Thermal Conductivity Enhancement Derived from Poly(Methyl Methacrylate)-Grafted Carbon Nanotubes in Poly(Methyl Methacrylate)/Polystyrene Blends
Abstract
:1. Introduction
2. Experiment Section
2.1. Materials
2.2. Surface Modification of MWCNTs
2.3. Fabrication of PMMA/PS/MWCNT
2.4. Characterization
3. Results and Discussion
3.1. Infrared Spectroscopy
3.2. X-ray Photoelectron Spectroscopy
3.3. Morphology(MWCNT-g-PMMA)
3.4. TGA(MWCNT–PMMA)
3.5. SEM (Composite)
3.6. LFA (Composite)
3.7. IR Camera (Composite)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hou, J.; Li, G.; Yang, N.; Qin, L.; Grami, M.E.; Zhang, Q.; Wang, N.; Qu, X. Preparation and characterization of surface modified boron nitride epoxy composites with enhanced thermal conductivity. RSC Adv. 2014, 4, 44282–44290. [Google Scholar] [CrossRef]
- Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Kim, K.; Kim, M.; Hwang, Y.; Kim, J. Chemically modified boron nitride-epoxy terminated dimethylsiloxane composite for improving the thermal conductivity. Ceram. Int. 2014, 40, 2047–2056. [Google Scholar] [CrossRef]
- Du, B.; Handge, U.A.; Majeed, S.; Abetz, V. Localization of functionalized MWCNT in SAN/PPE blends and their influence on rheological properties. Polymer 2012, 53, 5491–5501. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.C.; Goh, P.S.; Ng, B.C.; Ismail, A.F. Thin film nanocomposite embedded with polymethyl methacrylate modified multi-walled carbon nanotubes for CO2 removal. RSC Adv. 2015, 5, 31683–31690. [Google Scholar] [CrossRef]
- Carson, L.; Hibbert, K.; Akindoju, F.; Johnson, C.; Stewart, M.; Kelly-Brown, C.; Beharie, G.; Fisher, T.; Stone, J.; Stoddart, D.; et al. Synthesis, characterization and stability of chitosan and poly(methyl methacrylate) grafted carbon nanotubes. Spectrochim. Acta, Part A 2012, 96, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Semsarilar, M.; Guthrie, J.T.; Perrier, S. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 2009, 38, 2046–2064. [Google Scholar] [CrossRef] [PubMed]
- Otero-Navas, I.; Arjmand, M.; Sundararaj, U. Carbon nanotube induced double percolation in polymer blends: Morphology, rheology and broadband dielectric properties. Polymer 2017, 114, 122–134. [Google Scholar] [CrossRef]
- Foulger, S.H. Reduced percolation thresholds of immiscible conductive blends. J. Polym. Sci. B Polym. Phys. 1999, 37, 1899–1910. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahara, A.; Kajiyama, T. Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends. Macromolecules 1996, 29, 3232–3239. [Google Scholar] [CrossRef]
- Chuai, C.; Almdal, K.; Lyngaae-Jørgensen, J. Thermal behavior and properties of polystyrene/poly (methyl methacrylate) blends. J. Appl. Polym. Sci. 2004, 91, 609–620. [Google Scholar] [CrossRef]
- Kim, K.; Oh, H.; Kim, J.; Ha, S.; Kim, M.; Yang, J.; Kim, J. Effect of surface modifications and their reaction conditions on multi-walled carbon nanotubes for thermal conductive composite material. J. Nanosci. Nanotechnol. 2019, 19, 1525–1532. [Google Scholar] [CrossRef]
- Ramanathan, T.; Fisher, F.T.; Ruoff, R.S.; Brinson, L.C. Amino-functionalized carbon nanotubes for binding to polymers and biological systems. Chem. Mater. 2005, 17, 1290–1295. [Google Scholar] [CrossRef]
- Kim, J.; Im, H.; Cho, M.H. Tribological performance of fluorinated polyimide-based nanocomposite coatings reinforced with PMMA-grafted-MWCNT. Wear 2011, 217, 1029–1038. [Google Scholar] [CrossRef]
- Rohini, R.; Bose, S. Electromagnetic interference shielding materials derived from gelation of multiwall carbon nanotubes in polystyrene/poly(methyl methacrylate) blends. ACS Appl. Mater. Interfaces 2014, 6, 11302–11310. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the properties and applications of poly (methyl methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Choi, E.Y.; Nam, J.U.; Hong, S.H.; Kim, C.K. Characteristics of polycarbonate composites with poly(methyl methacrylate) grafted multi-walled carbon nanotubes. Macromol. Res. 2018, 26, 107–112. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Z.; Wang, L.; Hong, K.; Wei, L.; Wang, H.; Yuan, Z.; Zhao, D.; Li, Z. Mechanical and thermal properties of epoxy nanocomposites interfacial modified with styrene-butadiene-styrene grafted multi-walled carbon nanotubes. Polym. Compos. 2018, 39, E996–E1004. [Google Scholar] [CrossRef]
- Yu, J.; Huang, X.; Wo, C.; Wu, X.; Wang, G.; Jiang, P. Intergacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 2011, 53, 471–480. [Google Scholar] [CrossRef]
- Amiri, A.; Maghrebi, M.; Baniadam, M.; Heris, S.Z. One-pot, efficient functionalization of multi-walled carbon nanotubes with diamines by microwave method. Appl. Surf. Sci. 2011, 23, 10261–10266. [Google Scholar] [CrossRef]
- Poothanari, M.A.; Abraham, J.; Kalarikkal, N.; Thomas, S. Excellent electromagnetic interference shielding and high electrical conductivity of compatibilized polycarbonate/polypropylene carbon nanotube blend nanocomposites. Ind. Eng. Chem. Res. 2018, 57, 4287–4297. [Google Scholar] [CrossRef]
- Muratov, D.S.; Kuznetsov, D.V.; Il’inykh, I.A.; Burmistrov, I.N.; Mazov, I.N. Thermal conductivity of polypropylene composites filled with silane-modified hexagonal BN. Compos. Sci. Technol. 2015, 111, 40–43. [Google Scholar] [CrossRef]
- Cao, J.P.; Zhao, X.; Zhao, J.; Zha, J.W.; Hu, G.H.; Dang, Z.M. Improved thermal conductivity and flame retardancy in polystyrene/poly(vinylidene fluoride) blends by controlling selective localization and surface modification of SiC nanoparticles. ACS Appl. Mater. Interfaces 2013, 5, 6915–6924. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wie, J.; Kim, J. Thermal Conductivity Enhancement Derived from Poly(Methyl Methacrylate)-Grafted Carbon Nanotubes in Poly(Methyl Methacrylate)/Polystyrene Blends. Polymers 2019, 11, 1347. https://doi.org/10.3390/polym11081347
Wie J, Kim J. Thermal Conductivity Enhancement Derived from Poly(Methyl Methacrylate)-Grafted Carbon Nanotubes in Poly(Methyl Methacrylate)/Polystyrene Blends. Polymers. 2019; 11(8):1347. https://doi.org/10.3390/polym11081347
Chicago/Turabian StyleWie, Jaehyun, and Jooheon Kim. 2019. "Thermal Conductivity Enhancement Derived from Poly(Methyl Methacrylate)-Grafted Carbon Nanotubes in Poly(Methyl Methacrylate)/Polystyrene Blends" Polymers 11, no. 8: 1347. https://doi.org/10.3390/polym11081347
APA StyleWie, J., & Kim, J. (2019). Thermal Conductivity Enhancement Derived from Poly(Methyl Methacrylate)-Grafted Carbon Nanotubes in Poly(Methyl Methacrylate)/Polystyrene Blends. Polymers, 11(8), 1347. https://doi.org/10.3390/polym11081347