Metabolic Profiling of Xylooligosaccharides by Lactobacilli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions
2.2. Carbohydrates Used in This Study
2.3. Fermentation
2.4. Analytical Assays
2.4.1. Microbial Growth
2.4.2. Analysis of Metabolites
2.4.3. Analysis of Carbohydrates and Proteins
2.4.4. Isolation of Liver Plasma Membranes
2.4.5. Lipid Extraction and Analysis
2.4.6. Fatty Acid and Phospholipase A2 Analysis
2.4.7. Determination of Lipid Peroxidation
2.4.8. Enzymatic Activity
2.5. Statistical Analysis
3. Results
3.1. Changes in the Enzyme Activities
3.2. Analysis of the Residual Xylooligosaccharides
3.3. Production of Lactic Acid, Acetic Acid, and Ethanol
3.4. Influence of XOSs on Liver Membrane Lipids, Their Metabolism, and Susceptibility to Peroxidation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, G.R.; Probert, H.M.; van Loo, J.; Roberfroid, M.B.; Rastall, R.A. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137, 830S–837S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jie, Z.; Bang-Yao, L.; Ming-Jie, X.; Hai-Wei, L.; Zu-Kang, Z.; Ting-Song, W.; Craig, S.A. Studies on the effects of polydextrose intake on physiologic functions in Chinese people. Am. J. Clin. Nutr. 2000, 72, 1503–1509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aachary, A.A.; Prapulla, S.G. Corncob-induced endo-1,4-β-D-xylanase of Aspergillus oryzae MTCC 5154: Production and characterization of xylobiose from glucuronoxylan. J. Agric. Food Chem. 2008, 56, 3981–3988. [Google Scholar] [CrossRef]
- Vazquez, M.J.; Alonso, J.L.; Domınguez, H.; Parajo, J.C. Xylooligosaccharides: Manufacture and applications. Trends Food Sci. Technol. 2000, 11, 387–393. [Google Scholar] [CrossRef]
- Okazaki, M.; Fujikawa, S.; Mastumoto, N. Effects of xylooligosaccharides on growth of Bifidobacteria. Bifidobact. Microfl. 1990, 9, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Okazaki, M.; Fujikawa, S.; Matsumoto, N. Effects of xylooligosaccharide on growth of bifidobacteria. J. Jpn. Soc. Nutr. Food Sci. 1990, 43, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, M.J.; Cummings, J.H.; Macfarlane, G.T. Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. J. Appl. Microbiol. 1998, 85, 381–386. [Google Scholar] [CrossRef]
- Kontula, P.; von Wright, A.; Mattila-Sandholm, T. Oat bran β-gluco- and xylo-oligosaccharides as fermentative substrates for lactic acid bacteria. Int. J. Food Microbiol. 1998, 45, 163–169. [Google Scholar] [CrossRef]
- Makelainen, H.; Saarinen, M.; Stowell, J.; Rautonen, N.; Ouwehand, A.C. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures. Benef. Microbes 2010, 1, 139–148. [Google Scholar] [CrossRef]
- Ohara, H.; Owaki, M.; Sonomoto, K. Xylooligosaccharide fermentation with Leuconostoc lactis. J. Biosci. Bioeng. 2006, 101, 415–420. [Google Scholar] [CrossRef]
- van Laere, K.M.J.; Hartemink, R.; Bosveld, M.; Schols, H.A.; Voragen, A.G.J. Fermentation of plant cell wall derived polysaccharides and their corresponding oligosaccharides by intestinal bacteria. J. Agric. Food Chem. 2000, 48, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Gilad, O.; Jacobsen, S.; Stuer-Lauridsen, B.; Pedersen, M.B.; Garrigues, C.; Svensson, B. Combined transcriptome and proteome analysis of Bifidobacterium animalis subsp. Lactis BB-12 grown on xylo-oligosaccharides and a model of their utilization. Appl. Environ. Microbiol. 2010, 76, 7285–7291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salminen, S.; Bouley, S.; Boutron-Ruault, M.C.; Cummings, J.H.; Franck, A.; Gibson, G.R.; Isolauri, E.; Moreau, M.C.; Roberfroid, M.; Rowland, I. Functional food science and gastrointestinal physiology and function. Brit. J. Nutr. 1998, 80, S147–S171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolida, S.; Tuohy, K.; Gibson, G.R. Prebiotic effects of inulin and oligofructose. Brit. J. Nutr. 2002, 87, S193–S197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beylot, M. Effects of inulin-type fructans on lipid metabolism in man and in animal models. Brit. J. Nutr. 2005, 93, S163–S168. [Google Scholar] [CrossRef] [PubMed]
- De Man, J.C.; Rogosa, M.; Sharpe, M.E. A medium for the cultivation of Lactobacilli. J. Appl. Bacteriol. 1960, 23, 130–135. [Google Scholar] [CrossRef]
- Remaud-Simeon, M.; Lopez-Munguia, A.; Pelenc, V.; Paul, F.; Monsan, P. Production and use of glucosyltransferases from Leuconostoc mesenteroides NRRL B-1299 for the synthesis of oligosaccharides containing α-(1-2) linkages. Appl. Biochem. Biotechnol. 1994, 44, 101–117. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, R.J.; Farr, A.L.; Randal, R.J. Protein measurement with the Folin-phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Dewi, R.T.; Iskandar, Y.M.; Hanafi, M.; Kardono, L.B.S.; Angelina, M.; Dewijanti, I.D.; Banjarnahor, S.D. Inhibitory effect of Koji Aspergillus terreus on α-glucosidase activity and postprandial hyperglycemia. Pak. J. Biol. Sci. 2007, 10, 3131–3135. [Google Scholar] [CrossRef]
- Lasrado, L.D.; Gudipati, M. Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides. Carbohydr. Polym. 2013, 92, 1978–1983. [Google Scholar] [CrossRef]
- Ananieva, M.; Tzenova, M.; Iliev, I.; Ivanova, I. Gene expression of enzymes involved in utilization of xylooligosaccharides by Lactobacillus strains. Biotechnol. Biotechnol. Equip. 2014, 28, 941–948. [Google Scholar] [CrossRef] [Green Version]
- Petkova, D.; Staneva, G.; Markovska, T.; Iliev, I.; Ivanova, I.; Pankov, R.; Chakarov, S.; Momchilova, A. Fructooligosaccharide intake alters the phospholipid and fatty acid composition of liver plasma membranes. Biotechnol. Biotechnol. Equip. 2012, 26, 2904–2909. [Google Scholar] [CrossRef] [Green Version]
- Childs, C.E.; Roytio, H.; Alhoniemi, E.; Fekete, A.A.; Forssten, S.D.; Hudjec, N.; Lim, Y.N.; Steger, C.J.; Yaqoob, P.; Tuohy, K.M.; et al. Xylooligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: A double-blind, placebocontrolled, randomised, factorial cross-over study. Br. J. Nutr. 2014, 111, 1945–1956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.H.; Chou, L.M.; Chien, Y.W.; Chang, J.S.; Lin, C.I. Prebiotic effects of xylooligosaccharides on the improvement of microbiota balance in human subjects. Gastroenterol. Res. Pract. 2016, 2016, 5789232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuniga, M.; Yebra, M.J.; Monedero, V. Complex oligosaccharide utilization pathways in Lactobacillus. Curr. Issues Mol. Biol. 2020, 40, 49–80. [Google Scholar] [CrossRef] [Green Version]
- Lukova, P.; Karcheva-Bahchevanska, D.; Mollova, D.; Nikolova, M.; Mladenov, R.; Iliev, I. Study of prebiotic potential and antioxidant activity in Plantago spp. leaves after enzymatic hydrolysis with hemicellulase and xylanase. Eng. Life Sci. 2018, 18, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Michlmayr, H.; Hell, J.; Lorenz, C.; Böhmdorfer, S.; Rosenau, T.; Kneifel, W. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl. Environ. Microbiol. 2013, 79, 6747–6754. [Google Scholar] [CrossRef] [Green Version]
- Crittenden, R.; Karppinen, S.; Ojanen, S.; Tenkanen, M.; Fagerstrm, R.; Mtt, J.; Saarela, M.; Mattila-Sandholm, T.; Putanen, K. In vitro fermentation of cereal dietary fibre carbohydrates by probiotic and intestinal bacteria. J. Sci. Agric. 2002, 82, 781–789. [Google Scholar] [CrossRef]
- Tomasik, P.J.; Tomasik, P. Probiotics and prebiotics. Cereal Chem. 2003, 80, 113–117. [Google Scholar] [CrossRef]
- Garde, A.; Jonsson, G.; Schmidt, A.S.; Ahring, B.K. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis. Bioresour. Technol. 2002, 81, 217–223. [Google Scholar] [CrossRef]
- Falck, P.; Precha-Atsawanan, S.; Grey, C.; Immerzeel, P.; Stalbrand, H.; Adlercreutz, P.; Karlsson, E.N. Xylooligosaccharides from hardwood and cereal xylans produces by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis. J. Agric. Food Chem. 2013, 61, 7333–7340. [Google Scholar] [CrossRef] [PubMed]
- Moura, P.; Barata, R.; Carvalheiro, F.; Gírio, F.; Loureiro-Dias, M.C.; Esteves, M.P. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT-Food Sci. Technol. 2007, 40, 963–972. [Google Scholar] [CrossRef]
- Ejby, M.; Fredslund, F.; Vujicic-Zagar, A.; Svensson, B.; Slotboom, D.J.; Abou Hachem, M. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp lactis B1-04. Mol. Microbiol. 2013, 90, 1100–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandadzhieva, T.; Ignatova-Ivanova, T.; Kambarev, S.; Iliev, I.; Ivanova, I. Utilization of different prebiotics by Lactobacillus spp. and Lactococcus spp. Biotechnol. Biotechnol. Equip. 2011, 25, 117–120. [Google Scholar] [CrossRef] [Green Version]
- Lokman, B.C.; van Santen, P.; Verdoes, J.C.; Krüse, J.; Lee, R.J.; Posno, M.; Pouwels, P.H. Organization and characterization of three genes involved in D-xylose catabolism in Lactobacillus pentosus. Molec. Gen. Genet. 1991, 230, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Saier, M.H., Jr.; Ye, J.J.; Klinke, S.; Nino, E. Identification of an anaerobically induced phosphoenolpyruvate-dependent fructose-specific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J. Bacteriol. 1996, 178, 314–316. [Google Scholar] [CrossRef] [Green Version]
- Chapla, D.; Pandit, P.; Shah, A. Production of xylooligosaccharides from corncob xylan by fungal xylanase and their utilization by probiotics. Bioresour. Technol. 2012, 115, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Patel, A.; Falck, P.; Shah, N.; Immerzeel, P.; Adlercreutz, P.; Stålbrand, H.; Prajapati, J.B.; Holst, O.; Karlsson, E.N. Evidence for xylooligosaccharides utilization in Weissella strains isolated from Indian fermented foods and vegetables. FEMS Microbiol. Lett. 2013, 346, 20–28. [Google Scholar] [CrossRef]
- Stoyanovski, S.; Chipeva, V.; Dimov, S.G.; Danova, S.; Dimitrova, I.; Yocheva, L.; Antonova-Nikolova, S.; Ivanova, I. Characterization of lactic acid bacteria from dry sausages. Biotechnol. Biotechnol. Equip. 2009, 23, 870–873. [Google Scholar] [CrossRef]
- Ananieva, M. Gene Expression of Enzymes Involved in Transport and Utilization of Xylooligosaccharides by Lactic Acid Bacteria. Ph.D. Thesis, Sofia University, Sofia, Bulgaria, 2015. [Google Scholar]
- Klaenhammer, T.; Altermann, E.; Arigoni, F.; Bolotin, A.; Breidt, F.; Broadbent, J.; Cano, R.; Chaillou, S.; Deutscher, J.; Gasson, M.; et al. Discovering lactic acid bacteria by genomics. Antonie Leeuwenhoek 2002, 82, 29–58. [Google Scholar] [CrossRef] [PubMed]
- Stiles, M.E.; Holzapfel, W.H. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 1997, 36, 1–29. [Google Scholar] [CrossRef]
- de Cort, S.; Kumara, H.M.C.S.; Verachtert, H. Localization and characterization of α-glucosidase activity in Lactobacillus brevis. Appl. Environ. Microbiol. 1994, 60, 3074–3078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michlmayr, H.; Schümann, C.; Kulbe, K.D.; del Hierro, A.M. Heterologously expressed family 51 α-L-arabinofuranosidases from Oenococcus oeni and Lactobacillus brevis. Appl. Environ. Microbiol. 2011, 77, 1528–1531. [Google Scholar] [CrossRef] [Green Version]
- Michlmayr, H.; Nauer, S.; Brandes, W.; Schümann, C.; Kulbe, K.D.; del Hierro, A.M.; Eder, R. Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chem. 2012, 135, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Michlmayr, H.; Schümann, C.; Barreira Braz da Silva, N.M.; Kulbe, K.D.; del Hierro, A.M. Isolation and basic characterization of a β-glucosidase from a strain of Lactobacillus brevis isolated from a malolactic starter culture. J. Appl. Microbiol. 2010, 108, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, A.Y. Carbohydrate Metabolism and Cell Morphology in Lactococcus lactis ssp. lactis. Ph.D. Thesis, University of Lund, Lund, Sweden, 1992. [Google Scholar]
- Garrigues, C.; Loubiere, P.; Lindley, N.D.; Cocaign-Bousquet, M. Control of the shift from homolactic acid to mixed-acid fermentation in Lactococcus lactis: Predominant role of the NADH/NAD+ ratio. J. Bacteriol. 1997, 179, 5282–5287. [Google Scholar] [CrossRef] [Green Version]
- Borch, E.; Berg, H.; Holst, O. Heterolactic fermentation by a homofermentative Lactobacillus sp. during glucose limitation in anaerobic continuous culture with complete cell recycle. J. Appl. Bacteriol. 1991, 71, 265–269. [Google Scholar] [CrossRef]
- Thomas, T.D.; Ellwood, D.C.; Longyear, M.C. Change from homo- to heterolactic fermentation by Streptococcus lactis resulting from glucose limitation in anaerobic chemostat cultures. J. Bacteriol. 1979, 138, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Peredo-Lovilloa, A.; Romero-Lunaa, H.E.; Jiménez-Fernándezb, M. Health promoting microbial metabolites produced by gut microbiota after prebiotics metabolism. Food Res. Int. 2020, 136, 109473. [Google Scholar] [CrossRef] [PubMed]
Strain | Carbon Source (g L−1) | pH (48 h) | Lactic Acid (mg mL−1) | Acetic Acid (mg mL−1) |
---|---|---|---|---|
Lactobacillus plantarum S26 | Xylobiose | 5.20 ± 0.05 | 1.26 ± 0.04 | 0.64 ± 0.01 |
XOS | 5.60 ± 0.07 | 0.84 ± 0.06 | 0.48 ± 0.01 | |
Xylose | 4.80 ± 0.04 | 1.86 ± 0.09 | 0.94 ± 0.02 | |
Glucose | 4.10 ± 0.05 | 2.44 ± 0.10 | 1.32 ± 0.02 | |
Lactobacillus brevis S27 | Xylobiose | 4.80 ± 0.10 | 1.74 ± 0.08 | 0.84 ± 0.01 |
XOS | 5.10 ± 0.08 | 1.62 ± 0.11 | 0.72 ± 0.03 | |
Xylose | 4.60 ± 0.07 | 2.11 ± 0.04 | 1.32 ± 0.03 | |
Glucose | 3.80 ± 0.10 | 3.54 ± 0.02 | 1.87 ± 0.02 | |
Lactobacillus sakei S16 | Xylobiose | 5.30 ± 0.05 | 1.23 ± 0.08 | 0.87 ± 0.04 |
XOS | 5.10 ± 0.08 | 0.93 ± 0.04 | 0.62 ± 0.06 | |
Xylose | 4.70 ± 0.08 | 1,52 ± 0.03 | 0.95 ± 0.03 | |
Glucose | 4.10 ± 0.07 | 2.37 ± 0.10 | 1.11 ± 0.04 |
Enzymes | Lb. plantarum S26 | Lb. brevis S27 | Lb. sakei S26 | |||
---|---|---|---|---|---|---|
Glucose | XOS | Glucose | XOS | Glucose | XOS | |
β-Xylosidase (U mg−1) | 0 | 0.265 ± 0.15 | 0 | 1.048 ± 0.17 | 0 | 0.675 ± 0.11 |
β-Glucosidase (U mg−1) | 0 | 0.545 ± 0.12 | 0 | 0.855 ± 0.14 | 0 | 0.219 ± 0.15 |
Strain | β-Xylosidase Activity in the Cell-Free Extracts (U mg−1) | ||
---|---|---|---|
Xylose | Xylobiose | XOS | |
Lb. plantarum S26 | 0 | 0.375 ± 0.17 | 0.265 ± 0.12 |
Lb. brevis S27 | 0 | 1.684 ± 0.14 | 1.048 ± 0.12 |
Lb. sakei S16 | 0 | 0.846 ± 0.15 | 0.675 ± 0.15 |
Strain | β-Xylosidase (%) | ||
---|---|---|---|
Supernatant | Cytoplasm Fraction | Membrane Fraction | |
Lb. plantarum S26 | 0 | 94.6 | 5.4 |
Lb. brevis S27 | 0 | 95.2 | 4.8 |
Lb. sakei S16 | 0 | 93.6 | 6.4 |
Strain | Time (min) | Xylose Concentration (g L−1) | ||
---|---|---|---|---|
Xylobiose | Xylotriose | XOS | ||
Lb. plantarum S26 | 0 | 0 | 0 | 0 |
30 | 0.4 ± 0.07 | 0.3 ± 0.11 | 0.3 ± 0.10 | |
60 | 0.9 ± 0.05 | 0.8 ± 0.05 | 0.6 ± 0.03 | |
Lb. brevis S27 | 0 | 0 | 0 | 0 |
30 | 0.7 ± 0.07 | 0.7 ± 0,05 | 0.5 ± 0,01 | |
60 | 1.3 ± 0.05 | 1.4 ± 0,05 | 1.1 ± 0,04 | |
Lb. sakei S16 | 0 | 0 | 0 | 0 |
30 | 0.5 ± 0.11 | 0.3 ± 0.05 | 0.3 ± 0.04 | |
60 | 1.1 ± 0.05 | 1.0 ± 0.04 | 0.8 ± 0.06 |
Carbon Source | Strain | Time (h) | pH | Lactate (g L−1) | Acetate (g L−1) | Ethanol (g L−1) | ||
---|---|---|---|---|---|---|---|---|
D-Lactate | L-Lactate | Total | ||||||
Glucose | S26 | 0 | 6.54 ± 0.03 | 0 | 0 | 0 | 0 | 0 |
6 | 4.20 ± 0.05 | 0.98 ± 0.09 | 1.44 ± 0.04 | 2.43 ± 0.13 | 0.09 ± 0.01 | 0.08 ± 0.012 | ||
12 | 4.10 ± 0.05 | 1.09 ± 0.09 | 1.54 ± 0.04 | 2.63 ± 0.13 | 0.11 ± 0.01 | 0.09 ± 0.012 | ||
24 | 4.06 ± 0.05 | 1.25 ± 0.04 | 1.88 ± 0.03 | 3.13 ± 0.07 | 0.11 ± 0.01 | 0.14 ± 0.006 | ||
48 | 4.02 ± 0.05 | 1.35 ± 0.04 | 1.90 ± 0.03 | 3.25 ± 0.07 | 0.15 ± 0.01 | 0.14 ± 0.006 | ||
S16 | 0 | 6.54 ± 0.03 | 0 | 0 | 0 | 0 | 0 | |
6 | 4.35 ± 0.04 | 2.30 ± 0.09 | 1.98 ± 0.03 | 4.29 ± 0.12 | 0.21 ± 0.02 | 0.05 ± 0.010 | ||
12 | 4.25 ± 0.04 | 2.37 ± 0.09 | 2.06 ± 0.03 | 4.43 ± 0.12 | 0.22 ± 0.02 | 0.05 ± 0.010 | ||
24 | 4.12 ± 0.05 | 4.15 ± 0.16 | 2.04 ± 0.07 | 6.19 ± 0.23 | 0.26 ± 0.02 | 0.10 ± 0.012 | ||
48 | 4.02 ± 0.05 | 4.35 ± 0.16 | 2.10 ± 0.07 | 6.45 ± 0.23 | 0.32 ± 0.02 | 0.16 ± 0.012 | ||
S27 | 0 | 6.54 ± 0.03 | 0 | 0 | 0 | 0 | 0 | |
6 | 4.12 ± 0.05 | 2.86 ± 0.06 | 2.64 ± 0.04 | 5.50 ± 0.10 | 0.12 ± 0.01 | 0.07 ± 0.010 | ||
12 | 4.00 ± 0.05 | 3.06 ± 0.06 | 2.84 ± 0.04 | 5.90 ± 0.10 | 0.16 ± 0.01 | 0.09 ± 0.010 | ||
24 | 3.84 ± 0.04 | 3.84 ± 0.12 | 3.32 ± 0.08 | 7.17 ± 0.20 | 0.19 ± 0.02 | 0.10 ± 0.012 | ||
48 | 3.62 ± 0.04 | 4.14 ± 0.12 | 3.62 ± 0.08 | 7.76 ± 0.20 | 0.24 ± 0.02 | 0.16 ± 0.012 | ||
Xylobiose | S26 | 0 | 6.55 ± 0.04 | 0 | 0 | 0 | 0 | 0 |
6 | 5.10 ± 0.02 | 1.22 ± 0.05 | 0.70 ± 0.01 | 1.92 ± 0.06 | 1.59 ± 0.08 | 0.03 ± 0.010 | ||
12 | 4.71 ± 0.03 | 1.79 ± 0.03 | 0.94 ± 0.02 | 2.73 ± 0.05 | 2.87 ± 0.09 | 0.06 ± 0.006 | ||
24 | 4.34 ± 0.02 | 1.89 ± 0.03 | 1.04 ± 0.02 | 2.93 ± 0.05 | 2.91 ± 0.09 | 0.07 ± 0.006 | ||
48 | 4.14 ± 0.02 | 1.96 ± 0.03 | 1.21 ± 0.02 | 3.17 ± 0.05 | 2.98 ± 0.09 | 0.07 ± 0.006 | ||
S16 | 0 | 6.55 ± 0.02 | 0 | 0 | 0 | 0 | 0 | |
6 | 5.13 ± 0.01 | 0.94 ± 0.02 | 1.16 ± 0.05 | 2.10 ± 0.07 | 2.58 ± 0.04 | 0.04 ± 0.006 | ||
12 | 4.81 ± 0.02 | 1.24 ± 0.02 | 1.31 ± 0.05 | 2.55 ± 0.07 | 2.88 ± 0.04 | 0.06 ± 0.006 | ||
24 | 4.72 ± 0.02 | 1.33 ± 0.03 | 1.37 ± 0.06 | 2.70 ± 0.09 | 3.25 ± 0.03 | 0.07 ± 0.010 | ||
48 | 4.53± 0.02 | 1.42 ± 0.03 | 1.38 ± 0.06 | 2.80 ± 0.09 | 3.64 ± 0.03 | 0.07 ± 0.010 | ||
S27 | 0 | 6.55 ± 0.06 | 0 | 0 | 0 | 0 | 0 | |
6 | 5.62 ± 0.03 | 0.84 ± 0.03 | 0.90 ± 0.02 | 1.74 ± 0.05 | 3.50 ± 0.04 | 0.09 ± 0.021 | ||
12 | 5.43 ± 0.00 | 1.44 ± 0.05 | 1.44 ± 0.04 | 2.87 ± 0.09 | 3.18 ± 0.07 | 0.09 ± 0.006 | ||
24 | 5.13 ± 0.02 | 1.90 ± 0.03 | 1.40 ± 0.04 | 3.30 ± 0.07 | 4.26 ± 0.06 | 0.19 ± 0.015 | ||
48 | 5.02 ± 0.02 | 1.95 ± 0.03 | 1.80 ± 0.04 | 3.75 ± 0.07 | 4.72 ± 0.06 | 0.19 ± 0.015 | ||
XOS | S26 | 0 | 6.52± 0.07 | 0 | 0 | 0 | 0 | 0 |
6 | 5.63 ± 0.03 | 1.99 ± 0.07 | 1.39 ± 0.03 | 3.39 ± 0.10 | 6.46 ± 0.06 | 0.09 ± 0.012 | ||
12 | 5.60 ± 0.02 | 2.03 ± 0.04 | 1.48 ± 0.01 | 3.51 ± 0.05 | 6.12 ± 0.08 | 0.10 ± 0.006 | ||
24 | 5.16 ± 0.02 | 2.20± 0.04 | 1.54 ± 0.01 | 3.74 ± 0.05 | 6.62 ± 0.08 | 0.11 ± 0.006 | ||
48 | 4.91 ± 0.02 | 2.28± 0.04 | 1.72 ± 0.01 | 4.00 ± 0.05 | 6.62 ± 0.08 | 0.11 ± 0.006 | ||
S16 | 0 | 6.52± 0.04 | 0 | 0 | 0 | 0 | 0 | |
6 | 5.59 ± 0.02 | 2.37 ± 0.11 | 1.69 ± 0.06 | 4.06 ± 0.17 | 4.68 ± 0.10 | 0.06 ± 0.012 | ||
12 | 5.25 ± 0.02 | 2.63 ± 0.10 | 1.77 ± 0.07 | 4.40 ± 0.17 | 4.80 ± 0.10 | 0.06 ± 0.012 | ||
24 | 5.02 ± 0.02 | 2.76 ± 0.10 | 1.96 ± 0.07 | 4.72 ± 0.17 | 5.18 ± 0.10 | 0.07 ± 0.012 | ||
48 | 5.00 ± 0.02 | 2.80 ± 0.10 | 1.96 ± 0.07 | 4.76 ± 0.17 | 5.20 ± 0.10 | 0.07 ± 0.012 | ||
S27 | 0 | 6.52± 0.06 | 0 | 0 | 0 | 0 | 0 | |
6 | 5.57 ± 0.01 | 1.31 ± 0.04 | 2.42 ± 0.05 | 3.73 ± 0.09 | 6.82 ± 0.05 | 0.02 ± 0.010 | ||
12 | 5.48 ± 0.00 | 1.44 ± 0.05 | 1.44 ± 0.04 | 2.87 ± 0.09 | 7.78 ± 0.07 | 0.03 ± 0.006 | ||
24 | 4.98 ± 0.00 | 1.84 ± 0.05 | 1.90 ± 0.04 | 3.74 ± 0.09 | 7.78 ± 0.07 | 0.6 ± 0.006 | ||
48 | 4.79 ± 0.00 | 1.98 ± 0.05 | 2.24 ± 0.04 | 4.22 ± 0.09 | 7.89 ± 0.07 | 0.7 ± 0.006 |
Lipids | Control (mol%) | XOS (mol%) |
---|---|---|
Lysophosphatidylcholine | 2.3 | 1.1 * |
Sphingomyeline | 10.5 | 11.2 * |
Phosphatidylcholine | 39.6 | 41.7 * |
Phosphatidylserine | 9.4 | 9.3 |
Phosphatidylinositol | 10.7 | 9.8 |
Phosphatidylethanolamine | 27.5 | 26.9 |
Cholesterol/phospholipids | 0.332 | 0.285 * |
Fatty Acids | Control | XOS (mol%) |
---|---|---|
C16:0 | 27.5 | 28.1 * |
C18:0 | 21.8 | 21.5 |
C18:1 | 12.2 | 12.8 |
C18:2 | 12.6 | 12.2 |
C20:4 | 23.7 | 21.8 |
C22:6 | 2.2 | 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iliev, I.; Vasileva, T.; Bivolarski, V.; Momchilova, A.; Ivanova, I. Metabolic Profiling of Xylooligosaccharides by Lactobacilli. Polymers 2020, 12, 2387. https://doi.org/10.3390/polym12102387
Iliev I, Vasileva T, Bivolarski V, Momchilova A, Ivanova I. Metabolic Profiling of Xylooligosaccharides by Lactobacilli. Polymers. 2020; 12(10):2387. https://doi.org/10.3390/polym12102387
Chicago/Turabian StyleIliev, Ilia, Tonka Vasileva, Veselin Bivolarski, Albena Momchilova, and Iskra Ivanova. 2020. "Metabolic Profiling of Xylooligosaccharides by Lactobacilli" Polymers 12, no. 10: 2387. https://doi.org/10.3390/polym12102387
APA StyleIliev, I., Vasileva, T., Bivolarski, V., Momchilova, A., & Ivanova, I. (2020). Metabolic Profiling of Xylooligosaccharides by Lactobacilli. Polymers, 12(10), 2387. https://doi.org/10.3390/polym12102387