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Abstract: Current trends concerning hydraulic cylinder sealing systems are aimed at decreasing
energy consumption which can be materialized by minimizing leaks and reducing friction. The latest
developments in the field of materials and sealing system geometries as well as modern simulation
possibilities allow maximum performance levels of hydraulic cylinders. Reducing friction is possible
by hydro-dynamic separation of the sliding and sealing points already at very low velocities and by
using materials, such as plastomers, from polytetrafluoroethylene (PTFE) (virgin PTFE and filled
PTFE). It is within this context that this paper discusses a theoretical and experimental study focused
on the tribological behavior of coaxial sealing systems mounted on the pistons of hydraulic cylinders.
It presents a methodology for the theoretical determination of the lubricant film thickness between the
cylinder piston and the seal. The experimental installation used for measuring fluid film thickness is
presented, and the results obtained under various working conditions are compared to the theoretical
ones. For the analyzed working conditions related to pressure, speed, and temperature, the paper
concludes with a set of criteria for the selection of the optimum seal material so as to maximize
energy efficiency.

Keywords: coaxial sealing systems; hydrodynamic friction; pressure distribution; virgin PTFE; filled
PTFE

1. Introduction

An important characteristic of hydraulic motors, whether linear or rotary, is their high energy
density. Hence, a small-sized motor is capable of generating high power outputs. This benefit is due
to the deployment working fluids at increasingly higher pressures (hundreds of bar) which requires
rethinking the constructive and functional aspects of such motors. Thus, an important role is assigned
to the sealing system.

A sealing system is defined as the assembly of elements designed to create the complete separation
of two different media. The main component of such a system is the seal itself, a deformable or
non-deformable element placed in a specially conceived seat. As the seal is pushed onto the sealed
surface by a pre-tensioning force applied at mounting and/or by the fluid pressure, it achieves its
function of rendering a hermetic system [1].

Conceiving an adequate sealing system requires information about seal geometry, the utilized
materials, material–fluid compatibility, the quality of the contacting surfaces, sealing dynamics,
etc. All these contribute to the energy efficiency of a sealing system, considering that high friction
forces, fluid leaks or heat generation are responsible for the loss of energy that affects hydraulic
systems. Studies conducted by ORNL/NFPA (Oak Ridge National Laboratory/National Fluid Power
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Association-USA) [2] have revealed an efficiency of merely 21% for hydraulic systems thus yielding
the idea that, to date, this field has not been sufficiently optimized.

The energy efficiency of a linear hydraulic motor is increased by diminishing the friction forces
in the sealing systems. Small friction forces can be ensured, however, only within certain limits, as
reducing the contact pressure between the seal and the sealed surface automatically causes fluid
leakage. The relationship between friction and pressure contact is influenced by the geometry and the
material of the seal which entails the necessity of identifying a compromise solution between obtaining
a reduced friction force and reduced leakage.

Most seals used in hydraulic drives are made from polymers, in particular from elastomers,
plastomers or thermoplastic elastomers. The type of material that is utilized depends on the specific
working conditions and its compatibility with the sealed fluid, fluid pressure, fluid temperature, etc.
In order to ensure a long service life for sealing systems, the properties of seal materials need to be
known in detail. The fact that, in many cases, contradicting characteristics are required, makes it
difficult to identify and select the most adequate material.

Research concerning the construction and functioning of sealing system dates back over 80 years
ago [3]. Reference [4] presents a historical review of the knowledge about the factors that affect the
performance of hydraulic seals made from polymers.

The last years of the 20th century produced studies concerning the operational behavior of sealing
systems made from elastomers. Thus, in 1987, Nau [5] presented a state-of-the-art study in the field
of rubber seals. Bisztray-Balku [6] focused on the study of elastomers, where the author presented a
critical analysis of the future of hydraulic systems and of the various developed tribological models.
In addition, Nikas [7,8] analyzed the seals of rectangular cross-sections made from elastomers using a
wide range of temperatures (−55 ◦C to 135 ◦C) and pressures (1 to 50 MPa).

As to the use of plastomers, materials which combine the qualities of elastomers and plastics, such
as rubber-like properties with the processing ability of plastic [9], studies concerning their behavior can
be found in numerous papers, the more relevant ones being References [10–14]. These papers reveal
and discuss the phenomena of abrasive wear, the adherence of polytetrafluoroethylene (PTFE) seals,
and the fatigue due to the high temperatures of the working fluid. Pure PTFE has limited applications
as an engineering material due to the fact of its low wear resistance and cold flow. These limitations can
be minimized by adding suitable fillers to a PTFE matrix to produce PTFE-based composites that are
suitable for use as the friction units of technical equipment. The most common fillers used with PTFE
are glass fiber, carbon fiber (CF), graphite, copper particle, molybdenum disulfide (Mo2S), and mixtures
of these [15]. Fillers, such as bronze, glass fiber, Mo2S or carbon, added into the composition of PTFE
influence seal behavior in different ways. Thus, for example, while bronze improves wear resistance at
the temperature of the surrounding environment, its effect is opposite at high temperatures.

Over the last years, many studies have presented results on the regime of friction in the sealing
tribological system. It was revealed that, in the case of certain dynamic sealing systems, the occurrence
of a relative motion between the seal and its contact surface causes a thin fluid film to be built up
between the two elements. Müller [16] addressed the dependency of lubricant film thickness on its
viscosity as well as the compressibility of seals in mounting. A conclusion of Müller’s research stated
that lubricant film thickness is not the same for the two directions of motion of the friction couple
mobile element.

The results of other research concerning the character of friction in the sealing tribological system
are described in the works of Kanzaki et al. [17], Stupkiewicz et al. [18], Fatu et al. [19], Crudu et al. [20].
It needs pointing out, however, that those works refer only to concrete cases of sealing systems without
the possibility of generalization.

The present paper analyzed the mechanism and character of friction in coaxial sealing systems made
from PTFE and its compounds. The use of these materials was justified by their low friction properties
that ensure a high level of energy efficiency. The study’s focus on sealing systems was determined by
their widespread use, constructive simplicity, and the polymers they are made from—materials with
pronounced low friction properties.
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The paper is structured as follows: Section 2 of the paper describes the structure of a coaxial sealing
system and presents the distribution of pressures in the seal–sealed surface contact area. The onset of
piston motion favors the occurrence of a gap between the seal and the cylinder wall. It is the magnitude
of such gap that determines the type of friction within the sealing system. The paper further specifies
the hypotheses that underlie the equation for computing the gap. Sections 3 and 4 of the paper present
the theoretical and experimental results of testing three different polymeric materials. The results
reveal the dependency of the type of friction on the pressure and temperature of the working fluid as
well as on the relative velocity among the elements of the sealing system. The last section of the paper
is comprised of the conclusions yielded by the study.

2. The Mechanism of Sealing

Coaxial sealing systems are assemblies consisting of a seal made from a material with advanced
low friction properties and an O-ring that ensures the pre-tensioning of the entire package. Generally,
the seal is made of polytetrafluoroethylene (virgin or filled PTFE) and the O-ring of elastomers of
various types: nitrile butadiene rubber (NBR), fluorocarbon (FKM), ethylene propylene diene monomer
(EPDM), hydrogenated nitrile butadiene rubber (HNBR), fluorosilicone (FVMQ), and silicone rubber
(Q). Figure 1 shows an example of a coaxial sealing system used for a piston and several cross-section
forms of the seal [21].
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Figure 1. Coaxial sealing system of a piston.

In order to achieve the sealing effect, a radial pressure has to be exerted upon the seal (sealing
ring) by means of the O-ring. The O-ring is placed into its seat in a pre-tensioned state with an initial
specific radial deformation εr0 of 10% to 25%. Upon the onset of fluid pressure inside the hydraulic
motor, the O-ring is deformed additionally and exerts a greater radial pressure.

A relative motion occurring between the seal and the inner surface of the cylinder generates,
according to the laws of hydrodynamic lubrication, a dynamic pressure and a fluid film of variable
thickness. Depending on the velocity (v) of the piston, the dynamic viscosity (η) of the working fluid,
and the compressibility of the seal material, the friction between the seal and the cylinder surface can
be of dry, fluid or mixed type. Fluid friction ensures a good energy efficiency due to the diminished
friction forces, a situation nevertheless conflicting with the phenomenon of sealing. The hydrodynamic
separation between the seal and the surface of the cylinder that is typical for fluid friction causes
increased fluid loss by leakage, as the fluid flows towards the lower pressure side.

While the presence of a gap (g) has the beneficial effect of diminishing the friction forces, its
inconvenience is leakage. The effect of inadequate sealing is a certain fluid loss that can manifest as
leakage (the Poiseuille component of flow) or drag (the Couette component of flow). Leakage means
fluid loss, even at rest, caused by the pressure drop between the two sealed chambers. Fluid drag is
determined by the existence on the moving component of a fluid film that is necessary for ensuring
minimum friction forces [22]. Evidently, it is the fluid volume lost by drag that is of interest in the
study of sealing systems, leakage being specific only to defect seals.

The thickness of the fluid film between the seal and the cylinder surface is determined by the
evolution of the pressure gradient in the gap (dp/dx): a large gradient means a thin fluid film in the
sealed area, while a small gradient determines a thicker fluid film. Figure 2 illustrates the evolution of
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the fluid film in the contact area of the seal and cylinder surface, known as the Prokop analogy [23].
It can be noticed that the gradient of the curve determines the volume of the leaked fluid. A greater
gradient (dp/dx) causes a smaller quantity of dragged fluid.
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For a viscous flow, the basic relationship between the pressure gradient (dp/dx) and the dimension
of the gap, g(x), in the direction of motion x while neglecting inertial forces is [24]:

dp
dx

= 6·η·v·
g(x) − g∗

g3(x)
(1)

where g* is the dimension of the gap at the point of zero pressure gradient (dp/dx = 0).
Crucial for assessing the type of friction in a coaxial sealing system is determining the magnitude

and evolution of the gap (g) formed between the seal and its contact surface.
Figure 3 shows at rest the distribution of the contact pressure at the interface of the seal and the

cylinder surface in two cases: (a) in the absence and (b) presence of fluid pressure.
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Upon being mounted in its seat, the O-ring modifies its geometry. It is deformed in two directions:
radially and axially. Of interest for the study of the mechanism of friction is only the radial deformation
that influences the magnitude of the gap between the seal and the cylinder surface.

At rest and in the absence of the sealed pressure (Figure 3a), the distribution of the radial pressure
pr0(x) on the sealed surface is a parabola described by Equation (2) [24]:

pr0 = pr0max·

√
1−

(
2·

x
b0
− 1

)2

(2)

where b0 is the width of the contact surface between the O-ring and the seal, and pr0max is the maximum
contact pressure given by Equation (3) [24]:

pr0max =

√
ε2

r0·
(
m2

r − 1
)
+ 2·εr0·(mr + 1)·

(
H
4 + H4

106

)
2·
(
1−m2

r

) (3)

All notations used in Equation (3) refer to the O-ring: mr is Poisson’s ratio for the ring material
(NBR), εr0—is its initial specific radial deformation, and H is the Shore A hardness of the material.

In Figure 3b the cylinder is fed a pressure p1, in which case, in the absence of a relative velocity v,
the distribution of pressure on the sealed surface is given by Equation (4) [24]:

p(x) = p1 + 3·
η·v·L·(1− β)

g2
0

·

[
1−

L·(1− β)
2·x

]
(4)

with the following notations: β = Ar/An = the real non-dimensional contact area; An, Ar = the nominal,
real contact area, respectively; v = gliding velocity; L = width of the seal; g0 = fluid film thickness at
zero pressure gradient.

The real non-dimensional contact area is less than unity and is a quantity that accounts for the
materials of the two elements of the friction pair (i.e., seal and cylinder), the initial specific radial
deformation εr0 of the O-ring, and the pressure of the working fluid.

While at rest, the seal and the cylinder are in direct contact; upon onset of motion, the two elements
will be completely separated by a “wedge”-shaped gap (Figure 4).
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It is the radial elastic deformation of the seal that allows the generation between the two surfaces
of a thin fluid film. The separation of the two surfaces is caused by the dynamic component of the
developed pressure given by Equation (5) [24]:

pd(x) = p1 + 3·
η·v·L·(1− β)

g2
0

·

[
1−

L·(1− β)
2·x

]
(5)

The fluid flow through the thus formed gap can be studied starting from several hypotheses:

• The deformation of the seal (the magnitude of the gap) is small compared to the pre-tensioning of
the O-ring at mounting;

• The thickness of the fluid film in the gap is small compared to the radius of the seal;
• It is admitted that the pressure distribution in the gap is identical to that determined for the O-ring;
• It is admitted that, on radial direction, a balance appears between the pressure created by the

compression of the O-ring and the dynamic component of the pressure in the gap. The two
pressures are of equal magnitude and the form of the gap is determined by the distribution of
pressure generated by the O-ring.

The calculation of the magnitude of the gap formed between the seal and the cylinder surface is
based on the hypothesis that the seal is a cylinder with thin walls subjected to a pressure given by
Equation (5). Thus, at zero pressure gradient, the gap g0 is [25,26]:

g0 =
3

√
3
16
·
(D− h)2

Ep·h
·η·v·L·(1− β2)·

[
1−

2· cosh(k·L)· cos(k·L)

cosh2(k·L) + cos2(k·L)

]
(6)

where:

k =
4

√√√
12·

(
1−m2

p

)
h2·(D− h)2 (7)

where mp and Ep are Poisson’s ratio and Young’s modulus of the seal material, respectively; h =

thickness of the seal.
Equation (6) highlights the direct dependency of the fluid film thickness on the velocity, the

viscosity of the working fluid, and the seal width. Thus, the velocity influences decisively the type of
friction in the coaxial sealing system. In the absence of motion among the components of the tribosystem
(at the debut of motion), friction is dry due to the adhesion forces among the contacting materials. Upon
the onset of the motion, the adhesion forces, the internal friction forces as well as the forces caused by
the asperities of the two surfaces clinging one to another determine mixed friction. As the velocity
grows, the velocity of the fluid determines the complete separation of the tribosystem components
(known as grease planning) which indicates the presence of fluid (hydrodynamic) friction [25].

Generally, fluid friction appears only when the thickness of the fluid film is at least equal to the
sum of the roughness values Rmax of the two surfaces initially contacting. In the case of coaxial sealing
systems, the conducted experimental research has revealed that fluid friction is present even when
the average thickness of the fluid film falls below the sum of the roughness values Rmax of the two
surfaces [26]. This is favored by the fact that the seal material, being softer than the material of the
hydraulic cylinder, adapts its form to the asperities of the cylinder’s steel surface [26].

The viscosity of the working fluid also influences the magnitude of g0 and, consequently, the
type of friction. The decreasing of the viscosity, due to the work temperature increase, diminishes the
thickness of the fluid film which can affect the type of friction.

3. Theoretical results

In order to determine the type of friction in coaxial sealing systems, the test included seals made of
three different polymeric materials of the category of polytetrafluoroethylenes (virgin PTFE and filled
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PTFE). In all cases, the O-ring was made of nitrile butadiene rubber (NBR) of 70 Shore A hardness.
Table 1 features the characteristics of the studied materials [27].

Table 1. Characteristics of the seal materials.

Material Composition Sh D Hardness Young’s Modulus (MPa)

PTFE CF10 90% PTFE + 10% carbon fiber 58 ± 3 300
Virgin PTFE 100% PTFE 55 ± 3 540
PTFE D46 53% PTFE + 46% bronze + 1% pigments 63 ± 3 1420

Polytetrafluoroethylene has one of the smallest friction coefficients ever recorded in a solid
material (0.05 to 0.1). As it includes high-bonded carbon and fluorine, PTFE is almost completely inert
to the substances it comes into contact with. These two properties account for the successful use of this
material for tribological applications designed for reducing energy consumption in friction-intensive
machinery as well as for reactive and corrosive applications.

The added carbon fibers increase wear resistance, reduce the friction coefficient, and improve
the thermal expansion properties. The addition of bronze to PTFE improves compression strength,
thermal conductivity, and electrical conductivity. Also reduced is the tendency to extrusion while
maintaining good sliding and wear properties. The PTFE-ul with added bronze is the standard material
in hydraulic applications [28].

Figure 5 presents the dimensions of the studied coaxial sealing systems.
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The fluid used for testing was anti-wear hydraulic oil ISO VG 32 which is a premium light-weight
paraffinic-based hydraulic oil, ideal for industrial applications or for hydraulic systems [29]. Equation
(8) describes the influence of temperature on the dynamic viscosity of the working fluid:

η = A·e
B
T (8)

where A = 5.68 × 10−9 and B = 4827.627 [29].
For oil temperatures between 20 ◦C and 60 ◦C (293 to 333 K), Figure 7 shows the variation of the

dynamic viscosity versus temperature.
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The influence of the working fluid pressure on the thickness of the fluid film was analyzed for
an oil temperature of 60 ◦C (333 K) which implies a dynamic viscosity of 0.011 Pa·s. The considered
velocity was of 0.2 m/s. Figure 8 shows the resulting graph.

Polymers 2020, 12, x FOR PEER REVIEW 8 of 15 

 

The fluid used for testing was anti-wear hydraulic oil ISO VG 32 which is a premium light-
weight paraffinic-based hydraulic oil, ideal for industrial applications or for hydraulic systems [29]. 
Equation (8) describes the influence of temperature on the dynamic viscosity of the working fluid: ߟ = ܣ ∙ ்݁ (8) 

where A = 5.68 × 10−9 and B = 4827.627 [29]. 
For oil temperatures between 20 °C and 60 °C (293 to 333 K), Figure 7 shows the variation of the 

dynamic viscosity versus temperature. 

 
Figure 7. Dependency of the dynamic viscosity on the temperature of the sealed fluid. 

The influence of the working fluid pressure on the thickness of the fluid film was analyzed for 
an oil temperature of 60 °C (333 K) which implies a dynamic viscosity of 0.011 Pa∙s. The considered 
velocity was of 0.2 m/s. Figure 8 shows the resulting graph. 

 
Figure 8. Variation of the fluid film thickness versus the working pressure. 

For an oil pressure of 100 bar at a temperature of 60 °C (333K), Figure 9 shows the g0 = f(v) 
diagram. 

Figure 8. Variation of the fluid film thickness versus the working pressure.

For an oil pressure of 100 bar at a temperature of 60 ◦C (333K), Figure 9 shows the g0 = f (v) diagram.
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The variation of the working fluid temperature also causes modifications of the fluid film. For a
pressure of 100 bar and a velocity of 0.2 m/s, Figure 10 shows the g0 = f (T) graph.
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Figures 11 and 12 show 3D representations of the fluid film thickness variation versus pressure,
working velocity, and temperature.
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The above figures yield a series of conclusions:

• While with increasing pressure a decrease of g0 can be noticed, for the analyzed interval from 0
to 200 bar, the diminishing of the fluid film was, however, rather small (of approximately 1 µm).
For PTFE with carbon fibers (PTFE CF10) at high working pressures, the thickness of the fluid
film decreased significantly up to 6.5 µm which worsens the conditions of friction;

• The thickness of the fluid film grows with increasing velocities. The presence of a consistent fluid
film at the seal–cylinder interface causes a significant decrease of friction forces and seal wear. On the
other hand, high velocities carry the risk of fluid drag and, consequently, of inadequate sealing;

• The increase of the sealed fluid temperature causes the diminishing of its dynamic viscosity which
determines a diminishing of the fluid film thickness. This triggers an unfavorable friction type;

• The fluid film thickness has micrometric values (1 to 20 µm). As the recommended maximum
roughness (the maximum peak-to-valley height) of hydraulic cylinder interior surfaces is of Rmax

= 0.63 to 2.5 µm [30], under certain working conditions, the thickness of the fluid film g0 is greater
than the roughness sum of the surfaces that form the friction pair which yields the conclusion
that fluid (hydrodynamic) friction is dominant. If the maximum admissible limit of the fluid film
thickness is set to g0 = 10 µm, where fluid drag is within acceptable limits for pistons, Figure 13
presents recommendations for the selection of the seal material. A maximum thickness of 10 µm
is imposed also because, correspondingly, the fluid still has a laminar flow in the gap, while at
higher thickness values, the flow turns turbulent which causes undesirable friction losses [31].
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Figure 13 shows that any of the three materials can be used in the imposed pressure range. As
regarding the velocity and temperature conditions, the most adequate material to be used is PTFE 46D
with added bronze.

4. Experimental Results

As the fluid film thickness cannot be measured directly, this was achieved indirectly by the
resistive method. This requires measuring the voltage drop on the resistance created by the fluid film
between the seal and the surface of the hydraulic cylinder. The electrical connections to the sealing
system are shown in Figure 14 [23].
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Figure 14. Measuring configuration.

Resistance Roil is determined by fluid film of thickness g0, and Ra is the resistance of the utilized
measuring device (Ra = 10 MΩ). In the presented measuring configuration, the electrical resistance Roil
is computed by Equation (9):

Roil = 10·
10V − Ua

Ua
(MΩ) (9)

The dependency between resistance Roil of the fluid film and its thickness g0 is linear [22]:

CR =
Roil
g0

= 63.735(MΩ/µm) (10)

from where follows the computational relationship of the fluid film thickness:

g0 =
Ra·(10V −Ua)

CR·Ua
·10−6 (m) (11)

Table 2 presents the experimental results obtained with this setup.
The graphs in the following figures (Figures 15–17) present the dependencies of the fluid film

thickness on the velocity, fluid pressure, and temperature resulting from the conducted experiments.
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Table 2. Measured voltage drops and corresponding computed fluid film thicknesses.

Material
Ua (V) g0 (µm) Ua (V) g0 (µm) Ua (V) g0 (µm) Ua (V) g0 (µm)

p = 100 bar; T = 333 K

v = 0.2 m/s v = 0.5 m/s v = 1 m/s v = 1.25 m/s

CF10 0.186 8.3 0.143 10.8 - - - -
PTFE 0.21 7.3 0.159 9.7 - - - -
D46 0.293 5.2 0.21 7.3 0.169 9.1 0.156 9.9

v = 0.2 m/s; T = 333 K

p = 50 bar p = 100 bar p = 150 bar p = 200 bar

CF10 0.173 8.9 0.186 8.3 0.222 6.9 0.591 2.5
PTFE 0.205 7.5 0.21 7.3 0.226 6.8 0.251 6.1
D46 0.288 5.3 0.293 5.2 0.288 5.3 0.304 5

p = 100 bar; v = 0.2 m/s

T = 293 K T = 313 K T = 333 K

CF10 - - - - 0.19 8.1
PTFE - - 0.154 10 0.21 7.2
D46 0.154 10 0.213 7.2 0.288 5.3
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The analysis of the three graphs shows that the measured values were very close to those calculated
by Equation (6) with a maximum error of 3.5%. Thus, the conclusions of the theoretical research
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were confirmed, namely, that the thickness of the fluid film grows with the increasing velocity and is
diminished as the pressure and temperature of the sealed fluid increase.

5. Conclusions

The paper analyzes the operational behavior of three seals made of PTFE-based materials,
one of 100% PTFE concentration (virgin PTFE), and two others with 10% carbon fibers and 46%
bronze, respectively.

The sealing mechanism was explained with a focus on the fact that, at the onset of a certain
velocity, the elements of the friction pair are separated by a fluid film of a certain thickness. The
presence of the fluid film causes hydrodynamic friction.

The theoretical and experimental studies yielded a series of significant conclusions:

• The thickness of this film grows with increasing relative velocity;
• With increasing working pressure, between the seal and its adjacent surface, dry contact areas

exceed the hydro-dynamically separated ones;
• Higher working fluid temperature and pressure cause smaller film thicknesses;
• Of the three tested materials, the most adequate for utilization is PTFE 46D with added bronze;
• Virgin PTFE and PTFE CF10 (with added carbon fibers) are adequate for small velocities and

relatively high temperatures;
• At high working pressures, seals made of PTFE CF10 deform less, and a sudden decrease of the

fluid film occurs with adverse effects on friction;
• The theoretically determined computational relationship for the fluid film thickness has been

confirmed by the experimental results.

The research results yielded the conclusion that the utilization of coaxial sealing systems with
seals made of PTFE 46D is the recommended solution for the construction of linear hydraulic motors.

Author Contributions: A.D. and T.D. conceived Sections 1–3; T.D. performed the experiments (Section 4) and
wrote the first version of the manuscript; A.D. conceived Section 5. All authors contributed to writing and
correcting the document. All authors have read and agreed to the published version of the manuscript.
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