Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of PI Hybrid Films
2.3. Characterization
3. Results and Discussion
3.1. FT-IR and NMR Spectra
3.2. XRD
3.3. Morphological Analysis by TEM
3.4. Thermal Behavior
3.5. Mechanical Tensile Properties
3.6. Optical Transparency
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yokota, R. Recent trends and space applications of polyimides. J. Photopolym. Sci. Technol. 1999, 12, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.S.; Greenbaum, S.G. Polymer capacitor dielectrics for high temperature applications. ACS Appl. Mater. Interfaces 2018, 10, 29189–29218. [Google Scholar] [CrossRef]
- Guan, Y.; Wang, C.; Wang, D.; Dang, G.; Chen, C.; Zhou, H.; Zhao, X. High transparent polyimides containing pyridine and biphenyl units: Synthesis, thermal, mechanical, crystal and optical properties. Polymer 2015, 62, 1–10. [Google Scholar] [CrossRef]
- Wozniak, A.I.; Yegorov, A.S.; Ivanov, V.S.; Igumnov, S.M.; Tcarkova, K.V. Recent progress in synthesis of fluorine containing monomers for polyimides. J. Fluor. Chem. 2015, 180, 45–54. [Google Scholar] [CrossRef]
- Liaw, D.-J.; Wang, K.-L.; Huang, Y.-C.; Lee, K.-R.; Lai, J.-Y.; Ha, C.-S. Advanced polyimide materials: Syntheses, physical properties and applications. Prog. Polym. Sci. 2012, 37, 907–974. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Chen, D.; Shen, G. Flexible electronics based on inorganic nanowires. Chem. Soc. Rev. 2015, 44, 161–192. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-M.; Lee, T.M.; Wen, C.-H.; Leu, C.-M. High-performance organic-inorganic hybrid plastic substrate for flexible displays and electronics. J. Soc. Inf. Display 2011, 19, 63–69. [Google Scholar] [CrossRef]
- Mativenga, M.; Choi, M.H.; Choi, J.W.; Jang, J. Transparent flexible circuits based on amorphous-indium–gallium–zinc–oxide thin-film transistors. IEEE Electron Device Lett. 2011, 32, 170–172. [Google Scholar] [CrossRef]
- Yu, X.; Zhao, X.; Liu, C.; Bai, Z.; Wang, D.; Dang, G.; Zhou, H.; Chen, C. Synthesis and properties of thermoplastic polyimides with ether and ketone moieties. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2878–2884. [Google Scholar] [CrossRef]
- Garg, P.; Singh, R.P.; Pandey, L.K.; Choudhary, V. Pervaporative studies using polyimide-filled PDMS membrane. J. Appl. Polym. Sci. 2010, 115, 1967–1974. [Google Scholar] [CrossRef]
- Lu, Y.H.; Kang, W.J.; Hu, Z.Z.; Wang, Y.F.; Fang, Q.X. Synthesis and properties of fluorinated polyimide films based on 1,2,3,4-cyclobutanetetracarboxylic dianhydride. Adv. Mater. Res. 2011, 150, 1758–1763. [Google Scholar] [CrossRef]
- Liou, H.C.; Willecke, R.; Ho, P.S. Study of out-of-plane elastic properties of PMDA-ODA and BPDA-PDA polyimide thin films. Thin Solid Films 1998, 323, 203–208. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Kim, S.J.; Oh, D.Y.; Hong, Y.T.; Nam, S.Y. Proton conduction and methanol transport through sulfonated poly (styrene-b-ethylene/butylene-b-styrene)/clay nanocomposite. Macromol. Res. 2011, 19, 84–89. [Google Scholar] [CrossRef]
- Chen, C.-J.; Yen, H.-J.; Hu, Y.-C.; Liou, G.-S. Novel programmable functional polyimides: Preparation, mechanism of CT induced memory, and ambipolar electrochromic behavior. J. Mater. Chem. C 2013, 1, 7623–7634. [Google Scholar] [CrossRef]
- Nishihara, M.; Christiani, L.; Staykov, A.; Sasaki, K. Experimental and theoretical study of charge-transfer complex hybrid polyimide membranes. J. Polym. Sci. Part B Polym. Phys. 2014, 52, 293–298. [Google Scholar] [CrossRef]
- Choi, I.H.; Chang, J.-H. Colorless polyimide nanocomposite films containing hexafluoroisopropylidene group. Polym. Adv. Technol. 2011, 22, 682–689. [Google Scholar] [CrossRef]
- Chen, G.; Pei, X.; Liu, J.; Fang, X. Synthesis and properties of transparent polyimides derived from trans- and cis-1,4-bis(3,4-dicarboxyphenoxy)cyclohexane dianhydrides. J. Polym. Res. 2013, 20, 159. [Google Scholar] [CrossRef]
- Wiegand, J.R.; Smith, Z.P.; Liu, Q.; Patterson, C.T.; Freeman, B.D.; Guo, R. Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes. J. Mater. Chem. A 2014, 2, 13309–13320. [Google Scholar] [CrossRef]
- Yeo, H.; Goh, M.; Ku, B.-C.; You, N.-H. Synthesis and characterization of highly-fluorinated colorless polyimides derived from 4,4′-((perfluoro-[1,1′-biphenyl]-4,4′-diyl)bis(oxy))bis(2,6-dimethylaniline) and aromatic dianhydrides. Polymer 2015, 76, 280–286. [Google Scholar] [CrossRef]
- Damaceanu, M.-D.; Constantin, C.-P.; Nicolescu, A.; Bruma, M.; Belomoina, N.; Begunov, R.S. Highly transparent and hydrophobic fluorinated polyimide films with ortho-kink structure. Eur. Polym. J. 2014, 50, 200–213. [Google Scholar] [CrossRef]
- Min, U.; Chang, J.-H. Colorless and transparent polyimide nanocomposite films containing organoclay. J. Nanosci. Nanotechnol. 2011, 11, 6404–6409. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chang, J.-H. Colorless and transparent polyimide nanocomposites: Thermo-optical properties, morphology, and gas permeation. Macromol. Res. 2013, 21, 228–233. [Google Scholar] [CrossRef]
- Tan, B.; Thomas, N.L. A review of the water barrier properties of polymer/clay and polymer/graphene nanocomposites. J. Membr. Sci. 2016, 514, 595–612. [Google Scholar] [CrossRef] [Green Version]
- Sapalidis, A.A.; Katsaros, F.K.; Steriotis, T.A.; Kanellopoulos, N.K. Properties of poly(vinyl alcohol)—Bentonite clay nanocomposite films in relation to polymer–clay interactions. J. Appl. Polym. Sci. 2012, 123, 1812–1821. [Google Scholar] [CrossRef]
- Shin, J.-E.; Ham, M.-R.; Kim, J.-C.; Chang, J.-H. Characterizations of flexible clay-PVA hybrid films: Thermo-optical properties, morphology, and gas permeability. Polym. Korea 2011, 35, 402–408. [Google Scholar] [CrossRef]
- Yeun, J.-H.; Bang, G.-S.; Park, B.J.; Ham, S.K.; Chang, J.-H. Poly(vinyl alcohol) nanocomposite films: Thermooptical properties, morphology, and gas permeability. J. Appl. Polym. Sci. 2006, 101, 591–596. [Google Scholar] [CrossRef]
- Joshi, K.R.; Rojivadiya, A.J.; Pandya, J.H. Synthesis and spectroscopic and antimicrobial studies of schiff base metal complexes derived from 2-hydroxy-3-methoxy-5-nitrobenzaldehyde. Int. J. Inorg. Chem. 2014, 2014, 817412. [Google Scholar] [CrossRef] [Green Version]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2008. [Google Scholar]
- Hsiao, S.-H.; Liou, G.-S.; Chang, L.-M. Synthesis and properties of organosoluble polyimide/clay hybrids. J. Appl. Polym. Sci. 2001, 80, 2067–2072. [Google Scholar] [CrossRef]
- Ke, Y.; Lü, J.; Yi, X.; Zhao, J.; Qi, Z. The effects of promoter and curing process on exfoliation behavior of epoxy/clay nanocomposites. J. Appl. Polym. Sci. 2000, 78, 808–815. [Google Scholar] [CrossRef]
- Schneider, G.J.; Hengl, K.B.; Brandt, S.V.; Roth, R.S.; Goritz, D. Influence of the matrix on the fractal properties of precipitated silica in composites. J. Appl. Cryst. 2012, 45, 430–438. [Google Scholar] [CrossRef]
- Zare, Y. Modeling the yield strength of polymer nanocomposites based upon nanoparticle agglomeration and polymer–filler interphase. J. Colloid Interface Sci. 2016, 467, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Zare, Y. Effects of imperfect interfacial adhesion between polymer and nanoparticles on the tensile modulus of clay/polymer nanocomposites. Appl. Clay Sci. 2016, 129, 65–70. [Google Scholar] [CrossRef]
- Kim, Y.; Chang, J.-H.; Kim, J.-C. Optically transparent and colorless polyimide hybrid films with various clay contents. Macromol. Res. 2012, 20, 1257–1263. [Google Scholar] [CrossRef]
- Chang, J.-H.; Seo, B.-S.; Hwang, D.-H. An exfoliation of organoclay in thermotropic liquid crystalline polyester nanocomposites. Polymer 2002, 43, 2969–2974. [Google Scholar] [CrossRef]
- Agag, T.; Takeichi, T. Polybenzoxazine–montmorillonite hybrid nanocomposites: Synthesis and characterization. Polymer 2000, 41, 7083–7090. [Google Scholar] [CrossRef]
- Giannakas, A.; Grigoriadi, K.; Leontiou, A.; Barkoula, N.-M.; Ladavos, A. Preparation, characterization, mechanical and barrier properties investigation of chitosan–clay nanocomposites. Carbohydr. Polym. 2014, 108, 103–111. [Google Scholar] [CrossRef]
- Holder, K.M.; Priolo, M.A.; Secrist, K.E.; Greenlee, S.M.; Nolte, A.J.; Grunlan, J.C. Humidity-Responsive gas barrier of hydrogen-bonded polymer–clay multilayer thin films. J. Phys. Chem. C 2012, 116, 19851–19856. [Google Scholar] [CrossRef]
- Ray, S.S. Recent trends and future outlooks in the field of clay-containing polymer nanocomposites. Macromol. Chem. Phys. 2014, 215, 1162–1179. [Google Scholar] [CrossRef]
- Chiu, C.-W.; Lin, J.-J. Self-assembly behavior of polymer-assisted clays. Prog. Polym. Sci. 2012, 37, 406–444. [Google Scholar] [CrossRef]
- Tyan, H.-L.; Liu, Y.-C.; Wei, K.-H. Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem. Mater. 1999, 11, 1942–1947. [Google Scholar] [CrossRef]
- Hsu, S.L.-C.; Wang, U.; King, J.-S.; Jeng, J.-L. Photosensitive poly(amic acid)/organoclay nanocomposites. Polymer 2003, 44, 5533–5540. [Google Scholar] [CrossRef]
- Min, U.; Kim, J.-C.; Chang, J.-H. Transparent polyimide nanocomposite films: Thermo-optical properties, morphology, and gas permeability. Polym. Eng. Sci. 2011, 51, 2143–2150. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A. Synthesis and properties of polyimide-clay hybrid films. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 2289–2294. [Google Scholar] [CrossRef]
- Yano, K.; Usuki, A.; Okada, A.; Kurauchi, T.; Kamigaito, O. Synthesis and properties of polyimide–clay hybrid. J. Polym. Sci. Part A Polym. Chem. 1993, 31, 2493–2498. [Google Scholar] [CrossRef]
- Sequeira, S.; Evtuguin, D.V.; Portugal, I. Preparation and properties of cellulose/silica hybrid composites. Polym. Compos. 2009, 30, 1275–1282. [Google Scholar] [CrossRef]
- Galgali, G.; Agarwal, S.; Lele, A. Effect of clay orientation on the tensile modulus of polypropylene–nanoclay composites. Polymer 2004, 45, 6059–6069. [Google Scholar] [CrossRef]
- Luo, J.-J.; Daniel, I.M. Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 2003, 63, 1607–1616. [Google Scholar] [CrossRef]
- Do, K.; Saleem, Q.; Ravva, M.K.; Cruciani, F.; Kan, Z.; Wolf, J.; Hansen, M.R.; Beaujuge, P.M.; Brédas, J.-L. Impact of fluorine substituents on π-conjugated polymer main-chain conformations, packing, and electronic couplings. Adv. Mater. 2016, 28, 8197–8205. [Google Scholar] [CrossRef]
Samples | Temp. (°C)/Time (h)/Pressure (Torr) |
---|---|
PAA | 0/1/760 → 25/14/760 |
PAA hybrid | 25/6/760 |
PI hybrid | 50/2/1 → 80/1/1 → 110/0.5/1 → 140/0.5/1 → 170/0.5/1 → 195/0.8/1 → 220/0.8/1 → 235/2/1 |
Cloisite 30B (wt%) | BAS | BAS-OH | ||||||
---|---|---|---|---|---|---|---|---|
Tg (°C) | TDia (°C) | wtR600b (%) | CTE c (ppm/°C) | Tg (°C) | TDi (°C) | wtR600 (%) | CTE (ppm/°C) | |
0 (pure PI) | 227 | 456 | 55 | 47.21 | 259 | 313 | 60 | 53.17 |
0.25 | 231 | 526 | 79 | 41.64 | 263 | 321 | 61 | 49.95 |
0.50 | 245 | 533 | 84 | 38.48 | 270 | 330 | 61 | 48.61 |
0.75 | 240 | 530 | 82 | 42.37 | 261 | 324 | 60 | 54.33 |
1.00 | 236 | 521 | 83 | 45.92 | 257 | 316 | 62 | 61.17 |
Cloisite 30B (wt%) | BAS | BAS-OH | ||||
---|---|---|---|---|---|---|
Ult. Str. (MPa) | Ini. Mod. (GPa) | E.B. a (%) | Ult. Str. (MPa) | Ini. Mod. (GPa) | E.B. (%) | |
0 (pure PI) | 53 | 2.24 | 2 | 59 | 2.80 | 2 |
0.25 | 60 | 2.85 | 2 | 81 | 4.09 | 3 |
0.50 | 103 | 3.16 | 4 | 112 | 4.44 | 3 |
0.75 | 77 | 3.30 | 3 | 87 | 5.43 | 2 |
1.00 | 69 | 3.54 | 2 | 82 | 6.16 | 2 |
Cloisite 30B (wt%) | BAS | BAS-OH | ||||||
---|---|---|---|---|---|---|---|---|
T a (μm) | λ0 (nm) | 500 nmtrans (%) | YI b | T (μm) | λ0 (nm) | 500 nmtrans (%) | YI | |
0 (pure PI) | 67 | 330 | 87 | 2 | 70 | 344 | 84 | 14 |
0.25 | 68 | 334 | 87 | 2 | 69 | 344 | 82 | 14 |
0.50 | 68 | 336 | 86 | 3 | 68 | 345 | 81 | 14 |
0.75 | 67 | 340 | 84 | 3 | 69 | 349 | 77 | 16 |
1.00 | 69 | 346 | 82 | 4 | 69 | 350 | 75 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, H.I.; Chang, J.-H. Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers. Polymers 2020, 12, 135. https://doi.org/10.3390/polym12010135
Shin HI, Chang J-H. Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers. Polymers. 2020; 12(1):135. https://doi.org/10.3390/polym12010135
Chicago/Turabian StyleShin, Hyeon Il, and Jin-Hae Chang. 2020. "Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers" Polymers 12, no. 1: 135. https://doi.org/10.3390/polym12010135
APA StyleShin, H. I., & Chang, J. -H. (2020). Transparent Polyimide/Organoclay Nanocomposite Films Containing Different Diamine Monomers. Polymers, 12(1), 135. https://doi.org/10.3390/polym12010135