Supporting Information

Properties of biodegradable films based on poly(butylene succinate) (PBS) and poly(butylene adipate-coterephthalate) (PBAT) blends

Anna Raffaela de Matos Costa¹, Andrea Crocitti², Laura Hecker de Carvalho^{3,*}, Sabrina Carola Carroccio⁴, Pierfrancesco Cerruti^{5,*} and Gabriella Santagata⁵

This paper is dedicated to the memory of Prof. Eduardo Luís Canedo and Maria Rossella Nobile

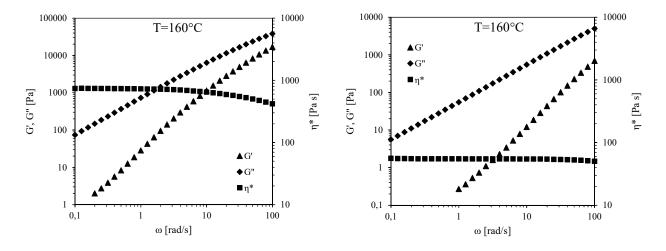
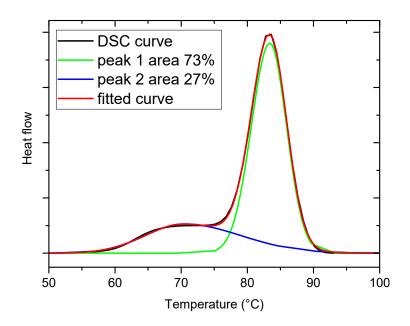


Figure S1. Oscillatory shear measurements in the frequency domain carried out at 160 °C on: (a) PBS, (b) PBAT.


¹Department of Chemical Engineering, Federal University of Pernambuco, Recife, Brazil

²Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (SA), Italy

³Departament of Materials Engineering, Federal University of Campina Grande, Campina Grande, PB, 58429-900, Brazil

⁴Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Campi Flegrei 34, I-80078 Pozzuoli, Italy

 $^{^5}$ Institute for Polymers, Composites and Biomaterials (IPCB-CNR), Via Paolo Gaifami 18, 9-95126 Catania, Italy

Figure S2. DSC crystallization peak deconvolution of PBS50-PBAT50 blend highlighting the PBS (green curve) and PBAT (blue curve) cooling crystallization peaks.

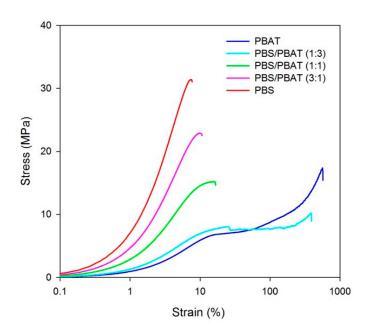


Figure S3. Illustrative stress-strain curves of films based on neat PBS, PBAT, and their blends.