Acoust. 2017, 125, 128–135. [Google Scholar] [CrossRef]
- Ben Mansour, M.; Ogam, E.; Fellah, Z.E.A.; Soukaina Cherif, A.; Jelidi, A.; Ben Jabrallah, S. Characterization of compressed earth blocks using low frequency guided acoustic waves. J. Acoust. Soc. Am. 2016, 139, 2551–2560. [Google Scholar] [CrossRef] [PubMed]
- Sung, G.; Kim, J.W.; Kim, J.H. Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. J. Ind. Eng. Chem. 2016, 44, 99–104. [Google Scholar] [CrossRef]
- Bernardini, J.; Cinelli, P.; Anguillesi, I.; Coltelli, M.B.; Lazzeri, A. Flexible polyurethane foams green production employing lignin or oxypropylated lignin. Eur. Polym. J. 2015, 64, 147–156. [Google Scholar] [CrossRef]
- Golaz, B.; Tetouani, S.; Diomidis, N.; Michaud, V.; Mischler, S. Processing and tribology of thermoplastic polyurethane particulate composite materials. J. Appl. Polym. Sci. 2012, 125, 3745–3754. [Google Scholar] [CrossRef]
- Nunes, R.C.R.; Fonseca, J.L.C.; Pereira, M.R. Polymer–filler interactions and mechanical properties of a polyurethane elastomer. Polym. Test. 2000, 19, 93–103. [Google Scholar] [CrossRef]
- Vilakati, G.D.; Mishra, A.K.; Mishra, S.B.; Mamba, B.B.; Thwala, J.M. Influence of TiO2-modification on the mechanical and thermal properties of sugarcane bagasse–EVA composites. J. Inorg. Organomet. Polym. Mater. 2010, 20, 802–808. [Google Scholar] [CrossRef]
Name. | Role | Suppllier |
---|---|---|
3630 | Polyether polyol | Jining Huakai Resin Company, Jining, China. |
TOAP | Polyether polyol | Jining Huakai Resin Company, Jining, China. |
330N | Polyether polyol | Jining Huakai Resin Company, Jining, China. |
MDI | Isocyanate | Jining Huakai Resin Company, Jining, China. |
A33 | Catalyst | Guangzhou Yiju Chemical Company, Guangzhou, China. |
TEA | Chain extender | Guangzhou Yiju Chemical Company, Guangzhou, China. |
Silicone | Stabilizer and Surfactant | Guangzhou Yiju Chemical Company, Guangzhou, China. |
DIW | Blowing agent | Laboratory extraction. |
ML | filler | Songzhitao Department Store, Yueyang, China. |
NaOH | treatment solution | Laboratory extraction. |
Component | Content of PPUF (g) | Content of TOPUF (g) | Content of TOPUFL (g) |
---|---|---|---|
TOAP | 0 | 40.00 | 40.00 |
3630 | 40.00 | 60.00 | 60.00 |
330N | 60.00 | 0.05 | 0.05 |
MDI | 30.00 | 40.00 | 40.00 |
A33 | 1.00 | 2.00 | 2.00 |
BDO | 0 | 3.00 | 3.00 |
TEA | 3.00 | 0 | 0 |
Silicone | 1.80 | 2.00 | 2.00 |
DIW | 3.00 | 2.00 | 2.00 |
ML | 0 | 0 | 0.45–2.25 (0–1.5 wt%) |
Name | Pore Size (μm) | Cavity Size (μm) |
---|---|---|
PPUF | 159 ± 88 | 427 ± 192 |
TOPUF | 318 ± 238 | 538 ± 358 |
TOPUF with ML strips | 90 ± 62 | 180 ± 117 |
TOPUF with ML powders | 250 ± 197 | 390 ± 260 |
Name | Pore Size (μm) | Cavity Size (μm) |
---|---|---|
TOPUF | 318 ± 238 | 538 ± 358 |
TOPUF + 0.3 wt% ML powders | 252 ± 200 | 450 ± 226 |
TOPUF + 0.6 wt% ML powders | 250 ± 197 | 390 ± 260 |
TOPUF + 0.9 wt% ML powders | 178 ± 130 | 257 ± 143 |
TOPUF + 1.2 wt% ML powders | 136 ± 75 | 282 ± 65 |
TOPUF + 1.5 wt% ML powders | 196 ± 153 | 278 ± 172 |
Name | Average Sound Absorption Coefficient | Average Transmission Loss (dB) |
---|---|---|
PPUF | 0.516 | 10.007 |
TOPUF | 0.422 | 24.546 |
TOPUF + 10 cm ML strips | 0.492 | 16.864 |
TOPUF + 7 cm ML strips | 0.478 | 18.224 |
TOPUF + 4 cm ML strips | 0.487 | 22.824 |
TOPUF + 0.9 g ML powders | 0.498 | 20.974 |
Name | Compressive Strength (kPa) | Breaking Strength (kPa) | Elongation at Break |
---|---|---|---|
PPUF | 11.44 | 41.67 | 25.93% |
TOPUF | 56.67 | 78.33 | 8.47% |
TOPUF + 0.3 wt% ML powders | 100.67 | 128.33 | 10.31% |
TOPUF + 0.6 wt% ML powders | 124.44 | 145.33 | 7.70% |
TOPUF + 0.9 wt% ML powders | 133.22 | 171.67 | 6.66% |
TOPUF + 1.2 wt% ML powders | 183.22 | 156.67 | 4.58% |
TOPUF + 1.5 wt% ML powders | 194.56 | 273.33 | 9.51% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Y.; Chen, S.; Cheng, Y. Synthesis and Acoustic Study of a New Tung Oil-Based Polyurethane Composite Foam with the Addition of Miscanthus Lutarioriparius. Polymers 2019, 11, 1144. https://doi.org/10.3390/polym11071144
Ji Y, Chen S, Cheng Y. Synthesis and Acoustic Study of a New Tung Oil-Based Polyurethane Composite Foam with the Addition of Miscanthus Lutarioriparius. Polymers. 2019; 11(7):1144. https://doi.org/10.3390/polym11071144
Chicago/Turabian StyleJi, Yangjie, Shuming Chen, and Yabing Cheng. 2019. "Synthesis and Acoustic Study of a New Tung Oil-Based Polyurethane Composite Foam with the Addition of Miscanthus Lutarioriparius" Polymers 11, no. 7: 1144. https://doi.org/10.3390/polym11071144
APA StyleJi, Y., Chen, S., & Cheng, Y. (2019). Synthesis and Acoustic Study of a New Tung Oil-Based Polyurethane Composite Foam with the Addition of Miscanthus Lutarioriparius. Polymers, 11(7), 1144. https://doi.org/10.3390/polym11071144