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Abstract: Composite structures are made of multidirectional (MD) fiber-reinforced polymer (FRP)
composite laminates, which fail due to multiple damages in matrix, interface, and fiber constituents
at different scales. The yield point of a unidirectional FRP composite is assumed as the lamina
strength limit representing the damage initiation phenomena, while yielding of MD composites in
structural applications are not quantified due to the complexity of the sequence of damage evolutions
in different laminas dependent on their angle and specification. This paper proposes a new method to
identify the yield point of MD composite structures based on the evolution of the damage dissipation
energy (DDE). Such a characteristic evolution curve is computed using a validated finite element
model with a mesoscale damage-based constitutive model that accounts for different matrix and fiber
failure modes in angle lamina. The yield point of composite structures is identified to correspond to a
5% increase in the initial slope of the DDE evolution curve. The yield points of three antisymmetric
MD FRP composite structures under flexural loading conditions are established based on Hashin
unidirectional (UD) criteria and the energy-based criterion. It is shown that the new energy concept
provides a significantly larger safe limit of yield for MD composite structures compared to UD criteria,
in which the accumulation of energy dissipated due to all damage modes is less than 5% of the
fracture energy required for the structural rupture.

Keywords: composite structures; multidirectional FRP composite laminates; composite yielding;
damage dissipation energy; continuum damage model; finite element simulation

1. Introduction

The ever-increasing use of advanced polymer composites such as fiber-reinforced polymer
(FRP) composites, nanocomposites, etc., as high strength-to-weight ratio and high-stiffness structural
materials in advanced industrial applications [1–3], presents a unique design challenge with highly
anisotropic material responses of the composites [4–9]. The FRP composites are essentially brittle with
no plastic deformation, thus adequately described using a bilinear stress–strain curves with elastic and
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softening responses. The softening response represents the permanent deformation of the material,
described through the continuous degradation of stiffness and strength to complete fracture [10–13].
The general loading on composite structures, including axial, flexural, and torsional loads, generates a
complex stress state in the material. Consequently, a mechanics-equivalent stress quantity is determined
in comparison with the corresponding property at the yield of the material [14–20]. The Tsai–Wu theory
(1970), as one of the first failure criteria, was established based on Hill’s theory of the macroscopic
yielding of anisotropic metals, to predict the yielding of composite materials [21,22]. Thereafter,
many composite failure criteria, including Hashin (1980), Chang–Lessard (1991), Puck (1998), Cuntze
(2004), Azizi (2012), and Daniel (2015), were formulated in the form of stress-based relations to predict
the yielding/failure of composites in the mixed-mode condition [22–29]. The Christensen macroscopic
yield criterion for fibrous composites consists of two quadratic stress-based equations for failure
prediction of the matrix and fibers [30]. Lissenden, through an empirical approach, established the
initial and subsequent yield surfaces of metal matrix composite (MMC) laminates, and characterized
the hardening behavior [31]. Azizi et al. used strain gradient plasticity of the fiber/matrix unit cell of a
continuous fiber composite laminate to develop the anisotropic pressure-dependent yield function
for mmCs in the macroscale [28]. A lamina strain rate yield model in the form of the master failure
envelope under multi-axial sates of stress was established [29,32]. Some of these failure criteria are
employed in finite element (FE) codes, and they are used to predict the damage and failure processes
in composite materials [33,34].

In the continuum damage mechanics approach, the gradual elastic softening deformation of the
composite lamina, which represents the multiple damage processes, could be used to quantify the local
permanent deformation and yielding nature in the complex stress state of the composite lamina [10,35].
In this approach, the fibrous composite yield models are treated as a criterion of damage initiation of
composite lamina in the mesoscale [10,36]. The subsequent damage propagation or softening process of
the composite is described using energy-based models [37,38]. Maimi et al. proposed a damage model
for intralaminar failure and collapse of the composite structure. The model was updated to consider
the effect of fiber rotation during the loading, which resulted in a stiffer composite structure against
loading [38,39]. Zhuang et al. developed a numerical model for bearing damage of composite laminates
in the mesoscale to predict the size and shape of the damage zones [37]. Fakoor et al. performed a
numerical and experimental study on the progressive damage of a composite laminate, considering both
linear and various exponential softening laws, to address the first and last ply failures (FPF and LPF) [40].
Su et al. employed a progressive damage model to describe the compression response of the open-hole
composite laminate, considering both in-plane and out-of-plane deformations [41]. A gradual stiffness
degradation model was proposed by Yang et al. for the estimation of damage evolution in composite
laminates under three-point bending load [42]. Cherniaev et al. used a three-damage-based constitutive
model to simulate the crushing response of composite tube, considering bilinear softening for fiber
damage, matrix damage with linear softening, and hardening-softening due to shear damage [35].
R. Koloor et al. developed a mesoscale damage evolution model for angle lamina incorporating Hashin
failure criteria [24] and an energy-based damage model [10] for the prediction of the damage and
post-damage initiations, as well as the subsequent softening process [10,43–45].

In industrial scale, composite structures are made of MD composite laminate, in which their
design basis uses the reviewed criteria that were introduced as the yield limit, damage, and failure of
unidirectional (UD) composite lamina level, rather than the structural level. In the UD FRP composites,
the calculated ultimate strength based on measured data from a standard test [10] is often treated
as the yield strength of the composite material. The strength is determined based on tensile and
compressive stresses, as well as shear stress in the fiber and matrix directions [10,46]. In MD FRP
composite laminates, matrix yielding/cracking and interface delamination are observed as the early
damage mechanisms due to very low stiffness/strength properties of the matrix and interface (10%–20%)
compared to the fiber properties level [10,47–50]. In addition, the variation of through-thickness
lamina orientations in an MD composite facilitates matrix failure and multi-delamination events at
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the early stage of the loading [10,43,45,51]. In some cases, the MD FRP composite structure was able
to sustain up to 10-fold higher loading above the level corresponding to the onset of matrix and
interface damages [10,43,45]. Accordingly, considering the UD lamina level yield criteria to estimate
the failure of an MD composite structure normally results in the prediction of structural failure at
5%–10% maximum load capacity of the structure [2,10,43,44,52], which prevents the optimum design of
light composite structures. Therefore, material and loading-related parameters should be developed to
provide a consistent identification of the yield point for the MD FRP composite structures [2,5,10,43–45].

In this study, an energy concept is developed based on the energy dissipated during the inelastic
deformation process of lamina using a mesoscale damage model, to estimate the yield of MD FRP
composite structures. The critical level of the accumulated damage dissipation energy (DDE) in FRP
composite laminate is proposed as the parameter that indicates the yield of the material. The continuum
damage mechanics that account for damage initiation and propagation in the material point are used
to quantify the material softening process and compute the rate of DDE growth, to establish the critical
DDE level. The characteristic evolution of the DDE is established through FE simulations of actual tests
using a validated FE model. The yield point is inferred from the DDE curve, when a sudden increasing
rate is observed. The approach is illustrated for different types of antisymmetric MD FRP composite
structures with the objective of determining the yield strength. The experiments were implemented
on carbon and glass fiber-reinforced polymer (CFRP and GFRP) composite structures, such that
only lamina damage could occur with negligible interface delamination; therefore, interlaminar
damage was not considered [10,43]. A new approach with FE model-based configurations called
single- and multi-layer models [10] was used to simulate the FRP composites manufactured using
different methods, to model the mesoscale inter- and intralaminar constructions of the composites.
The simulation results were validated with the structural response of the composites in the experiments.
The method is recommended for determining the yield limit of any type of MD composite structure
under different types of load.

2. Damage Model of FRP Composite Lamina

The response of the FRP composite laminates to applied load such that yielding of the material is
achieved is predicted in this study, based on the damage mechanics approach. The damage model of
the FRP composite lamina is described below.

The uniaxial behavior of UD FRP composite lamina in orthogonal axes (1–2 axis, Figure 1a) for
elastic-damage behavior under tension and compression is shown in Figure 1b. The four bilinear
elastic softening curves represent the equivalent stress–displacement behavior of composite lamina in
different failure modes of matrix cracking and crushing, and fiber breakage and buckling (following
the load arrows of UD lamina, Figure 1b). In an angle lamina under global loading (x–y axis,
Figure 1a), the global deformations are mapped into local deformation and used to compute the
effective stress parameters. The elastic behavior of the lamina is computed following the classical
theory of lamina [53,54]. The stress–displacement relationship of each damage mode is defined in the
sections below.
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Figure 1. (a) Local (1–2) and global (x–y) axes of an angle lamina; (b) bilinear stress–strain behavior of 
fiber-reinforced polymer (FRP) lamina in orthogonal axes for various failure modes. (c) Each colored 
curve corresponds to the loading as shown by the same colored arrows in the inset figure. 

2.1. Damage Initiation 

The initiation of damage in the lamina for the different failure modes is estimated using Hashin’s 
quadratic stress-based failure model [24]. The model is expressed as a quadratic function of the ratio 
of the effective stress to strength terms to calculate the values of damage variables for the respective 
failure mode. 
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no plastic deformation is observed in the FRP composite [2,10,55], the permanent deformation of the 
lamina is considered in the damage evolution processes. 

Figure 1. (a) Local (1–2) and global (x–y) axes of an angle lamina; (b) bilinear stress–strain behavior of
fiber-reinforced polymer (FRP) lamina in orthogonal axes for various failure modes. (c) Each colored
curve corresponds to the loading as shown by the same colored arrows in the inset figure.

2.1. Damage Initiation

The initiation of damage in the lamina for the different failure modes is estimated using Hashin’s
quadratic stress-based failure model [24]. The model is expressed as a quadratic function of the ratio
of the effective stress to strength terms to calculate the values of damage variables for the respective
failure mode.

Matrix cracking and crushing:(
σ̂22

YT

)2
+

(
τ̂12

SL

)2
= dt

m; f or σ̂22 ≥ 0 (Tension). (1)

(
σ̂22

2ST

)2
+

( YC

2ST

)2

− 1

( σ̂22

YC

)
+

(
τ̂12

SL

)2
= dc

m; f or σ̂22 < 0 (Compression). (2)

Fiber fracture and buckling/kinking:(
σ̂11

XT

)2
+

(
τ̂12

SL

)2
= dt

f ; f or σ̂11 ≥ 0 (Tension). (3)

(
σ̂11

XC

)2
= dc

f ; f or σ̂11 < 0 (Compression) (4)

In the equations above, [σ̂] represents the effective stresses in the lamina, and XT, YT, XC, YC, SL,
and ST are the strength properties. In Equations (1)–(4), dt

f , dc
f and dt

m, dc
m are the internal damage

variables in the fiber and matrix phases of the lamina, under tension or compression loadings. Since
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no plastic deformation is observed in the FRP composite [2,10,55], the permanent deformation of the
lamina is considered in the damage evolution processes.

Post-damage initiation:
Once the onset of damage is predicted in one of the modes, the properties of the material reduce

in the other directions/modes and result in early damage. Such effects could be captured by updating
the elastic stress tensor (effective stresses in Equations (1)–(4) through internal damage variables.

σ̂i j =

{
σi j Prior to any damage initiation

D σi j I f any o f the f our damages has initiated
(5)

whereσ is the stress computed using classical lamina theory, [σ̂] is the effective stress in Equations (1)–(4),
and the damage operator, D, is used to consider the effect of early damage initiations. The hypothesis
of strain equivalence is used to derive the damage operator as follows [54,56]:

D =


1/

(
1− d f

)
0 0

0 1/(1− dm) 0
0 0 1/(1− ds)

 (6)

where d f , dm, and ds are the fiber, matrix, and shear internal damage variables corresponding to the
lamina damage modes in Equations (1)–(4).

2.2. Damage Propagation

The evolution of damage to failure at a local material point is obtained through the softening
process using energy-based criterion [10,43,45]. In this process, the damage dissipation energy, GDDE

(Figure 2a), is employed to determine the constitutive model of the material in each failure mode,
which is expressed as the stress–displacement relation. The fracture energy, GC, is the energy that,
if dissipated fully, causes the material to fail (GXT

C , GXC
C , GYT

C , and GYC
C are the fracture energies in

different failure modes; Figure 1b). The value of dissipated energy due to damage is obtained using

GDDE =
1
2

dp k0
eq δ

o
eq δeq (7)

with the corresponding damage evolution variable, dp, defined as

dp =
δ

f
eq

(
δeq − δ0

eq

)
δeq

(
δ

f
eq − δ

0
eq

) δeq ≥ δ
0
eq (8)

where k0
eq is the equivalent elastic stiffness, δ0

eq is the equivalent displacement at the onset of damage

in the respective mode
(
dp = 0

)
, and δ

f
eq is the equivalent displacement at the separation of the

material point
(
dp = 1

)
. In each failure mode, the critical value of equivalent dissipation energy, GC,

is considered as the fracture energy of the lamina. The evolutions of the damage initiation variable (di
in Equations (1)–(4)) and damage propagation variable

(
dp

)
are shown in Figure 2b.

The relation between the equivalent stress–displacement for each failure mode, after onset of
damage (dotted lines in Figure 1b,c), is expressed by the equations below [10,43–45].

Matrix tension (σ̂22 ≥ 0):

σeq. =


(〈
σo

22

〉〈
εo

22

〉
+ τo

12ε
o
12

)2((
Lc

(〈
σo

22

〉〈
εo

22

〉
+ τo

12ε
o
12

))
− 2GYT

C

)
×

(〈
εo

22

〉
2 + εo

12
2
)
×

δeq. −
2GYT

C

√〈
εo

22

〉
2 + εo

12
2〈

σo
22

〉〈
εo

22

〉
+ τo

12ε
o
12

 (9)



Polymers 2020, 12, 157 6 of 18

Matrix compression (σ̂22 < 0):

σeq. =


(〈
−σo

22

〉〈
−εo

22

〉
+ τo

12ε
o
12

)2(
Lc

(〈
−σo

22

〉〈
−εo

22

〉
+ τo

12ε
o
12

)
− 2GYC

C

)(〈
−εo

22

〉
2 + εo

12
2
)
×

δeq. −
2GYC

C

√〈
−εo

22

〉
2 + εo

12
2〈

−σo
22

〉〈
−εo

22

〉
+ τo

12ε
o
12

 (10)

Fiber tension (σ̂11 ≥ 0):

σeq. =


(〈
σo

11

〉〈
εo

11

〉
+ τo

12ε
o
12

)2((
Lc

(〈
σo

11

〉〈
εo

11

〉
+ τo

12ε
o
12

))
− 2GXT

C

)
×

(〈
εo

11

〉
2 + εo

12
2
)
×

δeq. −
2GXT

C

√〈
εo

11

〉
2 + εo

12
2〈

σo
11

〉〈
εo

11

〉
+ τo

12ε
o
12

 (11)

Fiber compression (σ̂11 < 0):

σeq. =


〈
−σo

11

〉
2(

Lc
〈
−εo

11

〉〈
−σo

11

〉
− 2GXC

C

) ×
δeq. −

2GXC
C〈
−σo

11

〉 (12)

In these equations, Lc is the element characteristic length with magnitude depending on the
geometry and the element formulation. For the first-order element, Lc is considered as the length of a
line across the element. The terms GXT

C , GXC
C , GYT

C , and GYC
C are the fiber and matrix fracture energy

parameters of the lamina under tension and compression loadings. In Equations (9)–(12), σo
i j, τ

o
i j, and

εo
i j indicate the effective stresses at the onset of damage [10,43].
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2.3. Damage Dissipation Energy

The energy stored in the FRP composite laminate through elastic-damage deformation, commonly
called the internal energy, can be employed to describe the progressive damage process of the composite
structure [10,43,45,57]. The internal energy, EU, can be written for non-viscous composites as

EU =

∫ t

0

(∫ .

V
σc :

.
ε dV

)
dT (13)

where σc is the stress derived from the constitutive equation of a lamina. The strain rate term is
decomposed as

.
ε =

.
ε

el
+

.
ε

pl
+

.
ε

cr (14)
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where
.
ε

el,
.
ε

pl, and
.
ε

cr are the time rates of elastic, plastic, and creep strains, respectively. Since FRP
lamina behaves in the form of elastic-brittle material, thus

.
ε

pl
=

.
ε

cr
= 0, and Equation (13) can be

simplified to

ES =

∫ t

0

(∫ .

V
σc :

.
ε

eldV
)
dT (15)

where ES is the elastic strain energy. The elastic strain is not recoverable when damage initiates in a
material point. Hence, σc can be expressed in the following form:

σc = (1− d)σu, d ∈ [0, 1] (16)

where σu is un-damaged stress, and d is the continuum damage parameter which varies from “zero”
for the undamaged state to “one” for the fully damaged state of the material point in the composite
lamina. Therefore, substituting σc into Equation (15) gives elastic strain energy as

ES =

∫ t

0

(∫ .

V
(1− d)σu :

.
ε

eldV
)
dT (17)

It is assumed that the damage parameter remains fixed at time t until unloading. Thus, the
recoverable strain energy and the dissipated energy during damage can be expressed as follows:

EE =

∫ t

0

(∫ .

V
(1− dt)σu :

.
ε

eldV
)
dT =

∫ t

0

(∫ .

V

(
1− dt

1− d

)
σc :

.
ε

eldV
)
dT (18)

ED =

∫ t

0

(∫ .

V
(dt − d)σu :

.
ε

eldV
)
dT =

∫ t

0

(∫ .

V

(
dt − d
1− d

)
σc :

.
ε

eldV
)
dT (19)

Considering the undamaged elastic energy function f u, interchanging the integrals in Equations (18)
and (19) yields

EE =

∫ .

V

(∫ t

0
(1− dt)

.
f

u
dT

)
dV =

∫ .

V
((1− dt) f u) dV (20)

ED =

∫ .

V

(∫ t

0
(dt − d)

.
f

u
dT

)
dV =

∫ .

V

[
(dt − d) f u

|
t
0 +

∫ t

0

.
d f udT

]
dV (21)

Since, at time t, d = dt and, at time zero, f u = 0, the first term of the last expression in Equation
(21) is zero. By defining the damage strain energy function f c as (1− dt) f u, Equations (20) and (21) can
be written as follows:

EE =

∫ .

V
((1− dt) f u)dV =

∫ .

V
f cdV (22)

ED =

∫ .

V

∫ t

0

.
d

1− d
f cdT

dV =

∫ t

0

∫ .

V

.
d

1− d
f cdVdT (23)

The parameter f c can be written for a linear elastic energy function as

f c =
1
2
σu : εel. (24)

Substituting Equation (24) into Equations (22) and (23) gets

EE =

∫ .

V

1
2
σu : εeldV (25)

ED =

∫ t

0

∫ .

V

.
d

2(1− d)
σu : εeldVdT (26)
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The present study employed these equations through FE simulations to establish the characteristic
evolution of the DDE and to illustrate the proposed concept for determining the yield limit of MD FRP
composite structures [43,45]. The yield point was identified corresponding to a 5% increase in the initial
slope of the total DDE evolution curve of the composite structure under specific loading conditions.

3. Materials and Experimental Procedures

Three different types of antisymmetric MD FRP composite laminate panels were manufactured
and machined into beam specimen geometries for flexural tests. These tests were performed in
accordance with the ASTM standard [58]. The antisymmetric MD composite lay-up, sample geometry,
and load and boundary conditions were selected such that, under the flexural deformation, the various
lamina failure modes under tension and compression were activated, while the interlaminar damage
and delamination phenomenon were minimized. Subsequently, microscopic fractographic analysis
was used to examine the lamina and interface damage events, which indicate dominant lamina damage
with negligible interface delamination [10,43,45]. The first group of specimens was fabricated from a
glass fiber-reinforced polymer (GFRP) composite panel with thermoplastic resin and eight layers of
UD E-glass fiber mats. The GFRP composite was prepared using vacuum-assisted infusion molding
(VAIM) process, which resulted in the formation of laminate with no interface between the laminas [10].
The next two groups of the composite samples were made of carbon fiber-reinforced polymer (CFRP)
composite laminate. A panel of the CFRP composite was prepared by pre-impregnation of the UD
CFRP lamina (M40J fibers and NCHM 6376 resin, Structil France) and cured in an autoclave, resulting
in a composite laminate with interface laminas [10]. Details of the manufacturing process of the FRP
panels were provided elsewhere [2,10,43]. Microscopic images of the longitudinal cross-section of the
FRP composite specimens are shown in Figure 3a. A schematic view of the composite beam in the
test set-up and boundary conditions is provided in Figure 3b, in which the lay-ups and dimensions of
the beams, and the load configurations are described in Table 1. Several GFRP composite specimens
and the first batch of the CFRP composite samples were tested under three-point bending (3PB)
conditions, while the second batch of CFRP composite samples was tested under four-point bending
(4PB), as mentioned in Table 1. A continuous flexural load was applied to the specimens until a
significant amount of degradation in load–deflection response, which represented the occurrence of
multiple damages, was observed. The results of the tests in terms of monotonic reaction force versus
the deflection of the composite beams were recorded and utilized in the validation procedure of the FE
models and simulation processes.
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Table 1. Configuration of multidirectional (MD) fiber-reinforced polymer (FRP) composite specimens
and loading type. ID—identifier; CF—carbon fiber; GF—glass fiber; PB—point bending.

Composite
Panel

(Case ID)
Laminate Sequences

Dimensions of the Beam Specimen (mm)
Loading

Rate(mm/min)
Loading

TypeLength
L

Width
W

Laminate
Thickness

t

Lamina
Thickness

Support Span
Length

LSS

GFRP
(Case 1) [0/90/45/0/−45/90/45/0] 210 25 4 0.5 170 2 3PB

CFRP
(Case 2)

[45/−45/45/0/−45/0
/0/45/0/−45/45/−45] 140 20 2.4 0.2 112 2 3PB

CFRP
(Case 3)

[−45/45/−45/90/45/90/
90/−45/90/45/−45/45] 70 20 2.4 0.2 60 1 4PB

4. Finite Element Simulation

Since the manufacturing process of the FRP composite laminates dictates the resulting interface
condition between the laminas, the FE models of these cases are different. The GFRP composite laminate,
produced by the VAIM method with no apparent interface, was simulated with the single-layer model.
The CFRP composite laminate, fabricated via lay-ups of prepreg laminas and autoclave curing with
distinct interfaces, was modeled using the multi-layer model. The single-layer and multi-layer FE
model constructions are illustrated in Figure 4, while details of these mesoscale FE models were
discussed elsewhere [10,43,45].
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Figure 4. Configuration of (a) single-layer and (b) multi-layer finite element (FE) model-based
constructions of FRP composite laminates for vacuum-assisted infusion molding (VAIM) and
prepreg/autoclave manufacturing processes, respectively.

The three-dimensional (3D) FE model geometry of the CFRP composite laminate beam specimen
is shown in Figure 5. The damage model (Section 2) was applied in each lamina using the standard
model definition step in ABAQUS software [57]. Each lamina was discretized into a layer of eight-node
continuum shell elements (SC8R) with reduced integration points for efficient computation [37].
The element mesh was refined with smaller-size elements, defined for the central region of the
specimen when the maximum deflection and, thus, damage evolution was anticipated. The loading
and support rollers were modeled as rigid bodies and discretized using rigid, four-node continuum
elements (R3D4) [57].

Frictionless contact was assumed between all contacting bodies. In the multi-layer model
(Figure 4b), the interfaces between adjacent laminas were modeled using a surface-to-surface tie
with finite displacement interaction of the sharing node pair. This allows relative displacement
between adjacent surfaces of the laminas [10,45]. A two-step mesh convergence process was
performed to eliminate the effect of element size on the FE-calculated results for the elastic and
damage calculations [43,45]. A finer element mesh size than that adequately identified in the elastic
analysis is required for element size-independent damage calculations. The resulting element size, at
mesh convergence, had an edge length of 0.2 mm. The boundary conditions of the model are illustrated
in Figure 3b, while the loading was identical to that used during the test.

The elastic and strength properties of GFRP and CFRP composite laminates used in the FE
simulations were obtained through standard tests (ASTM-D4762, [59]) [10,43,45], while the values of
fracture energies were extracted from the properties of similar materials in the literature [60–62], as listed
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in Table 2. These properties were utilized rigorously in the FE simulation exercises of the various
composite specimen geometries and loading cases, demonstrating comparable load–displacement
results with measured responses [2,10,43–45,52].
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Table 2. Elastic and damage properties of unidirectional (UD) GFRP and CFRP composite laminas.

Lamina Constants Constitutive Damage Model Parameters of Lamina

GFRP CFRP GFRP CFRP

E11, GPa 36.9 105.5 Longitudinal tensile strength, MPa XT 820 1340
E22, GPa 10 7.2 Longitudinal compressive strength, MPa XC 500 1192
E33, GPa 10 7.2 Transverse tensile strength, MPa YT 80.6 19.6
G12, GPa 3.3 3.4 Transverse compressive strength, MPa YC 322 92.3
G13, GPa 3.3 3.4 Longitudinal shear strength, MPa SL 54.5 51
G23, GPa 3.6 2.52 Transverse shear strength, MPa ST 161.2 23
ν12 0.32 0.34 Longitudinal tensile fracture energy, N/mm GXT 32 48.4
ν13 0.32 0.34 Longitudinal compressive fracture energy, N/mm GXC 20 60.3
ν23 0.44 0.378 Transverse tensile fracture energy GYT 4.5 4.5

Transverse compressive fracture energy, N/mm GYC 4.5 8.5

5. Results and Discussion

The FE-calculated and measured flexural responses of the MD FRP composite beam specimens,
expressed in terms of the load–deflection curves, were compared. A comparable response was
indicative of the validity of the FE simulation procedures. Subsequently, the calculated deformation and
damage responses of the composite laminates were interpreted for the respective failure mechanisms.
The characteristic evolution of the DDE could then be established and inferred for the onset of yield of
the composite structure.

5.1. Structural Response and Damage Evolution of GFRP Composite Beam under Three-Point Bending

The FE-calculated load–deflection response of the MD GFRP composite beam specimen (Case
1, Table 1) was compared with the measured curve, as shown in Figure 6a. The reasonably good
prediction of the flexural response rendered the FE simulation valid. The GFRP composite beam
showed an initial linear response up to the deflection of about 12 mm, suggesting structural elastic
behavior; however, the flexural stiffness of the beam (Figure 6a) indicated a 1.5% reduction of the
stiffness compared to initial condition. This was followed by a slight deviation with lower flexural
stiffness to the maximum load, likely attributed to damage and possible softening of the structure.
The corresponding evolution of the calculated strain energy (SE) and DDE with increasing beam
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deflection is shown in Figure 6b. A sudden load drop was observed at the maximum load, due to the
composite rupture by fiber buckling in the first lamina under compression, as shown in Figure 6c.
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Results show that a negligible amount of energy was dissipated prior to the beam deflection
of 13.5 mm. This suggests that limited damage took place on the structure up to this critical load
level. However, the rate of energy dissipation abruptly increased for larger composite beam deflection.
Although an MD GFRP composite was considered under complex bending load, only the single
damage mode for fiber failure occurred in the first lamina (0◦) under compression, while other laminas
remained elastic until the maximum load was experienced. The fiber damage initiation was predicted
at 13.5 mm deflection. Based on the proposed method of specifying the yield point of the composite
structure, yield began when the rate of the DDE increased to 0.914 N/(mm·s) at a 5% increase in the
initial slope DDE evolution curve. Thus, this load (stress) and deflection level of (350 N, 13.5 mm) at
which the rate of the DDE abruptly increased was identified as the yield point of the GFRP composite
laminates. Deformation beyond the yield limit to failure was dominated by the softening of the
structure. The total DDE of the GFRP composite corresponding to the maximum load at failure was
234 N/mm, which was 3.4% of the total SE of the structure at 6960 N/mm (Figure 6b). The flexural
stiffness of the GFRP composite was reduced to 3% and 15.3% from the initial value, at the yield point
and maximum load level, respectively.

5.2. Structural Response and Damage Evolution of CFRP Composite Beam under Three-Point Bending Load

The FE-calculated load–deflection response of the MD CFRP composite beam specimen (Case 2,
Table 1) was compared with the measured curve, as shown in Figure 7a. A reasonably good prediction
of the flexural response was claimed; thus, the validity of the FE simulation was ensured. Linear
elastic response was observed up to a displacement of about 12.5 mm. A noticeable difference between
the FE-predicted and measured deformation at larger deflection, with apparent minute load drops
predicted along the load-displacement curve. Such a load drop was artificially induced by the relative
slip between the CFRP composite laminate beam specimen and the support rollers under the assumed
friction-free condition [45]. As described for the GFRP composite (Case 1) above, the observed reduction
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in the flexural modulus as reflected in the stiffness curve (Figure 7a) was due to the accumulated
damage by the multiple modes of the failure of the composite constituents.
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The corresponding evolution of the calculated DDE with increasing beam deflection, as shown
in Figure 7b, exhibited identical characteristics to that of the GFRP composite (Case 1). Based on the
proposed method of specifying the yield point of the composite structure, yield began when the rate of
the DDE abruptly increased to 2.1 N/(mm·s) (i.e., 5% increase in the initial slope). Thus, the yield
point was identified to correspond to the load and deflection levels of (150 N, 9 mm), when a sudden
increase in the rate of the DDE was observed. It is worth mentioning that catastrophic fracture did not
occur for this MD CFRP composite beam specimen at the maximum prescribed central displacement
of 28 mm. However, extensive softening of the material by the various damage mechanisms was
expected to have occurred. The FE model predicted various matrix cracking and crushing phenomena
in different laminas with respect to the level of beam deflection, as shown in Figure 7c. The time to
the onset of matrix cracking was predicted firstly in the bottom most lamina (−45◦) of the composite
beam when loaded up to 4.7 mm deflection, which represented the elastic deformation limit of the
composite structure. The accumulated DDE at this displacement was 680 N/mm, which was 14% of
the total strain energy of the composite structure (4825 N/mm, Figure 7b). The initial flexural stiffness
of the CFRP composite beam of 17.6 N/mm was reduced to 17.44 and 10.66 N/mm (0.91% and 39.4%
reduction) at the yield point and maximum load level, respectively.

5.3. Structural Response and Damage Evolution of CFRP Composite Beam under Four-Point Bending

The FE-calculated load–deflection response of the MD GFRP composite beam specimen (Case 3,
Table 1) under 4PB was compared with the measured curve, as shown in Figure 8a. Again, a reasonably
good comparison was demonstrated, and a valid FE simulation procedure of the test was claimed.
A similar trend of the flexural deformation of the MD FRP composite beam specimens was observed
in the three different specimens considered in this study. A larger applied total load of 600 N was
recorded over a much shorter prescribed displacement of 8 mm, when compared with the 3PB (Case 2,
Table 1) and different anti-symmetric lay-ups of the specimen. Linear elastic flexural response was
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measured up to the central deflection of about 4.6 mm, while the flexural stiffness curve (Figure 8a)
was reduced by 7.1% from the initial condition. The corresponding evolution of SE and DDE in
this antisymmetric CFRP composite beam specimen, with the applied displacement of the loading
rollers, under the 4PB load, is shown in Figure 8b. Based on the proposed method of identifying
the yield point of the composite, yield commenced when the rate of the DDE sharply rises to 11.1
N/(mm·s). The corresponding load and deflection level at yield were 313 N and 3 mm, respectively.
It is worth noting that the load–deflection curve remained fairly linear beyond the yield point up to
about 4.7 mm. Within this small deflection range, the rapid evolution of matrix damage in all of the
laminas under tensile deformation (Figure 8c) only contributed to a fraction (about 10%) of the total
DDE; thus, the effect on the softening of the material remained insignificant. A similar observation
applied to the previous different FRP composite specimens and loading conditions, as described above.
The accumulated DDE at the end of the prescribed displacement was 598.4 N/mm, which was 23%
of the total SE of the composite beam (2567 N/mm, Figure 8b). The flexural stiffness of the CFRP
composite was reduced by 1.1% and 31% of the initial value at the yield point and maximum load level
(8-mm deflection), respectively.
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Composite 
Panel 

(Case ID) 

Yield 
Parameter 

Maximum 
Capacity 

(MC) 

Yield Point 
Damage Type UD Hashin Criteria Energy-based Criteria 

Value Percentage to MC Value Percentage to MC 

GFRP 
(Case 1) 
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Figure 8. (a) Load–deflection response, structure stiffness curve, (b) strain and damage dissipation
energies, and (c) time to matrix damage initiation in the laminas of CFRP composite beam under
4PB load.

5.4. Comparison of the Estimated Yield Limits Based on UD Hashin Criteria and Energy-Based Criterion

Three cases of FRP composite structure were tested under flexural loading condition, while the
FE model was used to predict the material behavior and specify the structural yielding based on UD
criteria, as well as the energy-based model proposed in this study. A summary of the results in terms
of the maximum load and deflection capacities of the structures, yielding according to the UD criteria
and energy-based criteria, and the percentage of the yield value to the maximum capacity (MC) of the
structure is listed in Table 3.
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Table 3. Results of the yield values (UD and energy-based criteria) of the MD composite structure
under flexural loading condition.
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Results indicated that, in the condition of the single failure mode (Case 1), the UD criteria (i.e.,
Hashin model) and energy-based criterion would suggest a similar range for yielding of the MD
composite structure. However, MD composite structures mostly failed due to multiple damage
phenomena (Cases 2 and 3), in which case, considering UD criteria would result in the assumption
of structural yielding at only 10%–20% maximum capacity of the structure (displacement or load).
While using the energy-based criterion, the yielding limit could safely (controlled condition in which
the accumulation of all damage modes contributed to less than 5% of energy dissipation) increase to
30%–50% of the maximum capacity of the structure. The knowledge of the safe limit of structural
yielding could be used for the optimum design of composite structures that are typically implemented
under complex loading conditions.

6. Conclusions

A new criterion was proposed to identify the onset of yield in MD FRP composite laminate
structures subjected to any type of loading condition. The new energy concept provides a significantly
larger safe limit of yield for MD composite structures that normally fail due to multiple damage
phenomena, in which the accumulation of energy dissipated due to all damage modes is less than 5%
of the fracture energy required for the structural rupture. The criterion is based on the damage energy
dissipated through the multiple softening processes of composite laminate materials under different
mesoscale failure modes. The characteristic evolution of the DDE was calculated using a validated FE
model with damage-based constitutive equations. The criterion was examined for antisymmetric MD
GFRP and CFRP composite laminates under three- and four-point bending test configurations. The
following can be concluded:

1. The yield point of the FRP composite laminate structures could be identified by a 5% increase in
the initial slope of the DDE evolution curve with respect to the applied load parameters.

2. At the yield point, the extent of damage by the various modes depended on material, lay-ups,
load, and test configurations.

3. The yield points of the MD GFRP and CFRP composite laminates (cases 1, 2, and 3) were identified
to occur upon flexural loading when the rate of the DDE reached 0.914, 2.1, and 11.1 N/(mm·s),
respectively. The corresponding deflections were 13.5, 9, and 3 mm, respectively.

4. The initial flexural stiffness of the MD GFRP and CFRP composite structures (cases 1, 2, and 3) were
measured at 28, 17.6, and 108.26 N/mm, reduced to 27.2, 17.44, and 107.1 N/mm at the yield point,
indicating 3%, 0.91%, and 1.1% reductions in the stiffness of the beams, respectively. Therefore,
an average 2% reduction in flexural stiffness could be suggested as a mean for the determination
of the yield point in MD FRP composite structures under three- and four-point bending loads.

5. In general, the UD criteria resulted in the assumption of structural yielding at 10%–20% maximum
capacity of the structure (displacement or load), whereas, using the energy-based criterion,
the yield limit could be safely increased to 30%–50% of the maximum capacity of the structure.
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Abbreviations

[σ̂] Effective stress of lamina (MPa)
YT Transverse tensile strength (MPa)
SL Longitudinal shear strength (MPa)
ST Transverse shear strength (MPa)
YC Transverse compressive strength (MPa)
XT Longitudinal tensile strength (MPa)
XC Longitudinal compressive strength (MPa)
dt

m Matrix damage initiation variable in lamina under tensile load
dc

m Matrix damage initiation variable in lamina under compressive load
dt

f Fiber damage initiation variable in lamina under tensile load
dc

f Fiber damage initiation variable in lamina under compressive load
D Damage operator in post-damage initiation process
df, dm, and ds Internal damage variable corresponding to lamina fiber, matrix, and shear damage modes
GC Fracture energy (N/mm)
GXT Longitudinal tensile fracture energy (N/mm)
GXC Longitudinal compressive fracture energy (N/mm)
GYT Transverse tensile fracture energy (N/mm)
GYC Transverse compressive fracture energy (N/mm)
GDDE Damage dissipation energy (N/mm)
dp Damage evolution variable
k0

eq Equivalent elastic stiffness at the onset of damage (MPa)
δ0

eq Equivalent displacement at the onset of damage (mm)

δ
f
eq Equivalent displacement at the separation of the material point (mm)
σo

i j, τ
o
i j, and εo

i j Effective stresses (MPa) and strains at the onset of damage

δ0
eq Equivalent displacement at the state of damage initiation (mm)
δf

eq Equivalent displacement at failure (mm)
Lc Characteristic length of an element (mm)
EU Internal energy (N/mm)
σc Stress (MPa)
.
εel,

.
εpl,

.
εcr Time rate of elastic, plastic, and creep strains

ES Elastic strain energy (N/mm)
σu Un-damaged stress (MPa)
f u Undamaged elastic energy function
f c Damage strain energy function
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EE and ED Recoverable and irrecoverable energy (N/mm)
h and s Interaction between the nodes-in-contact as separation and sliding motions (mm)
Ni Interpolation function of the interface segments
ρn Interface segment curvature
Di j Stiffness matrix of interface with linear coupled elastic behavior (MPa)
Fi Force of interface node ith (N)
ui Motion of interface node ith (mm)
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