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Abstract: Opportunely arranged micro/nano-scaled fibers represent an extremely attractive
architecture for tissue engineering, as they offer an intrinsically porous structure, a high available
surface, and an ideal microtopography for guiding cell migration. When fibers are made with
naturally occurring polymers, matrices that closely mimic the architecture of the native extra-cellular
matrix and offer specific chemical cues can be obtained. Along this track, electrospinning of collagen
or gelatin is a typical and effective combination to easily prepare fibrous scaffolds with excellent
properties in terms of biocompatibility and biomimicry, but an appropriate cross-linking strategy is
required. Many common protocols involve the use of swelling solvents and can result in significant
impairment of fibrous morphology and porosity. As a consequence, the efforts for processing gelatin
into a fiber network can be vain, as a film-like morphology will be eventually presented to cells.
However, this appears to be a frequently overlooked aspect. Here, the effect on fiber morphology
of common cross-linking protocols was analyzed, and different strategies to improve the final
morphology were evaluated (including alternative solvents, cross-linker concentration, mechanical
constraint, and evaporation conditions). Finally, an optimized, fiber-preserving protocol based on
carbodiimide (EDC) chemistry was defined.

Keywords: gelatin hydrogels; electrospinning; scaffold; cross-linking; EDC carbodiimide;
tissue engineering

1. Introduction

Electrospun fiber substrates have emerged as an excellent platform for tissue engineering (TE)
applications as they possess many of the desired properties appropriate for cell and tissue growth,
such as an interconnected three-dimensional porous network, a high surface-to-volume ratio and
an ideal topography to guide cell migration. Electrospinning is rightly considered a biomimetic
process, as the scaffolds produced can closely resemble the micro- and nano-scale architecture of
the native extracellular matrix (ECM), that consists of fibrils and fibers with diameters between
50 and 500 nm [1]. The advantages and unique features of electrospun substrates have led to their
application in the regeneration of a variety of tissues, including skin, bone, blood vessel, nerve and
articular cartilage [2–6]. Naturally occurring biopolymers generally appear as a particularly attractive
approach for the fabrication of scaffolds in a variety of hydrogel forms, due to their favorable
properties [7,8], but processing into fibers seems an ideal combination of chemicals and architectural
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features. Accordingly, many biopolymers, polysaccharides and proteins in particular, can be processed
into fibers through a variety of techniques [9–11], and many of them, but proteins in particular, have been
widely processed through electrospinning due to their advantageous biomimicry behavior and intrinsic
biocompatibility [12]. Collagenous materials (i.e., collagen and gelatin) in particular appear as the
ideal choice, as they constitute the structural support of cells in most tissues. Unfortunately, processed
collagen and gelatin are characterized by poor stability and fast degradation and without further
treatments they are generally unsuitable for scaffolds fabrication. Similarly, electrospun gelatin and
collagen matrices require cross-linking to improve their stability and increase mechanical properties.
For the cross-linking of electrospun nanofibers, both physical and chemical methods can be chosen,
where the latter generally appear to be more efficient, but also have more potential drawbacks in terms
of biocompatibility [13,14]. Physical cross-linking methods mainly include the use of plasmo-chemical
treatment [15] or dehydrothermal treatment [16]. They allow for avoiding potentially toxic compounds,
which might eventually result in cytotoxic effects, but are generally affected by relatively low efficiency,
due to the formation of mainly non-covalent bonds between polymeric chains, and limited stability as
a consequence. On the other hand, chemical cross-linking methods involve the formation of covalent
bonds between the polymeric chains and result in more stable collagenous scaffolds. For the chemical
cross-linking of gelatin and collagen, zero length type cross-linker (where the reagent catalyzes the
cross-linking reaction but is eventually removed) and non-zero length type (the cross-linking reagent
is incorporated into the polymer network) are used [17]. A resume of the scientific literature presented
in the last decade together with the pros and cons of cross-linking strategies typically involved in the
stabilization of collagenous electrospun nanofibers can be found in [14].

Among chemical cross-linking strategies, the most widely used zero-length cross-linking
method for gelatin electrospun nanofibers relies on the reaction of carbodiimide (i.e.,
1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)) to form amide bonds between polymer
chains, while glutaraldehyde (GTA) and genipin are considered the most used non-zero length
cross-linkers. Several protocols based on these cross-linkers have been reported for electrospun
collagenous substrates, but they involve the use of solvents that dissolve or swell gelatin (water
and ethanol in particular). This can result in fused fibers, membrane shrinkage and compromised
porosity [18]. Furthermore, while weight loss is frequently analyzed, the effect of water absorption
on fibers is barely accounted for. As a consequence, fiber morphology and porosity, already partially
compromised by the cross-linking process, are very likely to be almost nullified by swelling in medium.
On many occasions, the nanotopography resulting from the electrospinning fabrication process turns
into a barely structured film during cross-linking. Unless this issue is accurately addressed, data
obtained on the effect of nanofiber topography on cell behavior can hardly be comparable, and in some
cases not even completely reliable.

To investigate this specific aspect, and in particular the effect on fiber morphology, before and after
water absorption, we applied common protocols for the cross-linking of electrospun gelatin scaffolds.
Then, we evaluated the effectiveness of possible strategies to preserve the electrospun morphology
with its topographical cues and porosity in turn, as far as possible. More specifically, the effect of
different solvents, mechanical constraint during cross-linking, cross-linker concentration, reaction time,
and evaporation conditions were investigated in order to stabilize gelatin electrospun substrates for
TE applications.

2. Materials and Methods

2.1. Materials

All reagents were purchased from Sigma Aldrich (Darmstadt, Germany) and used without further
purification, unless otherwise specified.
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2.2. Electrospinning of Gelatin Nanofibers

The substrate for all experiments was prepared by electrospinning Gelatin Type A from porcine
skin dissolved at a concentration of 10% w/v in a mixture of acetic acid and water (9:1) [19]. The solution
was stirred for 1 h at room temperature to obtain complete dissolution. Approximately 5 mL
of the polymeric solution was placed in a 20 mL syringe connected to a stainless steel spinneret
(ID = 0.030′′) through a polytetrafluoroethylene (PTFE) 16 Gauge capillary tube. The syringe was
loaded in a KD Scientific syringe pump (Model 100, Holliston, MA, USA) to control the flow rate
at 0.5 mL/h. The solution was spun towards a rectangular aluminum plate for creating randomly
oriented, non-woven, fibrous matrices. The spinneret was placed 13 cm from the collector and a 15 kV
voltage supply was used to charge the solution and the collector. The electrospinning process was
performed at room temperature and with a relative humidity in the range of 20–40%.

2.3. Analysis of Fiber Morphology in Replicated Literature Protocols

Different chemical cross-linking protocols (i.e., EDC, genipin, vapor of GTA) with parameters
derived from scientific literature were firstly applied [16,20,21], to evaluate the morphology obtained
and to serve as a reference for further investigation on the parameters that could affect nanofibers
morphology during the cross-linking process.

2.4. Definition of New Protocols: Analysis of Factors Involved in Fiber Fusion

2.4.1. Selection of Non-Swelling Solvents

In the search for a solvent with possibly negligible influence on fiber morphology, the effect of
different polar (ethanol, acetonitrile, ethyl acetate, tert-butanol) and non-polar (acetone, chloroform,
diethyl ether, hexane) solvents on fibers morphology was qualitatively evaluated by scanning electron
microscope (SEM, Stereoscan 360 Cambridge instruments, London, UK) after having left electrospun
gelatin matrices immersed in each solvent for 24 h and dried.

2.4.2. EDC/NHS Cross-Linking in Non-Swelling Solvents

After solvents with a negligible effect on fibers morphology were identified, the possibility to use
them to dissolve 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) for cross-linking electrospun
gelatin was evaluated. To optimize the process, different molarities of cross-linker (25–50–75 mM) and
reaction times (2, 8, 18 h) were evaluated. According to the scientific literature, N-hydroxysuccinimide
(NHS) was included in the EDC coupling protocol to improve reaction efficiency [16]. After cross-linking,
electrospun mats were washed in the same solvent used for reaction and air-dried (Supplementary
information: Figure S1).

To evaluate the effect of water on the fiber morphology and preliminarily assess the effectiveness
of cross-linking, mats were immersed in distilled water for 10 min.

2.4.3. Glutaraldehyde Cross-Linking in Non-Swelling Solvent

With the aim to always obtain a greater control over the cross-linking reaction, glutaraldehyde
(GTA) cross-linking in non-swelling solvent was evaluated as an alternative to its vapor. GTA was
dissolved in tert-butanol (t-BuOH) for the cross-linking of gelatin nanofibers according to Skotak et al.’s
protocol [22]. Different concentrations of GTA (0.5–1–2%) and reaction times (30 min, 1 h, 2 h)
were investigated.

2.4.4. Mechanical Constraint

As the proximity of fibers during the process increases the possibility of inter-fiber cross-linking,
mechanical constraint was applied to the electrospun matrices during cross-linking to keep fibers
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separated and limit their fusion. Three different conditions were compared: no constraint (i.e., samples
free-flowing in the solution), radial constraint, and both radial–longitudinal constraint (Figure 1).Polymers 2020, 12, x FOR PEER REVIEW 4 of 15 

 

 
Figure 1. Schematic representation of electrospun matrix supports for cross-linking. (a) No-constraint 
with sample free-flowing in the solution. (b) Radial constraint on a mandrel. (c) Gelatin matrix 
undergoes radial and longitudinal constraint imposed by tubular support and block rings, 
respectively. 
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Figure 1. Schematic representation of electrospun matrix supports for cross-linking. (a) No-constraint
with sample free-flowing in the solution. (b) Radial constraint on a mandrel. (c) Gelatin matrix
undergoes radial and longitudinal constraint imposed by tubular support and block rings, respectively.

2.4.5. Effect of Solvent Evaporation

As solvent evaporation can also involve damage to fiber structure as a consequence of surface
tension action, different drying conditions after cross-linking were evaluated. More specifically, three
different conditions were compared: simple air drying, slow drying in a closed vessel and slow-drying
in a closed vessel with silica gel beads inserted to absorb air humidity (Supplementary information:
Figure S1).

2.5. Characterization of Cross-Linked Gelatin Nanofibers

2.5.1. Morphological Analysis

The morphology of electrospun gelatin matrices was investigated by scanning electron microscope
(SEM, Stereoscan 360 Cambridge instruments, London, UK) to evaluate the influence of processing steps
on fiber morphology. All samples were sputter-coated with gold and observed using an accelerating
voltage of 10 kV.

2.5.2. Weight Loss and Stability

Swelling and weight loss of cross-linked gelatin matrices was assessed at 37 ◦C in phosphate buffer
saline (PBS). Briefly, cross-linked samples (n = 3 per type, 5 mm × 5 mm) were placed in 24-multiwell,
covered with 1 mL of PBS sealed and stored at 37 ◦C. Sodium azide (0.02% w/v) was added as a biocide
agent to prevent contamination. At set time points (1 h, 48 h and 7 days), samples were removed from
the solution, gently swabbed with tissue paper to remove the excess of water and frozen at −20 ◦C.
Samples were then lyophilized and weighted in dry state with precision balance. The weight variation
(∆W%) was calculated as:

∆W% =
Wt −W0

W0
100 (1)

were Wt is the weight of the freeze-dried sample at time point t and W0 is the initial dry weight of
the sample.

2.5.3. Evaluation of Cross-Linking Degree

The determination of cross-linking degree was carried out using a TNBS (2,4,6-Trinitrobenzene
Sulfonic Acid) method, with some modifications with respect to [16]. The purpose of this assay was to
quantify the variation in free amine groups of gelatin before and after cross-linking and the number
of reacted groups as their difference. TNBS test was performed on 3 samples for each cross-linking
method (i.e., EDC/NHS, GTA solution) using non cross-linking gelatin as control. In addition, for
EDC/NHS cross-linking method an investigation on the effect of reaction time on cross-linking degree
was carried out.
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Briefly, gelatin samples were weighted in a test tubes where 1 mL of 0.5% w/v TNBS solution and
1 mL of 0.1 M sodium hydrogen carbonate (NaHCO3, pH 8.5) were added. After heating at 40 ◦C
for 2 h, each sample was further treated with 2 mL of 6 M HCl at 60 ◦C for 1.5 h. The absorbance
of the resulting solutions was determined by a spectrophotometer (Tecan, Genios Plus plate reader,
Mannedorf, Switzerland) at 360 nm.

The degree of cross-linking (CD%) was then calculated using the following equation:

CD % =
(
1−

Ac

Anc

)
100 (2)

where Ac and Anc represent the absorbance of the cross-linked and pristine gelatin samples, respectively.

2.5.4. Mechanical Characterization

The mechanical properties of the EDC/NHS cross-linked (wet and dry condition) and
non-cross-linked (dry condition) gelatin nanofibers samples were tested using a Dynamic Mechanical
Analyser (DMA Q800, TA Instruments, New Castle, DE, USA). Uniaxial tensile testing was performed
in triplicate on rectangular shaped samples for each type (length = 25 mm, width = 5 mm), applying a
preloaded force of 0.005 N and a ramp force of 0.05 N/min.

2.5.5. In Vitro Biological Characterization: Cytotoxicity Test on Extracts

For cytotoxicity assessment on cross-linked matrices, samples eluates were obtained, according
to UNI EN ISO 10993-5, by incubating the samples (i.e., EDC/NHS, and GTA solution cross-linked
matrices) in culture medium for 1 h and 24 h. The medium was composed by Dulbecco’s Modified
Eagle Medium (DMEM), Fetal Bovine Serum (FBS) 10% v/v, penicillin/streptomycin 1% v/v, glutamine
2 mM, Hepes 10 mM and sodium pyruvate 1 mM.

HeLa cells (epithelial cell line from cervix carcinoma) were seeded at a density of 104 cells/well
in 96-wells plates and cultured with fresh complete medium until 70% confluent. The medium was
then replaced with eluates or control (i.e., medium aged for the same time) and cells were returned to
the incubator. After 24 h, cell metabolic activity was assessed by Alamar Blue™ assay, according to
manufacturer recommendations, and the fluorescence of each sample was spectrophotometrically read
in a multiwell plate reader (Tecan, Genios Plus, Mannedorf, Switzerland).

2.6. Statistical Analysis

Data are expressed as mean ± standard deviation (SD). Significant differences between two
sets of data were determined by One-way ANOVA followed by Tukey’s post-hoc test for pairwise
comparisons. p < 0.05 was considered statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001).

3. Results

Electrospinning of gelatin Type A from acetic acid/water solution (9:1) resulted a continuous and
stable process. It allowed for the formation of homogeneous non-woven matrices made up of nanofibers
that displayed a random orientation and an average diameter of 268.3 ± 17.7 nm (Figure 2a,b).

The morphology obtained by applying the three selected literature protocols (i.e., EDC/NHS, GTA
vapor, and genipin) is shown in Figure 2c–h. As can be observed, the protocols were not effective
under our conditions and we were unable to obtain well-preserved fiber morphology, either after the
cross-linking nor after the immersion of the matrices in water. SEM images showed swelled fibers after
cross-linking, and they were barely recognizable after immersion in water.

Among the most widely used strategies proposed for the stabilization of collagenous materials
(i.e., EDC/NHS, GTA vapor, GTA solution, genipin and others [14]), the use of cross-linking solutions
has been proved to be more effective than the employment of vapors, light and heat to stabilize
nanofibers substrates [16,23]. Thus, EDC/NHS and GTA in solution were selected for further analysis
in order to evaluate the effect of cross-linking parameters on fibers morphology.
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possible medium candidates for cross-linking, are shown in Figure 3. Acetonitrile, ethyl acetate and 
tert-butanol, in particular, were the most effective in preserving nanofibers morphology and were 
selected for further testing. On the contrary, diethyl ether, chloroform and acetone caused a consistent 
swelling of fibers, but ethanol and hexane also had the same effect, although to a lower extent. 
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Figure 2. (a,b) SEM micrographs of electrospun gelatin nanofibers as appeared after the
electrospinning process. (c–h) Results obtained from the application of different cross-linking protocols:
(c,d) EDC/NHS [20], (e,f) GTA vapor [16], and (g,h) genipin [21]. SEM micrographs show nanofiber
morphology after the cross-linking process (c,e,g) and after the immersion of the cross-linked matrices
in distilled water (d,f,h). Scale bars represent 20 µm (a,c–h) and 5 µm (b).

3.1. Selection of Non-Swelling Solvents

The morphology of electrospun fibers after 24 h of immersion in different solvents, selected as
possible medium candidates for cross-linking, are shown in Figure 3. Acetonitrile, ethyl acetate and
tert-butanol, in particular, were the most effective in preserving nanofibers morphology and were
selected for further testing. On the contrary, diethyl ether, chloroform and acetone caused a consistent
swelling of fibers, but ethanol and hexane also had the same effect, although to a lower extent.
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3.2. EDC/NHS Cross-Linking Protocol Optimization in Non-Swelling Solvents

All EDC/NHS protocols proposed in the literature involve the use of ethanol or water for the
dissolution of carbodiimide. However, as ethanol itself was found to induce appreciable swelling of
fibers (Figure 3), acetonitrile and ethyl acetate were evaluated as possible alternatives.

EDC molarity was used in large excess and varied from 25 to 75 mM and was added to the
reaction mixture keeping the EDC/NHS ratio to 2.5:1 [16]. EDC activates the carboxyl groups of gelatin,
which can react with free amino groups, hydrolyze or rearrange to O-acylisourea residues. By adding
NHS, the efficacy of the reaction usually increases, because NHS reacts with the activated groups
forming an intermediate that is less susceptible to hydrolysis and rearrangement of the carboxylic
acid groups [24]. Together with the influence of EDC concentration, the reaction time was evaluated,
leaving electrospun gelatin matrices in the cross-linking solution for 2, 8 and 18 h.

Results obtained showed that the cross-linking reaction was also possible with the selected
alternative solvents, and stability in water of electrospun gelatin was obtained.

From weight loss evaluation (Figure 4), acetonitrile was appeared as the most effective alternative.
Compared to ethanol, used as the control, its effect on the stability of fibers was similar. Contrarily,
when ethyl acetate was used, a consistent sample weight loss over time was observed (about 60%
after 7 days). In acetonitrile, EDC molarity of 50 mM appeared as reasonable compromise between
effectiveness and reagent consumption, although differences were not significant, while 8 h was found
as the more appropriate reaction time.

The use of acetonitrile (i.e., polar aprotic solvent), together with the optimization of the reaction
time (8 h) and of the EDC molarity (50 mM, NHS molarity is subsequently 20 mM according to an
EDC/NHS ratio of 2.5:1) allowed to obtain an effective cross-linking of gelatin nanofibers.
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3.3. GTA Cross-Linking Protocol Optimization in Non-Swelling Solvent

Optimization of cross-linking protocol was also performed for GTA in solution. In this case,
tert-butanol was used as it has previously been shown as an effective solvent for GTA [22]. Working in
solution instead of vapor, a more common method was aimed at having more control on the process.
As for EDC, different concentrations and reaction times were tested. The images of fibers acquired
by SEM are shown in Figure 5, and it can be observed that a good fibers morphology is preserved
for lower concentrations. On the contrary, higher GTA concentration (2%) determined a consistent
swelling of fibers both at low and high cross-linking reaction times.

According to weight loss variation, increasing GTA concentration over 1% not only did not
improve the outcome of cross-linking, but even seemed to be detrimental (Figure 6, left panel) and 1 h
was shown to be the more effective reaction time (Figure 6, right panel).
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3.4. Evaluation of Cross-Linking Degree

To confirm the successful cross-linking for the two developed protocols, the reduction in the free
amino group content was evaluated by TNBS assay. As reasonably expected, the GTA cross-linking
method was shown to be extremely effective, and a cross-linking degree above 99% was calculated.

For EDC/NHS, on the other hand, the increase in cross-linking degree was exponentially
proportional to the reaction time, but a lower cross-linking degree (76%) was obtained for the
higher reaction time (Figure 7b).

Representative curves of the mechanical response of cross-linked (dry and hydrated conditions)
and un-crosslinked samples during the tensile test are shown in Figure 7c. As it can be observed,
the mechanical properties of dry cross-linked gelatin nanofibers membrane were substantially increased.
As reasonably expected, a marked reduction in stiffness and increase in elongation at break were
observed in the hydrated state.
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3.5. Cross-Linking Set-Up: Effect on Nanofibers Morphology

Constraining electrospun matrices during cross-linking was also found as an effective method to
better preserve the fibrous structure. As it can be observed in Figure 8, improvements were obtained
with radial constraint only, while they were even more considerable when longitudinal constraint was
added to prevent shrinkage.
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3.6. Controlled Solvent Evaporation after Cross-Linking Process

Despite the parameter optimization performed, poor results in terms of fibers morphology
maintenance were still obtained. To overcome this limitation, an additional variable was taken
into consideration and a study on the effect of different evaporation conditions was performed.
Together with the constraint applied on matrices, the evaporation conditions had a great effect on
the preservation of nanofibers morphology. As it was demonstrated by SEM analysis (Figure 9),
the evaporation of cross-linking solvents must be performed in a controlled environment and with
a low rate. The presence of silica gel beads in the container resulted a crucial parameter during this
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process. Silica gel beads were used as a desiccant to reduce humidity in the closed container during
solvent evaporation, as this resulted in better preservation of nanofibrous structure.
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in a closed vessel containing silica gel beads.

3.7. In vitro Biological Characterization

The cytotoxicity of the electrospun gelatin matrices, cross-linked with the two optimized methods
(i.e., EDC/NHS, GTA solution) was evaluated in vitro by culturing HeLa cells in culture medium
eluates, obtained by placing in contact the culture medium with gelatin matrices specimens for 1
and 24 h. The viability of cells cultured in contact with eluates is shown in Figure 10a, and was
significantly higher for samples cross-linked with carbodiimide. The GTA eluates became cytotoxic
after 1h, confirming the results presented in several scientific works regarding the possible cytotoxic
effects of this cross-linker [25,26]. However, the results after 24 h were statistically not different, to
suggest that long preconditioning of samples can be an effective strategy to avoid the cytotoxicity in
GTA cross-linked samples.

The final results obtained with the cross-linking methods considered are showed in Figure 10b.
Both the strategies involved (i.e, EDC/NHS: 50 mM, 8 h, acetonitrile; GTA solution: 1% v/v, 1 h,
t-BuOH), with the cross-linking set-up optimized, allow us to obtain morphologically stable fibrous
networks. In particular, the nanofiber morphology was well preserved after the cross-linking process.
However, the immersion of matrices in aqueous environment still caused a partial swelling of fibers.
In the samples cross-linked with EDC/NHS the nanofibrous topography was preserved even after the
immersion in distilled water. On the contrary, GTA solution cross-linking did not allow us to obtain a
suitable stabilization of nanofibrous network, and resulted in a film-like surface after the immersion
in an aqueous environment. This morphological characterization pointed out that the carbodiimide
cross-linking protocol optimized in this study was promising for the stabilization of electrospun gelatin
nanofibrous substrates, aiming at their application as cells scaffolds.
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4. Discussion

Collagenous fibrous architectures are exceptional substrates for cell growth, as they can actually
mimic the native extracellular matrix and offer to cells a variety of stimuli to guide their behavior.
On the other hand, electrospinning of gelatin and collagen is a simple and effective technique for
preparing sub-micron fibrous structures. As a consequence, electrospun gelatin and collagen mats are
extremely popular materials in tissue engineering and regenerative medicine [3,27,28].

Many studies have focused on demonstrating the effectiveness of contact guidance of
sub-micrometric fibers features [29–31]. However, preserving the as-spun fibrous structure and
scaffold porosity is should not be taken for granted for hydrogel materials. Synthetic polymers, such as
PCL, to cite a popular material for electrospinning, do not require cross-linking and have negligible
water absorption. As a consequence, they give guarantees that fibrous structure and porosity will be
well preserved during cell culture. This is not necessarily true for natural hydrogel forming materials.
Fiber swelling and fusion during cross-linking and the consistent water absorption can easily cause the
electrospinning membrane to turn into a compact film. Hence, the control on structure in every step of
the process is crucial and the optimization of cross-linking protocol that allows the stabilization of the
scaffold while preserving the ECM-like architecture obtained during the fabrication process is essential.
For this reason, we have decided to investigate the effect of different cross-linking parameters on the
morphology of electrospun gelatin fibers, with the final aim to develop an effective protocol and ensure
that a proper microstructure is eventually offered to cells.

The choice of a suitable cross-linking agent requires knowledge of the reactive groups present,
and of the appropriate ambient conditions (e.g., solvent, reaction time and temperature) that do not
negatively affect the protein. Compared to their physical counterpart, chemical cross-linking methods
are more effective due to their ability to form covalent bonds between gelatin polymer chains, allowing
for the formation of a stable cross-linked network. They were employed for the stabilization of
different types of gelatin scaffolds, such as hydrogels [32], porous scaffolds [33], films [34] and ultrafine
fibers [35]. Among chemical cross-linking methods used for gelatin nanofibers, heterobifunctional
carbodiimides, and in particular EDC, is of great interest in maximizing the extent of cross-linking,
because EDC molecules contain two different reactive groups that are able to directly link two different
amino acid side chains [36]. Moreover, EDC, used with or without NHS, is able to introduce a stable
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chemical cross-link between gelatin molecules without introducing any spacers or external sequence
(i.e., a zero length cross-linker).

Several studies investigate the ability of carbodiimide in stabilizing collagenous
materials [20,35,37–39]. However, the majority of them use ethanol as solvent for the dissolution of
EDC, but modified morphology are sometimes reported and we were unable to find data or results
to support the preservation of fibrous morphology after immersion in an aqueous environment for
pure gelatin (blends with PCL are much more common [40]). As an impairment to the fibrous network
can be caused by the solvent itself, we have decided to propose the use of acetonitrile instead of
ethanol to dissolve the cross-linker. This choice was made after testing different solvents and verifying
that ethanol induces a consistent swelling of gelatin fibers (Figure 3). A possible explanation of this
effect resides in the characteristics of these solvents. Ethanol and acetonitrile are both polar solvents,
but they differ in protic/aprotic behavior. Ethanol (dielectric constant = 25) is a polar protic solvent
that can participate in the formation of hydrogen bonding due to the presence of –OH groups, while
acetonitrile (dielectric constant = 37), that is a polar aprotic solvent, cannot form this type of bond.
This means that ethanol can induce fiber swelling due to its ability to form hydrogen bonding within
gelatin polymer chains. In addition, its protic nature can hinder the interaction between the protonated
carbodiimide and the carboxylic functional groups of aspartic and glutamic amino acids of gelatin,
acting as a competitor during the cross-linking reaction. The use of acetonitrile as a cross-linking
solvent, together with optimized parameters (EDC molarity and reaction time), allowed us to induce a
good stability in the nanofibrous matrices, confirming the efficacy of the carbodiimide in stabilizing
collagenous materials. At this point, the critical issue involved was not to provide better reactivity of
the groups but to provide the conditions that maintained the proper structure of the fibrous matrix.
Concerning this issue, specific attention was given to the cross-linking set-up during and after the
process. Promising results were obtained, preventing the shrinkage of fibrous matrices during the
cross-linking. The application of a radial-longitudinal constraint to the gelatin fibers allowed a
homogeneous infiltration of the cross-linker, promoting the formation of amide bonds within the single
fiber and not between neighboring fibers. Moreover, a slow and controlled evaporation of solvent
after the process allowed us to perfectly preserve the nanofibrous morphology of electrospun matrices
(Figure 9f).

The cross-linking strategy allowed us to preserve the nanofiber architecture created by
electrospinning, avoiding any undesirable swelling of fibers. Despite this promising outcome,
the morphological appearance of nanofibers after the immersion in an aqueous environment
(Figure 10b) undergo a change: a reduced porosity was observed together with partial fiber swelling.
The topographical cues offered by a nanostructure surface are still presented and can offer a suitable
substrate for cell adhesion and proliferation [41]. Furthermore, the nanoporosity of the network
can guarantee adequate exchange of nutrients and waste products, essential characteristics for the
development of a tissue engineering scaffold. Cross-linked gelatin matrices were also stable in
aqueous solution, showing a weight loss of 10 ± 3% after 7 days (Figure 4). The result proved
the efficacy of the cross-linking treatment, aiming at the stabilization of gelatin nanofibers in a
physiological-like environment.

In order to evaluate the degree of the cross-linking reached with the proposed EDC/NHS protocol,
the TNBS biochemical assay was satisfactory in measuring the percentage of free amino groups.
The results reveal that the use of carbodiimide is an effective strategy to stabilize gelatin nanofibers,
forming amide bonds between carboxylic groups and amine groups of polymer chains. Moreover,
the performed assay highlighted the relationship between the reaction time and the percentage
cross-linking degree that exists when EDC/NHS is used as cross-linker.

Finally, the non-cytotoxicity of EDC/NHS cross-linked sample was proven, confirming that, after a
possible in vivo application, no cytotoxic effects would be observed on the cell components that allow
for tissue regeneration. Moreover, this result proved the superiority of the carbodiimide cross-linking
strategy over the widely used glutaraldehyde method. In agreement with other works [42,43],
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the indirect cytotoxicity outcomes confirmed that GTA, without proper preconditioning, can have
negative effects on cells viability.

All the above-mentioned reasons have proven the efficacy of the cross-linking strategy here
developed. The use of EDC/NHS cross-linker allows for the stabilization of electrospun gelatin
nanofibers, and more importantly, allows us to preserve the topographical cues offered by an
electrospun substrate, a crucial feature for the fabrication of adequate scaffolds for tissue engineering.

5. Conclusions

The major concerns in developing a protocol for the cross-linking of electrospun gelatin substrates
for use in tissue engineering applications are maintaining the nanofibrous structure, preventing
any cytotoxic effects and imparting desirable mechanical properties. Gelatin is a widely available
biopolymer and electrospun gelatin scaffolds can closely mimic the biochemical and ultrastructural
properties of the native ECM of tissues, which is well known to influence cell behavior. The carbodiimide
cross-linking protocol we developed, fulfills all the above-mentioned aims. The use of EDC/NHS in
acetonitrile allows us to obtain good stability in a physiological-like environment. Although these are
not generally considered as relevant factors, the introduction of a mechanical constraint on fibers and
a controlled evaporation condition during and after the cross-linking process, were crucial for fiber
morphology preservation.

Based on the obtained results, a higher attention on the abovementioned aspects analyzed can
significantly improve the morphology of cross-linked structures and better support the results of
studies focusing on the effect of microstructure on cell response.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/11/2472/s1,
Figure S1: Cross-linking process for EDC/NHS and GTA solution method. Gelatin samples were mounted on a
mandrel and immersed in cross-linking solutions for the selected time. After cross-linking, solvent evaporation
was carried out under three different conditions: air drying, slow drying in a closed vessel and slow drying in a
closed vessel with silica gel beads, in order to select the most suitable condition for fiber topography preservation.
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