Supplementary Material

Table S1: Information on 55 experimental articles from 1998 to 2018 which deal with the development of chitosan/insulin delivery systems.

Paper														
Code			F	Relevant Paper In	formation		•			Re	search Questions	r		Paper Abstract
Id	Paper Title	Authors	Year	Publisher	Research Country	Journal	Number of Pages	Total Citations on Google Scholar	RQ1 – What phase the development of the delivery systems of chitosan/insulin are? (initial,encapsulati on, <i>in vitro</i> realise, and <i>in</i> <i>vivo</i> realise)	RQ2 – What are the release system developed? (Hidrogel, nanoemution, nanoparticles, scaffold, membrene, fiber, nanofiber, film, gel, etc.)	RQ3 – What are the main alternative ways of administration suggested? (Oral, transbuccal, buccal, Nasal,subcutaneo us, transdermic, injetable, etc.)	RQ4 – What are the total amount of insulin Loaded and the encapsulation efficiency of the release system? (Encapsulation efficiency and loading capacity)	RQ5 – For how long the system released the insulin? (Toatal time of release)	Abstract
1	Development and characterization of in situ gel system for Nasal insulin delivery	A. K. Agrawal, P. N. Gupta, A. Khanna1, R. K. Sharma, H. K. Chandrabanshi, N. Gupta, U. K. Patil, S. K. Yadav	200	Govi-Verlag Pharmazautis cher Verlag	India	Pharmazie	6	47	in vivo	Hydrogels	Nasəl	Not informed	6 h	The objective of the present study was to develop a thermosensitive in situ gel system based on chitosan and poly vinyl alcohol (PVA) for Nasal delivery of insulin. The hydrogel was prepared by mixing chitosan and PVA. The concentration of the components was optimized during formulation development. The prepared hydrogel was characterized for gelation temperature, gelation time, viscosity charages, degree of swelling, in vitro release and in vivo hypoglycemic effect. The prepared hydrogel was liquid at room temperature while underwent thermal transition from solution below or at room temperature to non-flowing hydrogel when incubated at 37 eC for approximately 12 minutes with

	T				1									increased viscosity.
														The in vitro release of
														insulin from gel
														network was observed
														spectrophotometricall
														y which was good
														enough to maintain
														blood glucose level for
														six hour. Furthermore,
														the formulation when
														evaluated for their in
														vivo hypoglycemic
														effect, demonstrated
														its ability to reduce
														glucose level. The
														observed in vitro and
														in vivo results indicate
														that the proposed
														thermosensitive in situ
														gelling system has
														substantial potential as
														Nasal delivery system
														for insulin.
														The aim of the work
														reported herein was to
														investigate the effect
														of various low
														molecular weight
														chitosans (LMWCs) on
														the stability of insulin
														using USP HPLC
														methods. Insulin was
														found to be stable in a
														polyelectrolyte
														complex (PEC)
	Low Molecular	Zakieh I. Al-												consisting of insulin
	Weight	Kurdi, Babur Z.												and LMWC in the
	Chitosan-	Chowdhry,												presence of a Tris-
	Insulin	Stephen A.												buffer at pH 6.5. In the
2	Polyelectrolyte	Leharne,	201	MDPI	Jordan	Marine	20	11	in vitro	Nanoparticles	Oral	Not informed	6 h	presence of LMWC,
	Complex:	Mahmoud M.	5			Drug								the stability of insulin
	Characterizatio	H. Al Omari and												increased with
	n and Stability	Adnan A.												decreasing molecular
	Studies	Badwan												weight of LMWC; 13
														kDa LMWC was the
														most efficient
														molecular weight for
														enhancing the physical
														and chemical stability
														of insulin.
														Solubilization of
														insulin-LMWC
														polyelectrolyte comple+P2x (I-LMWC
														PEC) in a reverse
														micelle (RM) system,
	1	1	1	1	1	I			1	1	1	1		micelle (Rivi) system,

														administered to diabetic rats, results in an Oral delivery system for insulin with acceptable bioactivity.
3	Chitosan/lecithi n liposomal nanovesicles as na Oral insulin delivery system	Mayyas Al- Remawi, Amani Elsayed, Ibrahim Maghrabi, Mohammad Hamaidi & Nisrein Jaber	201 6	Taylor & Francis	Jordan/Sau di Arabia	Pharmaceu tical Developme nt and Technology	9	14	in vivo	Nanoparticles	Oral	The AE was calculated to be around 20% under such preparation conditions.	1 h	In the present work, insulin-chitosan polyelectrolyte complexes associated to lecithin liposomes were investigated as a new carrier for Oral delivery of insulin. The preparation was characterized in terms of particle size, zeta potential and encapsulation efficiency. Surface tension measurements revealed that insulin- chitosan polyelectrolyte complexes have some degree of hydrophobicity and should be added to lecithin liposomal dispersion and not the vice versa to prevent their adsorption on the surface. Stability of insulin was enhanced when it was associated to liposomes. Significant reduction of blood glucose levels

														was noticed after Oral administration of liposomal preparation to streptozotocin diabetic rats compared to control. The hypoglycemic activity was more prolonged compared to subcutaneously administered insulin.
4	Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method	Mohammad Reza Avadi, Assal Mir Mohammad Sadeghi, Nasser Mohammadpou r, Pharm, Saideh Abedin, Pharm, Fatemeh Atyabi, Rassoul Dinarvand, Morteza Rafiee- Tehrani	201 0	Elsevier	Iran	Nanomedic ine	6	231	in vitro	Nanoparticles	Oral	The LE for all formulations was calculated and was shown to be between 25% and 35%	4 h	In the past decade, many strategies have been developed to enhance Oral protein delivery. The aim of the current work was to develop a nanoparticulate system based on ionic gelation between chitosan and Arabic gum for loading of insulin. Various formulations were prepared using 23 factorial designs. The optimum association efficiency was obtained for formulations F2, F5, and F8. The release profile of insulin in phosphate buffer solutions (pH 6.5 and pH 7.2) is completely different than that in acidic medium (pH 1.2). Increased solubility of chitosan in acidic medium and better swelling of Arabic gum chains at pH N6.5 resulted in lower insulin release of nanoparticles at pH 6.5 in comparison with that of the other pH mediums. The values of the exponent n were 0.49 and 0.82 for

														formulations F8 and F5, respectively, indicating a non- Fickian transport. This suggests that release is possibly controlled by diffusion or relaxation of the polymer chains.
5	Ultrasound- triggered noninvasive regulation of blood glucose levels using microgels integrated with insulin nanocapsules	Jin Di, Jicheng Yu, Qun Wang, Shanshan Yao, Dingjie Suo, Yanqi Ye, Matthew Pless, Yong Zhu, Yun Jing, and Zhen Gu	201 7	Springer	United States	Nano Research	10	28	in vivo	Microgels	Injectable	Drug loading capacity (LC%) and encapsulation efficiency (EE%) of nanoparticles encapsulated with insulin was 11,9 (+/- 0,6) and 71,3 (+/- 1,8), respectivily.	240 h	Diabetes is a serious public health problem affecting 422 million people worldwide. Traditional diabetes management often requires multiple daily insulin injections, associated with pain and inadequate glycemia control. Herein, we have developed an ultrasound-triggered insulin delivery system capable of pulsatile insulin release that can provide both long- term sustained and fast on-demand responses. In this system, insulin-loaded poly(lactic-co-glycolic acid) (PLGA) nanocapsules are encapsulated within chitosan microgels. The encapsulated insulin in nanocapsules can passively diffuse from the nanoparticle but remain restricted within the microgel. Upon ultrasound treatment, the stored insulin in microgels can be rapidly released to

														regulate blood glucose levels. In a chemically- induced type 1 diabetic mouse model, we demonstrated that this system, when activated by 30 s ultrasound administration, could effectively achieve glycemic control for up to one week in a noninvasive, localized, and pulsatile manner.
6	<u>Chitosan–</u> <u>Sodium Lauryl</u> <u>Sulfate</u> <u>Nanoparticles</u> <u>as a Carrier</u> <u>System for the</u> <u>In Vivo Delivery</u> <u>of Oral Insulin</u>	Amani Elsayed, Mayyas Al- Remawi, Nidal Qinna, Asim Farouk, Khaldoun A. Al- Sou'od, and Adnan A. Badwan	201 1	Springer	Jordan	AAPS PharmSciT ech	7	43	in vivo	Nanoparticles	Oral	Nanoparticles displayed high encapsulation efficiency as 82.04±1.95% of insulin was encapsulated.	7 h	The present work explores the possibility of formulating an Oral insulin delivery system using nanoparticulate complexes made from the interaction between biodegradable, natural polymer called chitosan and anionic surfactant called sodium lauryl sulfate (SLS). The interaction between chitosan and SLS was confirmed by Fourier transform infrared spectroscopy. The nanoparticles were prepared by simple gelation method under aqueous-based conditions. The nanoparticles were stable in simulated gastric fluids and could protect the encapsulated insulin from the GIT enzymes. Additionally, the in vivo results clearly indicated that the insulin-loaded nanoparticles could effectively reduce the blood glucose level in a diabetic rat model. However, additional formulation modifications are required to improve

														insulin Oral bioavailability.
7	An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b- PLA nanoparticles	Concetta Giovino, Isaac Ayensu, John Tetteh, Joshua S. Boateng	201 3	Elsevier	United Kingdom	Colloids and Surfaces B: Biointerfac es	7	69	in vivo	films	Buccal	Not informed	360 h	Peptide (insulin) loaded nanoparticles (NPs) have been embedded into buccal chitosan films (Ch- films- NPs). These films were produced by solvent casting and involved incorporating in chitosan gel (1.25% w/v), NPs-Insulin suspensions at three different concentrations (1, 3, and 5mg of NPs per film) using glycerol as plasticiser. Film swelling and mucoadhesion were investigated using 0.01M PBS at 37 °C and texture analyzer, respectively. Formulations containing 3mg of NPs per film produced optimised films with excellent mucoadhesion and swelling properties. Dynamic laser scattering measurements showed that the erosion of the chitosan backbone controlled the release of NPs from the films, preceding in vitro drug (insulin) release from

														Ch-films-NPs after 6 h. Modulated release was observed with 70% of encapsulated insulin released after 360 h. The use of chitosan films yielded a 1.8-fold enhancement of ex vivo insulin permeation via EpiOraITM buccal tissue construct relative to the pure drug. Flux and apparent permeation coefficient of 0.1_g/cm2/h and 4×10-2 cm2/h were respectively obtained for insulin released from Chfilms- NPs-3. Circular dichroism and FTIR spectroscopy demonstrated that the conformational structure of the model peptide drug (insulin) released from Ch- films-NPs was preserved during the formulation process.
8	Glucose- Responsive Microgels Integrated with Enzyme Nanocapsules for Closed-Loop Insulin Delivery	Zhen Gu, Tram T. Dang, Minglin Ma, Benjamin C. Tang,Hao Cheng, Shan Jiang, Yizhou Dong, Yunlong Zhang,and Daniel G. Anderson	201 3	ACS Publication	United States	ACS Nano	9	223	in vivo	Microgels	Injectable	An optimal insulinloading capacity of 44.6 (2.8% and encapsulation efficiency of 59.7 (3.4% (Supporting Information) were achieved.	4 h	A glucose-responsive closed-loop insulin delivery system represents the ideal treatment of type 1 diabetes mellitus. In this study, we develop uniform Injectable microgels for controlled glucose- responsive release of insulin. Monodisperse microgels (256 (18 μm), consisting of a pH-responsive chitosan matrix, enzyme nanocapsules, and recombinant human insulin, were fabricated through a one-step electrospray procedure. Glucose- specific enzymes were covalently

In an								encapsulated into the
improve enzymatic stability by protecting from denutration and immungenicity as well as to minimize loss due to diffusion from the matrix. The microgel system swelled when subjected to hyperpycemic conditions, as a result of the enzymatic conversion of the chicosa network. Acting as a self- regulating valve system, microgels were adjusted to nelease insult as basil release rates under normogylycemic conditions and at higher rates under hyperpycemic conditions and at higher rates under hyperpycemic conditions and at higher rates under hyperpycemic conditions and at higher rates under hyperpycemic conditions final, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a release insulin release and result in a release insulin release and result in a release and result in a release insulin release and result in a release and result in a								
stability by protecting from denances less due to diffusion from the matrix. The microgel system subjected to hypergivenic conditions, as a resit of the experiment conversion of glucose into glucose into glucose system, microgel system, microge								
Image: Second								
immunogenicity as well as to minimize loss due to diffusion from the matrix. The microgel system subjected to hyperglycemic conditions, sa result of the supartic conversion of glucose into gluconic add and protonation of the chitosan network. Acting as aefl- regulating value system, microgels were adjusted to basil release rates under normogivcemic conditions, finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a release network the subject of type 1								
well as to minimize los due to diffusion from the matrix. The microsofted when swelled when subjected to hypergivemic conditions, as a result of the enzymatic conversion of glucose into glucone caid and protonation of the chitosan network. Acting as a self- regulating valve system, microgels were any introgels were any introgels release rates under normoglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a release and result in a release insulin these microgels with enzyme nanocapsules facilitate insulin release and result in a release and res								
loss due to diffusion from the matrix. The microgel system subjected to hyperglycemic conditions, as a result of the enzymatic conversion of glucose into glucose of the enzymatic conversion of glucose into glucose into glucose a cald and protonain or the chitosystem, introgels were adjusted to the enzyme system, introgels were adjusted to these introgels were adjusted to these introgels were adjusted to these microgels were adjusted to these microgels were adjusted to these microgels these introjections and at the higher rates under hyperglycemic conditions and at release rates under hyperglycemic conditions and at release and result in a release insulin release and result in a release insulin facilitate insulin release and result in a release and result i								
from the matrix. The microgely when swelled when subjected of the matrix. The microgely were conditions, as a result of the exprantic conversion of glucose into								
microgel system subjected to subjected to hyperglycemic of the enzymatic of the enzymat								
swelled when subjected to hyperglycemic conditions, as a result of the enzymatic conversion of glucose into glucose and protonation of the chitosan network. Acting as self- regulating valve system, microgels were adjusted to release rates under normoglycemic conditions and at higher rates under normoglycemic conditions and at higher rates under normoglycemic conditions and at higher rates under normoglycemic conditions rate under normoglycemic conditions rates under normoglycemic conditi								
subjected to hyperglycemic conditions, as a result of the ens, as a result of								
hyperglycemic convergioner at result of the enzymatic convergion of glucose into escion of								
Conditions, as a result of conditions, as a result of conditions, as a result of conversion of glucose into glucos into glucos in								
of the enzymatic conversion of glucose into grucose into								
Conversion of glucose introlucion of the chitosia as aef- regulating valve system, microgels were adjusted to release rissulin at basal release rissulin at basal release rissulin at basal release rissulin at basal release rissulin romoglycemic conditions. Finally, we demonstrated that these microgels with entrolucions and at hyperglycemic conditions. Finally, we demonstrated that these microgels with entrolucions of the conditions. Finally, we demonstrated that these microgels with entrolucions of the entrolucions of the ent								
Interplace in the second secon								
here and the second sec								conversion of glucose
chitosan network. Acting as self- regulating valve system, microgels were adjusted to release insulin at basal release rates under normoglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release are suit in a reduction of blood glucose model of type 1								into gluconic acid and
Acting as a self- regulating valve system, microgels were adjusted to release insulin at basal release insulin at basal in a the insulin at basal release and result in a reduction of blood glucose levels in a mouse model of type 1								protonation of the
regulating valve system, microgels were adjusted to release rates under normoglycemic conditions and at higher rates under hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								
system, microgels were adjusted to release rates under normoglycemic conditions. Frankly, we demonstrated that these microgels with enzyme nanocapiles facilities in a mouse model of type 1								
were adjusted to release insulin at basal release artes under normoglycemic conditions and at higher rates under hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocaspulse facilitate insulin release and result in a reduces levels in a mouse model of type 1								regulating valve
release insulin at basal release rates under normoglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blogel with enzyme nanocapsules facilitate insulin release and result in a reduction of blogel with enzyme nanocapsules facilitate insulin release and result in a reduction of blogel with enzyme nanocapsules facilitate insulin								system, microgels
release rates under normoglycemic conditions and at higher paglycemic conditions. Finally, we demonstrated that these microgles with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								were adjusted to
normoglycemic conditions and at higher rates under hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a release and result in a release in a mouse model of type 1								release insulin at basal
normoglycemic conditions and at higher rates under hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a release and result in a release in a mouse model of type 1								release rates under
higher rates under hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								normoglycemic
hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								conditions and at
hyperglycemic conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								higher rates under
conditions. Finally, we demonstrated that these microgels with enzyme nanocapsules facilitate insulin released in a reduction of blood glucose levels in a mouse model of type 1								hyperglycemic
demonstrated that these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								
these microgels with enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								
enzyme nanocapsules facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								
facilitate insulin release and result in a reduction of blood glucose levels in a mouse model of type 1								enzyme nanocapsules
release and result in a reduction of blood glucose levels in a mouse model of type 1								facilitate insulin
reduction of blood glucose levels in a mouse model of type 1								
glucose levels in a mouse model of type 1								
mouse model of type 1								
								diabetes.

														The aim of this study
														was to generate a new
														type of nanoparticles
														made of chitosan (CS) and carboxymethyl
														cyclodextrin (CMCD)
														and to evaluate their
														potential for the
														association and
														delivery of
														macromolecular drugs.
														CS and CMCD or
														mixtures of CM
														CD/tripolyphosphate (TPP) were processed
														to nanoparticles via
														the ionotropic gelation
														technique. The
														resulting nanoparticles
														were in the size range
														of 231–383 nm and
												Inculin could be		showed a positive zeta
												Insulin could be incorporated		potential ranging from +20.6 to +39.7mV.
												very efficiently		These nanoparticles
												to all		were stable in
	Chitosan/cyclod					Internation						nanoparticle		simulated intestinal
	<u>extrin</u> nanoparticles as	Alexander H.	200			al Journal						formulations,		fluid pH 6.8 at 37 °C
9	macromolecula	Krauland, Maria	7	Elsevier	Spain	of	9	202	in vitro	Nanoparticles	Nasal	reaching	2 h	for at least 4 h.
	r drug delivery	José Alonso	,			Pharmaceu						association		Elemental analysis
	system					tics						efficiencies of		studies revealed the
												more than 85% and loading		actual integration of CMCD to CS
												efficiency with		nanoparticles. Insulin
												68.4 ± 0.5%		and heparin used as
														macromolecular model
														drugs, could be
														incorporated into the
														different nanocarriers
														with association efficiencies of 85.5–
														93.3 and 69.3–70.6%,
														respectively. The
														association of these
														compounds led to an
														increase of the size of
														the nanoparticles
														(366–613 nm), with no
														significant modification of their
														zeta potentials (+23.3
														to +37.1 mV). The
														release profiles of the
														associated
														macromolecules were
														highly dependent on
	1	I												the type of molecule

														and its interaction with the nanomatrix: insulin was very fast released (84–97% insulin within 15 min) whereas heparin remained highly associated to the nanoparticles for several hours (8.3– 9.1% heparin within 8 h). In summary, CS-CD (cyclodextrin) nanoparticles may be considered as nanocarriers for the fast or slow delivery of macromolecules.
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

														A polyelectrolyte
														complex system of chitosan-pectin nano-
														and microparticles was developed to
														encapsulate the
														hormone insulin. The aim of this work was to
														obtain small particles
														for Oral insulin
														delivery without chemical crosslinkers
														based on natural and
														biodegradable
														polysaccharides. The nano- and
														microparticles were
														developed using chitosans (with
														different degrees of
														acetylation: 15.0% and
												An EE of 34– 37% of insulin		28.8%) and pectin solutions at various
												was achieved		charge ratios (n+/n-
	Electrostatic	Vinicius B. V.										for systems with charge		given by the chitosan/pectin mass
	Self-Assembled	Maciel,										ratio (n+/n–)		ratio) and total charge.
	Chitosan-Pectin	Cristiana M. P. Yoshida, Susana	201							Nano- and		0.25. The EE		Nano- and
10	Nano- and Microparticles	M. S. S. Pereira,	7	MDPI	Brazil	Molecules	21	13	in vitro	microparticles	Oral	was further improved (62%)	2 h	microparticles were characterized
	for Insulin	Francisco M. Goycoolea and										for systems		regarding particle size,
	Delivery	Telma T. Franco										with charge ratio (n+/n–)		zeta potential, production yield,
												5.00,		encapsulation
												independent of		efficiency, stability in
												DA of chitosan.		different media, transmission electron
														microscopy and
														cytotoxicity assays using Caco-2 cells. The
														insulin release was
														evaluated in vitro in
														simulated gastric and intestinal media.
														Small-sized particles
														(~240–~1900 nm) with a maximum
														a maximum production yield of
														~34.0% were obtained.
														The highest encapsulation
														efficiency (~62.0%) of
														the system was
														observed at a charge ratio (n+/n-) 5.00. The
														system was stable in
														various media,

														particularly in simulated gastric fluid (pH 1.2). Transmission electron microscopy (TEM) analysis showed spherical shape particles when insulin was added to the system. In simulated intestinal fluid (pH 6.8), controlled insulin release occurred over 2 h. In vitro tests indicated that the proposed system presents potential as a drug delivery for Oral administration of bioactive peptides.
11	Development and characterization of new insulin containing polysaccharide nanoparticles	Bruno Sarmento, António Ribeiro, Francisco Veiga c, omingos Ferreira	200 6	Elsevier	Portugal	Colloids and Surfaces B: Biointerfac es	10	219	in vitro	Nanoparticles	Oral	Nanoparticles formulated with a DS:chitosan mass ratio of 1.5:1 showed a AE (%) of 85,4 (+/- 0,5).	5 h	A nanoparticle insulin delivery system was prepared by complexation of dextran sulfate and chitosan in aqueous solution. Parameters of the formulation such as the final mass of polysaccharides, the mass ratio of the two polysaccharides, pH of polysaccharides solution, and insulin theorical loading were identified as the modulating factors of nanoparticle physical properties. Particles with a mean diameter of 500 nm and a zeta potential of approximately –15mV were produced under optimal conditions of DS:chitosan mass ratio of 1.5:1 at pH 4.8. Nanoparticle showed spherical shape,

			r				
							uniform size and good
							shelf-life stability.
							Polysaccharides
							complexation was
							confirmed by
							differential scanning
							calorimetry and
							Fourier transformed
							infra-red spectroscopy.
							An association
							efficiency of 85% was
							obtained. Insulin
							release at pH
							below5.2was almost
							prevented up to 24 h
							and at pH 6.8 the
							release was
							characterized by a
							controlled profile. This
							suggests that release
							of insulin is ruled by a
							dissociation
							mechanism and
							DS/chitosan
							nanoparticles are pH-
							sensitive delivery
							systems. Furthermore,
							the released insulin
							entirely maintained its
							immunogenic
							bioactivity evaluated
							by ELISA, confirming
							that this new
							formulation shows
							promising properties
							towards the
							development of an
							Oral delivery system for insulin.
							for insulin.

														Chitosan (CS)-
														polyvinyl alcohol (PVA)
														blend hydrogels were
														prepared using
1														glutaraldehyde as the
														crosslinking agent. The
														obtained hydrogels,
														which have the
														advantages of both
														PVA and CS, can be used as a material for
														the transdermal drug
														delivery (TDD) of
														insulin. The nano-
														insulin-loaded
														hydrogels were
														prepared under the
														following conditions:
1														1.2 g of polyethylene
1														glycol, 1.5 g of CS, 1.2
														g of PVA, 1.2 mL of 1%
														glutaraldehyde
														solution, 16 mL of water, and 40 mg of
	Preparation and													nano-insulin with 12
	characterization	Yuangang Zu,												min of mixing time and
	of chitosan-	Ying Zhang,				Internation								3 min of cross-linking
	polyvinyl	Xiuhua Zhao,				al Journal								time. The nano-insulin-
12	alcohol blend	Chang Shan,	201	Elsevier	China	of	6	77	in vitro	Hydrogels	Transdermal	Not informed	12 h	loaded hydrogels were
	hydrogels for	Shuchong Zu, Kunlun Wang,	2			Biological Macromole								characterized using
	the controlled	Yong Li,				cules								scanning electron
	release of nano-	Yunlong Ge				cures								microscopy, energy
	<u>insulin</u>	i uniong de												dispersive
														spectrometry, Fourier-
														transform infrared
														spectroscopy,
														differential scanning calorimetry,
														thermogravimetric
														analysis, X-ray
														diffraction, and its
														mechanical properties
														were analyzed. The
														results show that all
														molecules in the
1														hydrogel have good
														compatibility and they
														formed a honeycomb-
														like structure. The hydrogel also showed
														good mechanical and
														thermal properties.
														The in vitro drug
														release of the hydrogel
														showed that the nano-
														insulin accorded with
														Fick's first law of

														diffusion and it has a high permeation rate (4.421 _g/(cm2 h)). These results suggest that the nano-insulin- loaded hydrogels are a promising non-invasive TDD system for diabetes chemotherapy.
13	Microencapsula ted chitosan nanoparticles for pulmonary protein delivery: In vivo evaluation of insulin-loaded formulations	S. Al-Qadi, A. Grenha, D. Carrión-Recio, B. Seijo, C. Remuñán-López	201	Elsevier	Spain	Journal of Controlled Release	8	146	in vivo	Nanoparticles	Intratracheal	CS/TPP/INS=5/1 /1.5 (w/w), which have higher TPP content, registered increased production yield (48%), INS association efficiency (75%), loading capacity (31%) and zeta potential (+32 mV) compared to the other formulation (6/1/1.8 (w/w)). CS 113 show a higher production yield, association efficiency and loading capacity (56%, 83%, and 37%, respectively), but smaller size	5 h	This work presents a new dry powder system consisting of microencapsulated protein-loaded chitosan nanoparticles (CS NPs). The developed system was evaluated in vivo in rats in order to investigate its potential to transport insulin (INS), a model protein, to the deep lung, where it is absorbed into systemic circulation. The INS- loaded CS NPs were prepared by ionotropic gelation and characterized for morphology, size, zeta potential, association efficiency and loading capacity. Afterwards, the NPs were co-spray dried with mannitol resulting in a dry powder with adequate aerodynamic

(289 nm the NPs of CS	made deposition in d	leep
	13. lungs. The asse	
	of the blasmat.	
	glucose levels	
	following intra	
	administration	
	revealed that t	
	microencapsul	
	INS-loaded CS	
	induced a more	
	pronounced ar	۱d
	prolonged	
	hypoglycemic e	
	compared to the	
	controls. Accor	
	the developed	system
	constitutes a	
	promising alter	rnative
	to	
	systemically de	eliver
	therapeutic	
	macromolecule	es to the
	lungs, but it ca	n also
	be used to pro-	vide a
	local effect.	
	A simple and	
	reproducible w	vater-in-
	oil (W/O)	
	nanoemulsion	
	technique for r	making
	ultrasmall (,15	nm),
	monodispersed	d and
A novel	water-dispersil	ble
nanoemulsion-	nanoparticles (
Grunam Reza	from chitosan	
to produce Barbari, Farid	reported The	
Abeain	ignt sized (50 nm) v	
Dorkoosh, ratio of	2:10 nools of the W	
dispersible Monsen Amini, Internation With .	2 n nanoemulsion	
manoparticles Monammad 201 Dove Medical al Journal incubation	n time (nanocontaine	
14 from chitocan Sharilzaden, 7 Press Iran 01 13 12 In vitro Nanoparticles Oral represe	it the 24 h nano-reactors"	
Surface Fateme Atyabi, / Press Nanomedic highest	E and entrapped poly	
modified with Saeed Balalaie, LE of 1	and chains of CS in	
cell-pepetrating Niyousha Rafiee 929	these "nano-re	
respect	vely. are covalently	
delivery of Morteza Ranee	linked with the	
lehrani		
proteins and	of polyethylend	
peptides	(PEG), leading	
	rigidification an	
	formation of N	
	These NPs pos	
	excessive swell	
		aueous
	properties in a	
	properties in a medium and p integrity in all p	reserve

							ranges due to chemical
							cross-linking with PEG.
							A potent and newly
							developed cell-
							penetrating peptide
							(CPP) is further
							chemically conjugated
							to the surface of the
							NPs, leading to
							development of a
							novel peptide-
							conjugated derivative
							of CS with profound
							tight-junction opening
							properties. The CPP-
							conjugated NPs can
							easily be loaded with
							almost all kinds of
							proteins, peptides and
							nucleotides for Oral
							delivery applications.
							Feasibility of this
							nanoparticulate
							system for Oral
							delivery of a model
							peptide (insulin) is
							investigated in Caco-2
							cell line. The cell
							culture results for
							translocation of insulin
							across the cell
							monolayer are very
							promising (15%–19%
							increase), and animal
							studies are actively
							under progress and
							will be published
							separately.

15	Synthesis of a novel structure for the Oral delivery of insulin and the study of its effect on diabetic rats	Akbar Esmaeilia, Syed Neda Mousavi	201 7	Elsevier	Iran	Life Sciences	7	2	in vivo	Scaffolds	Oral	Not informed	32 h	Common materials used for drug delivery in the body are: liposomes, micelles, polymer capsules, dendrimers, nanoparticles, porous materials, etc. Drug delivery system should be inert, biodegradable, have high biocompatibility and the ability to load large amounts of the drug with known concentration while having a simple and economical sterilizing process. In this study we produced mesoporous silica nanostructures coated with polyamide amine dendrimer that were placed in chitosan- gelatin scaffolds. At every step of the synthesis, the products were identified using different methods, including XRD, FT-IR, SEM, and TGA. The final drug was studied in terms of in vitro & in vivo and MTT toxicity
16	A cell- penetrating peptide mediated chitosan nanocarriers forimproving intestinal insulin delivery	Lei Li, Liaoqing Yang, Manman Li, Liefeng Zhang	201 7	Elsevier	China	Carbohydr ate Polymers	8	9	in vitro	Nanoparticles	Oral	the encapsulation efficiency and drug loading content of the CS/insulin-NPs were 73.68% and 7.89%, respectively.	4.5 h	was evaluated. To overcome barriers for Oral delivery of insulin, the chitosan(CS)-based nanocarriers with a novel cellpenetrating peptide (SAR6EW) have been prepared and evaluated in this study. Characterization mea-surements showed that SAR6EW/CS/insulin- NPs displayed global particles with smooth surfaces and anaverage diameter about 150 nm. The entrapment efficiency and loading rates of

-			1							
										insulin were 75.36%
										and7.58%,
										respectively. Insulin
										could be released
										constantly from
										SAR6EW/CS/insulin-
										NPs in vitro. Further-
										more,
										SAR6EW/CS/insulin-
										NPs could facilitate the
										uptake of insulin and
										induce a significantly
										higherinternalization
										of insulin via adding
										clathrin and caveolae
										mediated endocytosis.
										In addition, in
										vivohypoglycemic
										studies showed that
										Orally administrated
										SAR6EW/CS/insulin-
										NPs produced a better
										hypo-glycemic effect
										as compared with
										CS/insulin-NPs in
										diabetic rats.
										Meanwhile, no
										significant
										cytotoxicityof the
										nanoparticles was
										observed. In
										conclusion, SAR6EW-
										mediated chitosan
										nanocarriers showed
										suf-ficient
										effectiveness for Oral
										delivery of insulin. This
										delivery system is also
										promising for the
	1		1							delivery ofother
										protein drugs by Oral
										administration.
L	1	I	I	I	I	1				autimistration.

	1													The chicks for t
17	Nasal absorption enhancement of insulin using PEG-grafted chitosan nanoparticles	Xinge Zhang, Huije Zhang, Zhongming Wu, Zhen Wang,Haimei Niu, Chaoxing Li	200 8	Elsevier	China	European Journal of Pharmaceu tics and Biopharma ceutics	9	157	in vivo	Nanoparticles	Nasal	The PEG-g- chitosan nanoparticles displayed a high association efficiency (>78.6%) leading to insulin loading values as high as 38.6%	24 h	The objective of this work was to explore the potential of polyethylene glycol- grafted chitosan (PEG- g-chitosan) nanoparticles as a system for improving the systemic absorption of insulin following Nasal administration. Insulin- loaded PEG-g-chitosan nanoparticles were prepared by the ionotropic gelation of PEG-g-chitosan solution using tripolyphosphate ions as the crosslinking agent. The nanoparticles were in the size range 150–300 nm, had a positive electrical charge (+16 to +30 mV) and were associated with insulin (loading efficiency 20– 39%). The physicochemical properties of nanoparticles were affected by the composition of the copolymer. In vitro insulin release studies showed an initial burst followed by a slow release of insulin. IntraNasal administration of PEG-
17	of insulin using <u>PEG-grafted</u> <u>chitosan</u>	Zhen Wang,Haimei		Elsevier	China	tics and Biopharma	9	157	in vivo	Nanoparticles	Nasal	efficiency (>78.6%) leading to insulin loading values as high	24 h	39%). The physicochemical properties of nanoparticles were affected by the composition of the copolymer. In vitro insulin release studies showed an initial burst followed by a slow release of insulin. IntraNasal

														To improve the
														efficacy and reduce
														the systemic toxicity of
														the diabetes mellitus,
	1													herewith, we
														developed a novel
														microparticles-
														embedded
														microcapsules (MEMs)
														system, synthesized
														from calcium alginate/
														chitosan (Ca-Alg/CS), by emulsion gelation
														using a high voltage
														electrostatic droplet
												The drug-		generator. In our
												loading and the		study, we selected two
												encapsulation		antidiabetic drugs
												efficiency for		insulin (INS) and
												the two drugs		metformin (MET) as
												loaded alone		model drugs to
												were		investigate different
												respectively		spatial distribution
												attained a		appropriate of MEMs
	T 1 1 0	Qinglei Dai, Xia										different value		system.
	The influence of	Zhou, Kejing				I						(0.204 ± 0.023%		Characterization based
	<u>spatial</u> distribution on	Wu, Ruimin				Journal of Biomaterial						(inner) and 0.241 ± 0.017%		on particle size and morphology,
18	add-on therapy	Long, Shibin	201	Taylor &	China	s Science,	12	0	in vivo	Microspheres	Injectable	(outer), 1.641 ±	48 h	encapsulation
10	of designed Ca-	Wang, Haiwang	8	Francis	China	Polymer	12	U	111 1100	wheres	njectable	0.180% (inner)	4011	efficiency and drug
	Alg/CS MEMs	Huang,				Edition						and 1.804 ±		loading, as well as drug
	system	Yanhua Xia &										0.121% (outer)		delivery properties
		Yuangang Liu										were for MET;		were carried out on
												2.296 ± 0.120%		the MEMs system.
												(inner) and		Typical multi-chamber
												9.357 ± 0.751%		structure was shown
												(outer), 11.662		by SEM and the optical
												± 0.708%		spectra. The average
												(inner) and		diameters of
												85.534 ± 1.511% (outer)		microparticles and Ca- Alg/CS MEMs were
												were for INS).		2100 nm and $410 \mu \text{m}$,
												were for invoj.		respectively. Insulin
														and MET were
														embedded into MEMs
														via electrostatic
														reaction according to
														FT-IR spectra.
														Moreover, drug
														loading and
														encapsulation
														efficiency of INS were
														higher than that of
														MET in this system
														when drugs were
														loaded alone or together. More
L	1	1	I	1						1	l			together. WOLE

														importantly, this system has potential for orderly drug release and well sustained release when MET in the inner and INS in the outer space could be applied as a combination therapy for diabetes. The obtained in vivo experimental data on diabetes rats has shown that the designed MEMs system resulted in a higher hypoglycemic effect within add-on therapy.
19	Multiboronic acid-conjugated chitosan scaffolds with glucose selectivity to insulin release	Nabil A. Siddiqui, Nashiru Billa & Clive J. Roberts	201 7	Taylor & Francis	United Kingdom	Journal of Biomaterial s Science, Polymer Edition	14	2	in vitro	Nanoparticles	Not informed	The EE% for FPBAINP and FTBAINP were 56.7% and 57.5% respectively. The LC% for FPBAINP and FTBAINP were calculated to be 45 ± 1.4 mg and 48 ± 1.1 mg of insulin in 100 mg of nanoparticles respectively.	1h	The principal challenge for the use of boronic acids (BA) as glucose sensors is their lack of specificity for glucose. We examined the selectivity of and insulin release from two boronic acids- (2- formyl-3- thienylboronic acid (FTBA) and 4- formylphenylboronic acid (FPBA)) conjugated chitosan scaffolds to glucose and fructose. Adsorption of glucose to BA: chitosan conjugates was dose- dependent up to 1:1 at 35 and 42% for FPBA and FTBA respectively but the FTBA conjugates adsorbed more glucose and fructose at respective FPBA ratios. The affinity of both BA

			1				conjugates to glucose
							decreased with
							increase in BA ratio.
							On the other hand, the
							affinity of both BA
							conjugates for fructose
							decreased from ratio
							1:1 to 2:1 then rose
							again at 3:1. Insulin
							release from FPBA
							nanoparticles
							(FPBAINP) and FTBA
							nanoparticles
							(FTBAINP) were both
							concentration-
							dependent within
							glyceamically relevant
							values (1–3 mg/ml
							glucose and 0.002
							mg/ml fructose).
							Furthermore, the total
							amounts of insulin
							released from FPBAINP
							in both the media
							were higher than from
							FTBAINP. Both
							FPBAINP and FTBAINP
							have the potential for
							development as a
							glucose-selective
							insulin delivery system
							in physiological
							settings.

			1											Te develop inculin
														To develop insulin delivery system for the
														treatment of diabetes,
														two insulin-loaded
														nanogels with
														opposite zeta potential
														(-15.94 ± 0.449 mV for
														insulin:CMCS/CS-
														NGs(-) and +17.15 ±
														0.492 mV for
														insulin:CMCS/CS-
														NGs(+)) were
														obtained. study, the
														blood glucose level in
														insulin:CMCS/CS-
														NGs(-) group had 3
														mmol/L lower than
														insulin:CMCS/CS-
														NGs(+) group during 1
														h to 11 h after the Oral
														administration, which
														demonstrated that
														negative
												Insulin:CMCS/C		insulin:CMCS/CS-NGs
	Positive/negativ											S-NGs(-) had na		had a better
	<u>e surface</u>	Juan Wang,										EE(%) 73 ± 6.36		management of blood
	<u>charge of</u> <u>chitosan based</u>	Mengxue Xu,				Carbohydr						and LC(%) 29 ±		glucose than positive ones. 0.449 mV for
20	nanogels and its	Xiaojie Cheng,	201	Elsevier	China	ate	7	37	in vitro	Nanogels	Oral	3.61, and	15 h	insulin:CMCS/CS-
20	potential	Ming Kong, Ya	6	LISEVIEI	Clilla	Polymers	/	57		Nanogeis	Orai	Insulin:CMCS/C	13 11	NGs(-) and +17.15 ±
	influence on	Liu, Chao Feng,				rolymers						S-NGs(+) had		0.492 mV for
	Oral insulin	Xiguang Chen										EE(%) 74 ± 8.36		insulin:CMCS/CS-
	delivery.											and LC 27 ±		NGs(+)) were
	denterji											4.04		obtained. Ex vivo
														results showed that
														the nanogels with
														opposite surface
														charge exhibited
														different adhesion and
														permeation in specific
														intestinal segments.
														There was no
														significant differences
														in adhesion and
														permeation in rat
														duodenum, but in rat
														jejunum,
														insulin:CMCS/CS-
														NGs(-) exhibited
														enhanced adhesion
														and permeation, which
														were about 3 folds
														(adhesion) and 1.7
														folds (permeation) higher than
														insulin:CMCS/CS-
														NGs(+). These results
L	I	I	1	I		1	l			1		1		

														demonstrated that the surface charge property of nanogels determined the absorption sites of CMCS/CS-NGs in small intestine. In vivo study, the blood glucose level in insulin:CMCS/CS- NGs(-) group had 3 mmol/L lower than insulin:CMCS/CS- NGs(+) group during 1 h to 11 h after the Oral administration, which demonstrated that negative insulin:CMCS/CS-NGs had a better management of blood glucose than positive ones.
21	In vitro and in vivo evaluation of thermosensitive chitosan hydrogel for sustained release of insulin.	Farzaneh Ghasemi Tahrir, Fariba Ganji, Ali Reza Mani, and Elham Khodaverdi	201 4	Taylor & Francis	Iran	Drug Delivery	9	19	In vivo	Hydrogels	Injectable	Not informed	>150 h	Injectable In situ gel- forming chitosan/b- glycerol phosphate (CS/b-Gp) solution can be introduced into the body in a minimally invasive manner prior to solidifying within the target tissue. This hydrogel is a good candidate for achieving a prolonged drug delivery system for insulin considering its high molecular weight. In addition to the physicochemical characterization of this hydrogel, in vitro and in vivo applications were studied as a sustained insulin delivery system. In the in vitro release studies, 19–63% of total insulin was released from the CS/b-Gp hydrogel

														within 150 h at different b-Gp and insulin concentrations. The best formulation was selected for in vivo experimentation to control the plasma glucose of diabetic mice models. The hypoglycemic effect of this formulation following subcutaneous injection in diabetic mice lasted 5 d, significantly longer than that of free insulin solution which lasted several hours Chitosan and chitosan
22	Development and evaluation of chitosan and chitosan derivative nanoparticles containing insulin for Oral administration.	Hecq J, Siepmann F, Siepmann J, Amighi K, Goole J.	201	Taylor & Francis	Belgium/Fr ance	Drug Developme nt and Industrial Pharmacy	8	16	In vitro	Nanoparticles	Oral	The most promising formulation (F8) was based on HTCC-33% and the EE was 52 ± 3%.	3,33h	chitosan and chitosan derivative-based nanoparticles loaded with insulin were prepared by self- assembly, via electrostatic interactions between the negatively charged drug and the positively charged polymers. In the investigated chitosan derivatives, the amine groups were substituted to different extents (33, 52 or 99%) by 2- hydroxypropyl-3- trimethyl ammonium groups, rendering the polymers permanently positively charged, irrespective of the pH. This is an important property for this type of advanced drug delivery system, since the pH value changes throughout the gastrointestinal tract and electrostatic interactions are of crucial importance for the stability of the nanoparticles. Permanent positive charges are also in favor of

	1		r	1				
								mucoadhesion. In
								contrast, the electric
								charges of chitosan
								molecules depend on
								the pH of the
								surrounding medium.
								Since the solubility of
								the chitosan
								derivatives increased
								due to the
								introduction of
								quaternary ammonium
								groups, sodium
								tripolyphosphate (TPP)
								was added to the
								systems to create
								supplementary cross-
								links and stabilize the
								nanoparticles. The
								presence of TPP
								influenced both the
								dissolution of the
								polymer matrix as well
								as the resulting release
								kinetics. The
								underlying drug
								release mechanisms
								were found to be more
								complex than simple
								diffusion under
								constant conditions,
								likely involving also
								ionic interactions and
								matrix dissolution. The
								most promising
								formulation was based
								on a chitosan
								derivative with 33%
								substitution degree
								and characterized by a
								Z-average of
								142 ± 10 nm, a zeta
								potential of 29 \pm 1 mV,
								an encapsulation
								efficacy of 52 ± 3%
								and, most importantly,
								the release of insulin
								was sustained for
								more than 210 min.

														extent than the aqueous solution of CS in vivo. Above all, after administration of 21 I.U./kg insulin in the CS-NPs, the hypoglycemia was prolonged over 15 h and the average pharmacological bioavailability relative to SC injection of insulin solution was up to 14.9%.
24	<u>Oral insulin</u> <u>delivery by self- assembled chitosan nanoparticles: I n vitro and in vivostudies in diabetic animal model</u>	Piyasi Mukhopadhyay, Kishor Sarkar, Mousumi Chakraborty, Sourav Bhattacharya, Roshnara Mishra, P.P. Kundu	201 3	Elsevier	India	Materials Science and Engineerin g: C	6	81	In vivo	Nanoparticles	Oral	~* 97% insulin encapsulation and 27% insulin loading capacity.	12 h	We have developed self-assembled chitosan/insulin nanoparticles for successful Oral insulin delivery. The main purpose of our study is to prepare chitosan/insulin nanoparticles by self- assembly method, to characterize them and to evaluate their efficiency in vivo diabetic model. The size and morphology of the nanoparticles were analyzed by dynamic light scattering (DLS), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The average particle size ranged from 200 to 550 nm, with almost spherical shape. An

Anovel		<u>г</u>			1										and the second sec
Anced															
Anced															
Anord															
Anced															
Anovel															
Anovet Anovet Freshing good amount Anovet Anovet Freshing good amount															
Anovel Anovel Image: Construction of the second secon															
A novel															
Anovel															
Anovel															gastric condition, while
Anovel															
Anorel Anorel Image: Construction of the second of th															
Anorel Anorel Image: Contract of the second se															
Anovel															
A novel															The Oral
Anovei															
Anovel															chitosan/insulin
Anovel Anovel Image: Construction of the cons															nanoparticles were
Anovel Anovel Image: Construction of allocan-induced diabetic mice. Thus self-assembled chitosan/insulin nanoparticle feets show promising effets show promisin															effective in lowering
Anovel															the blood glucose level
Anovel Anovel self-assembled self-assembled chitosan/insulin Anovel Self-assembled chitosan/insulin nanoparticles potential insulin Carrier system in animal model mem Oral delivery system for insulin or insulinsulin or insulin or insulin or insulin or insulin or insulin or i															of alloxan-induced
Anovel Anovel Anovel Chitosan/insulin Carrier system in animal models New Oral delivery System for Sys															diabetic mice. Thus,
A novel A novel Image: A novel															
A novel A novel A novel Image: A novel															chitosan/insulin
Anovel Anovel Image: Anoovel Image: Anovel <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>nanoparticles show</td></t<>															nanoparticles show
A novel A novel Image: Carrier system in animal models Carrier system in animal models															promising effects as
A novel A novel Image: Control of the control of t															potential insulin
A novel Image: Control of the contr															carrier system in
A novel															animal models
A novel															new Oral delivery
A novel															system for insulin was
A novel															developed aiming to
A novel															improve bioavailability
A novel															based on a conjugate
A novel chitosan (LMWC) of narrow molecular weight distribution.															between insulin and
A novel narrow molecular weight distribution.															low molecular weight
A novel weight distribution.															chitosan (LMWC) of
															narrow molecular
															weight distribution.
		approach to													The conjugate was
															synthesized from the
			Lee Filee Lion	201	ACS						Not informed				reaction between site-
23 <u>conjugating</u> S 0 Publication Kolea are 5 55 in vivo (Conjugata) Olai Not informed 12 in specifically modified	25	conjugating				Korea		3	53	In vivo		Oral	Not informed	12 h	specifically modified
with low Chemistry Insulin at the lysine			5.		1 abilication		Chemistry				(conjugate)				insulin at the lysine
															residue of the B-chain
weight and sulfhydryl-		weight													
		<u>chitosan.</u>													modified LMWC. To
investigate the effe															investigate the effect
															of MWs of LMWC on
	1														Oral bioavailability of
insulin, various LMV	1 .														insulin, various LMWCs
(3, 6, 9, and 13k															(3, 6, 9, and 13k
average MW) with		1 I			1			1	1		1				average M/W/) with
narrow MW															
															narrow MW
to synthesize LMW															narrow MW distribution were used

														insulin conjugates. The content of insulin in the LMWC-insulin conjugates was calculated by UV spectrophotometer: 62%, 44%, 38%, and 29% for 3, 6, 9, and 13 kDa LMWC, respectively. The biological activity of insulin in LMWC(6k)- insulin conjugate in vivo was 43 (0.7%. LMWC-insulin conjugates after Oral administration to diabetic rat models could control blood glucose levels effectively for several hours. Of those conjugates, LMWC(9k)-insulin exhibited the highest pharmacodynamic bioavailability of 3.7 (0.3% relative to that of subcutaneously (s.c.) injected insulin (100%).
26	In Vitro Insulin Release from Thermosensitiv e Chitosan Hydrogel	Elham Khodaverdi, Mohsen Tafaghodi,Farib a Ganji, Khalil Abnoos, and Hanie Naghizadeh	201 2	Springer	Iran	American Association of Pharmaceu tical Scientists	6	63	In vitro	Hydrogels	Injectable	Not informed	>300h	Recently, great attention has been paid to in situ gel- forming chitosan/glycerol- phosphate (chitosan/Gp) solution due to their good biodegradability and thermosensitivity. This in situ gel-forming system is Injectable fluid that can be introduced into the body in a minimally invasive manner prior to solidifying within the desired tissue. At the present study, insulin release from chitosan/Gp solution has been investigated. Insulin in different concentrations was loaded in two

														formulations of chitosan/Gp solution and in vitro drug release was studied over a period of 3 weeks. Results indicated that the release of insulin from chitosan/Gp gel decreases by increasing in Gp salt and initial insulin concentration. Stability of released insulin was investigated by 8- anilino-1- naphthalenesulfonate probe. Results proved that insulin have been released in its native form. Because of simple preparation and administration, prolonged release of insulin and stability of released insulin, this in situ gel-forming system could be used as a controlled release delivery system for
27	Design and evaluation of biodegradable, biosensitive in situ gelling system for pulsatile delivery of insulin	Kashyap N, Viswanad B, Sharma G, Bhardwaj V, Ramarao P, Ravi Kumar MN.	200 7	Elsevier	India	Biomaterial S	9	118	In vivo	Gels	Injectable	Not informed	30h	insulin Biodegradable glucose-sensitive in situ gelling system based on chitosan for pulsatile delivery of insulin was developed. The sols/gels were thoroughly characterized for swelling properties, rheology, texture analysis and water content. The developed glucose- sensitive gels responded to varied glucose concentrations in vitro indicating their ability to function as environment-sensitive systems. Insulin load onto the gels was optimized and was found to affect the rheological behavior of

							these gels, the final
							preparation used for in
							vitro contained 1
							IU/200 ml of the sol.
							These gels released
							the entrapped insulin
							in a pulsatile manner
							in response to the
							glucose concentration
							in vitro. Furthermore,
							the formulations when
							evaluated for their in
							vivo efficacy in
							streptozotocin-
							induced diabetic rats
							at a dose of 3 IU/kg,
							demonstrated their
							ability to release
							insulin in response to
							glucose concentration
							and were preferred
							much better against
							subcutaneously given
							plain insulin
							formulation used as
							the control. Together,
							these preliminary
							results indicate that
							biosensitive chitosan
							in situ gelling systems
							have substantial
							potential as pulsatile
							delivery systems for
							insulin.

		1	1		r		1	r		r				to a deal
														Insulin-loaded
														microspheres
													1	composed of chitosan
														3% (w/v), and loading
					1									120 IU insulin were
														produced by emulsion
														cross-linking method.
														Cross-linking time was
														5 h and glutaraldehyde
														3.5% (v/v) was used as
														cross-linker. Swelling
														ratio studies were
														evaluated to predict
														release of insulin from
														chitosan microspheres.
														Bacitracin and sodium
														taurocholate were
														incorporated in the
														formulations as
]									proteolytic enzyme
														inhibitor and
														absorption enhancer,
														respectively. In vitro
														insulin release studies
	Predictive	S. Jose, J.F.												were performed in
	modeling of	Fangueiro, J.				European								phosphate buffer pH
	insulin release	Smitha, T.A.	201	5 1 ·	India/Portu	Journal of					e 1		421	7.4 and also in HCl pH
28	profile from	Cinu, A.J.	3	Elsevier	gal	Medicinal	4	55	In vitro	Microspheres	Oral	Not informed	12 h	2 with and without
	cross-linked	Chacko, K.				Chemistry								trypsin. Activity of
	chitosan microspheres	Premaletha,												bacitracin was also
	microspheres	E.B. Souto												evaluated. In vitro release showed a
														controlled profile up to
														12 h and the
														formulation containing
														0.15% (w/v) of
														bacitracin revealed a
														maximum biological
														activity of about 49.1
														4.1%. Mathematical
														modeling using Higuchi
														and
														KorsmeyerePeppas
														suggested a non-
														Fickian diffusion as the
														mechanism of insulin
														release. Insulin-loaded
]									chitosan microspheres
														for Oral delivery
														showed to be an
1														innovative and reliable
1														delivery system to
1													1	overcome
]									conventional insulin
1														therapy
L	l	I		1	I	l		1	1	1	1	I	1	

29	Preparation and Characterizatio n of Water- Soluble Chitosan Microparticles Loaded with Insulin Using the Polyelectrolyte Complexation Method	Sihui Wu, Yi Tao,Hongliang Zhang,and Zhengquan Su	201	ACM DL	China	Jornal of Nanomater ials	6	10	In vitro	Microparticles	Oral	Association efficiency and loading capacity of insulin- loaded WSC- MPs prepared in 0.01 mol/L HCl of insulin were 48.28 ± 0.90% and 9.52 ± 1.34%.	24h	Polymeric delivery systems based on microparticles have emerged as a promising approach for perOral insulin delivery. The amount of insulin was quantified by the improved Bradford method. It was shown that water-soluble chitosan/insulin/tripol yphosphate (TPP) mass ratio played an important role in microparticles formation. Stable, uniform, and spherical water-soluble chitosan microparticles (WSC- MPs) with high insulin association efficiency were formed at or close to optimized WSC/insulin/TPP mass ratio. WSC-MPs had higher association efficiency in the pH 4.0 and pH 9.7 of TPP solution. The results showed that association efficiency and loading capacity of insulin-loaded WSC- MPs prepared in 0.01 mol/L HCl of insulin-loaded WSC- MPs mass 22 ± 1.34%. The average size of insulin-loaded WSC-MPs was 292 nm. The presented WSC microparticulate system has promising properties towards the development of an Oral delivery system for insulin. In this study, we
30	Properties of Insulin- Chitosan Complexes Obtained by an Alkylation	Robles, Josué Juérez, María. G. Burboa, Luis E. Gutierrez, Pablo Taboada, Victor	201 3	Wiley Online Library	México/Sp ain	Journal of Applied Polymer Science	10	10	Initial	Gels	Not informed	Not informed	not informed	investigated the influence of hydrophobized chitosan on the formation and thermodynamic and

	Reaction on	Mosquera,							surface tension
	<u>Chitosan</u>	Miguel A.							properties of insulin-
		Valdez							chitosan (I–Ch)
									polyelectrolyte
									complexes (PECs). We
									used an alkylation
									procedure to insert 12
									carbon chains along
									the chitosan
									macromolecule with
									final substitution
									degrees of 5, 10, and
									50%. NMR and IR
									spectroscopy were
									used to evaluate the
									success and extent of
									the hydrophobization
									procedure. Isothermal
									titration calorimetry
									(ITC) was used to
									determine the type and extent of the
									existing intermolecular
									interactions between
									the different
									constituting
									components of the
									insulin-hydrophobized
									chitosan PECs.
									Through the surface
									tension and diffusion
									coefficients at the air-
									water interface and
									ITC experiments with
									different I–Ch
									proportions, we
									demonstrated that
									around 34, 24, 25, and
									60–80 insulin
									molecules saturated 0,
									5, 10, and 50%
									hydrophobized
									chitosans, respectively.
									Surface tension
									experiments at the
									air-water interface
									demonstrated that the
									interaction of insulin
									molecules on the
									unmodified chitosan
									increased the
									hydrophobicity; this
									was mainly due to
									electrostatic
									interaction. On the
									contrary, insulin-
									hydrophobized
L			1	t	ı İ				,

														chitosan interaction lowered the PEC hydrophobicity because of insulin alkyl chain interaction, and therefore, the hydrophilic insulin groups at the PEC surface contributed to a higher surface tension.
3	1 Drug Delivery System Using Biodegradable Nanoparticles Carrier	Do Hun Lee, Ik Joong Kang	200 6	J-Stage 20th	Korea	KONA Powder and Particle Journal	7	5	In vivo	Nanoparticles	Transdermal	Not informed	24h	Recently, many biochemists have identified that chitosan is not rejected by the body and that it can improve the effective and safe delivery of drugs and vaccines with its absorptive power. Also, it has been known that chitosan is suitable for controlled drug release thanks to its advantages of biodegradability and bio-compatibility. As the interest into the extension of human life and personal health has been increased, the pharmaceutical and medical worlds have been making efforts to develop more sustained and effective drug release property in a body. This study investigated the individual drug characteristics and drug release behavior by manufacturing the chitosan patch using insulin, a drug used for treating diabetes, at a low temperature, and further tried to find the optimal condition by adding the skin activating agent to the chitosan patch using NOD (Non Obese

							Diabetic) mice.
							According to the
							analysis using the
							chitosan-insulin drug
							and the skin-activating
							agent, a dramatic
							decrease in the blood
							glucose level was
							achieved. An
							experiment was
							performed in vivo by
							utilizing chitosan
							nanoparticles as a
							biopolymer to control
							the drug delivery rate
							at an optimal
							concentration, pH and
							temperature. It was
							also observed that the
							experiment of the drug
							delivery by
							nanoparticles
							containing insulin
							could effectively lower
							the blood glucose of
							the mouse.

	1	1	1	1	1		r	1	r	r			r	I
														In this study, we aimed
														to develop a novel
														protein -
	1													nanoencapsulated
														system for Oral
														administration. For
														this purpose, insulin
														was selected as the
														model drug. Insulin
														loaded chitosan
														nanoparticles (INS-CS-
														NPs) were obtained by
														ionic gelation between
														chitosan (CS) and
														sodium
														tripolyphosphate
														(TPP). Afterwards, as a
														novel strategy the
														nanoparticles were
														loaded into the inner
														phase of prepared
														water in oil
														microemulsion to
	Nanoencapsulat													provide sustained
	ed chitosan													released, increased in
	nanoparticles in	Gülsah Erel,				Journal of								vivo stability and
	emulsion-based	Mustafa				Drug								enhanced drug
	Oral delivery	Kotmakçı,	201			Delivery								absorption in the
32	system: In vitro	Hasan Akbaba,	6	Elsevier	Turkey	Science	6	16	In vivo	Nanoparticles	Oral	Not informed	24h	gastrointestinal tract.
	and in vivo	Sumru Sozer	-			and								By this way, INS-CS-
	evaluation of	Karadaglı, Ayse				Technology								NPs encapsulated in
	insulin loaded	Gülten Kantarcı												microemulsion (INS-
	formulation													CS-NP-ME) was
														formed. The in vitro
														release properties of
														formulations with
														different INS:CS and
	1													CS:TPP ratios were
														investigated. In vitro
	1													release study in pH 2.5
														revealed that insulin
	1													release was
	1													significantly low under
	1													higher CS ratios (p <
														0.05). Circular
	1													dichroism analyses
	1													showed that the
	1													conformational
	1													stability of insulin was
	1													not affected from
	1													preparation process.
	1													Furthermore, in vivo
														experiments in Wistar
														Albino rat model
	1													demonstrate that INS-
														CS-NP-ME effectively
	1													reduced blood glucose
L	1	I	ı	1		1		1	l	L		l	I	. Endeed Steed Bracese

														levels over a period of 8 h after Oral administration. Based on these findings, we propose that the developed INS-CS-NP- ME system can be a promising alternative dosage form for Oral protein delivery
33	Nasal Delivery of Insulin Using Novel Chitosan Based Formulations: A Comparative Study in Two Animal Models between Simple Chitosan Formulations and Chitosan Nanoparticles	A. M. Dyer,M. Hinchcliffe,P. Watts, J. Castile, I. Jabbal-Gill,R. Nankervis,A. Smith, and L. Illum	200 2	Springer	United Kingdom	Pharmaceu tical Research	10	246	In vivo	Nanoparticles	Nasal/Subcutaneo us	Not informed	5h	Purpose. To investigate whether the widely accepted advantages associated with the use of chitosan as a nasal drug delivery system, might be further improved by application of chitosan formulated as nanoparticles. Methods. Insulin- chitosan nanoparticles

l l l l l l l l l l l l l l l l l l l	epared by the pic gelation of n glutamate olyphosphate dium and by complexation n and chitosan. al absorption al absorption n after tration in n nanoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n anoparticle tions produced hacological e in the two
hitosa anisi a anisi anisi anisi ani	n glutamate olyphosphate dium and by complexation n and chitosan. al absorption n after tration in n anoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced hacological
Image: Sector of the sector	olyphosphate dium and by complexation n and chitosan. al absorption n after tration in n anoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced hacological
Image: Second	dium and by complexation n and chitosan. al absorption n after tration in n nanoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
simple of insu- of insu- adminis admin	complexation n and chitosan. al absorption n after tration in n anoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
Image: Second	n and chitosan. al absorption n after tration in n anoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
The nas of insul adminis chitosa powder was eva anaestr and/or chitosa formula chitosa geode anaestr ana/or chitosa formula chitosa anaestr ana/or chitosa formula chitosa anaestr ana/or chitosa formula formula form	al absorption n after tration in n nanoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
Image: Second	n after tration in n nanoparticle tions and in solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
adminis chitosa powder was eva anaesti and/or sheep. chitosa powder was eva anaesti and/or sheep. chitosa powder was eva anaesti and/or sheep. chitosa powder aspirational a pharman a pha	tration in n nanoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
chitosa formula anaest and/or sheep chitosa powder was eva anaest and/or sheep chitosa formula a pharm respons animal althoug the resp of lowe glucose to 52.9 basal le	n nanoparticle tions and in n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
Image: state stat	tions and in a solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
chitosa powder was eva anaesti and/or sheep. chitosa formula a pharn respons animal athoug the resp of lowe glucose (to 52.9 basal le	n solution and formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
powder was eva anaesth and/or sheep. chitosa formula a pharm respons animal althouge the resp of lowe glucose (to 5-9 basal le	formulations luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
was eva anaest and/or sheep. chitosa formula a pharm respons animal althoug the resp of lowe glucose (to 52.9 basal le	luated in etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
anaesth and/or sheep. chitosar formula a pharm respons animal althoug the resp of lowee glucose (to 52.9 basal le	etised rats in conscious Results. Insulin- n nanoparticle tions produced nacological
and/or sheep. Chitosa formula a pharm respons animal althoug the resp of lowe glucose (to 52.9 basal le	in conscious Results. Insulin- n nanoparticle tions produced nacological
Image: Second	Results. Insulin- n nanoparticle tions produced nacological
Image: Second	n nanoparticle tions produced nacological
formula a pharm respons animal althoug the resp of lower glucose glucos glucose glucos glucos glucos glucos glucos glucos gluc	tions produced nacological
a pharm response animal althoug the resp of lower glucose (to 52.9) basal le	nacological
response animal althoug the resp of lowee glucose (to 52.9 basal le	
animal althoug the resp of lowe glucose (to 52.9 basal le	e in the two
althoug the resp of lowe glucose (to 52.9 basal le	e in the two
althoug the resp of lowe glucose (to 52.9 basal le	models,
the response of the response o	h in both cases
glucose (to 52.9 basal le	onse in terms
glucose (to 52.9 basal le	ring the blood
basal le	levels was less
basal le	or 59.7% of
	vel in the rat,
72.6%	n the sheep)
	at of the nasal
insulin d	chitosan
solution	formulation
(40.1%)	in the rat,
	n the sheep).
	ulin-chitosan
	formulation
was fou	nd to be
signific	intly more
effective effect	e than the
comple	
nanopa	
	tions. The
hypogly	
respon	e of the rat to
	ninistration of
	ded insulin-
	n nanoparticles
	ulin-loaded
	n nanoparticles
was cor	nparable. As
	n the sheep
	the most
	e chitosan
	tion for nasal
	absorption was
a chitos	

														delivery system with a bioavailability of 17.0% as compared to 1.3% and 3.6% for the chitosan nanoparticles and chitosan solution formulations, respectively. Conclusion. It was shown conclusively that chitosan nanoparticles did not improve the absorption enhancing effect of chitosan in solution or powder form and that chitosan powder was the most effective formulation for nasal delivery of insulin in the sheep mode.
34	Multifunctional Polyelectrolyte Microparticles for Oral Insulin Delivery	Nadezhda G. Balabushevich, Mikhail A. Pechenkin, Elena D. Shibanova,Dmit ry V. Volodkin, Elena V. Mikhalchik	201 3	Wiley Online Library	Russia/Ger many	Macromole cular Bioscience	9	42	In vivo	Microparticles	Oral	The protein encapsulation efficiency was 62–65% for both insulin and BBI. The microparticles were characterized by a high insulin content (-55%).	8h	Multicomponent insulin-containing microparticles are prepared by layer-by- layer assembly of dextran sulfate and chitosan on the core of protein-polyanion complex with or without protease inhibitors. Oral bioavailability of the encapsulated insulin is improved due to the cumulative effect of each component. A physico-chemical study shows that the particle design allows adjustment of the pH- dependent profile of the insulin release, as well as mucoadhesive properties and Ca2b binding ability of the microparticles. Supplementing the microparticles with 2–3% protease inhibitors fully prevents proteolysis of human insulin. The pharmacological effect of microencapsulated

														insulin in doses 50–100 IU kg1 is demonstrated in chronic experiments after Oral administration to diabetic rats fed ad libitum.
35	<u>Chitosan</u> Nanofibers for <u>Transbuccal</u> Insulin Delivery	Michael G. Lancina, Roopa Kanakatti Shankar, Hu Yang	201 7	wiley Online Library	United States	Journal of Biomedical Materials Research Part A	7	9	In vitro	Nanofibers	Transbuccal	Not informed	24h	n this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre- adipocytes. Insulin permeation across the

		1									1				buscal musesa was
															buccal mucosa was
															measured in an ex-vivo
															porcine transbuccal
															model. Fiber
															morphology,
															mechanical properties,
															and in vitro stability
															were dependent on
															PEO feed ratio. Lower
															PEO content blends
															produced smaller
															diameter fibers with
															significantly faster
															insulin release kinetics.
															Insulin showed no
															reduction in bioactivity
															due to electrospinning.
															Buccal permeation of
															insulin facilitated by
															high chitosan content
															blends was
															significantly higher
															than that of free
															insulin. Taken
															together, the work
															demonstrates that
															chitosan-based
															nanofibers have the
															potential to serve as a
															transbuccal insulin
															delivery vehicle.
-															Systematic
															, experimental work is
															required to improve
															knowledge related to
															the use of oily delivery
	_														systems. This work
	Factor		Assaf, Shereen												aimed to examine the
		ved in	M.; Al-Jbour,												influence of different
		Iulation of	Nawzat D.;												molecular weights
		Delivery	Eftaiha, Ala'a F.;												chitosan on formation
		em tor	Elsayed, Amani			Jordan/Kin	Journal of								and solubilization
		eins Based	M.; Al-Remawi,			gdom of	Dispersion								ability of w/o system
3	6 on PE	<u>-6-8</u>	Mayyas M.;	201	Taylor &	Saudi	Science	12	12	In vivo	Water/Oil	Oral	Not informed	24 hours	of Labrasol, Plurol
	Capry	yiic/Capric	Qinna, Nidal A.;	1	Francis	Arabia/Uni	and				Microemulsion				Oleique, water and
		endes and	Chowdhry,			ted	Technology								oleic acid. Phase
		дусегуі-б	Babur; Leharne,			Kingdom	. comoroby								diagrams were
		<u>ate in a</u>	Stephen;												constructed. Size
		ure of Oleic	Badwan, Adnan												measurements were
	Acid v	with	A.												performed for each
	Chitos	osan	A .												surfactant in oleic acid.
															Interfacial tension of
															chitosan was
															measured between
															oleic acid and water at
1						1								1	OTELL ACIU ATIU WALEF AT
															pH 1.5 and 6.25. Effect

														of chitosan on microemulsion size was studied. When used to deliver rh- insulin to diabetic rats, the mixture showed reduction in blood glucose compared to control.
37	Basic studies on bioadhesive delivery systems for peptide and protein drugs	Andreas Bernkop- Schnürch, Claudia Humenberger, Claudia Valenta	199 8	Elsevier	Austria	Internation al Journal of Pharmaceu tics	9	71	Initial	Tablets	Peroral	Not informed	12h	We have been evaluating the influence of different drying methods and of ionic crosslinkers on adhesive strength, cohesiveness as well as release behaviour of bioadhesive polymers. Chitosan-EDTA and carbomer were ionically crosslinked via 1,8-diaminooctane or L-lysine. The resulting polymers were either lyophilised or precipitated in acetone and air-dried. Tablets made of these pre-treated polymers (66.7%), mannitol (30%), and the model drug insulin (3.3%) were investigated in vitro. Whereas tablets containing the precipitated and air- dried chitosan-EDTA or carbomer exhibited under our experimental conditions an adhesive strength of 93.2915.6

														and 93.1917.3 mN, it was determined to be 57.799.5 and 56.196.7 mN (mean9S.D.; n=5) for tablets of the same but lyophilised polymers, respectively. The use of ionic crosslinkers led also to a significant reduction in the bioadhesiveness of the dosage form. Furthermore, the stability of tablets could be strongly increased by using ionic crosslinkers and:or the precipitated and air-dried form of chitosan-EDTA or carbomer. Due to the use of ionic crosslinkers, the release rate of insulin was strongly reduced. The results represent helpful basic information for the development of peroral (poly)peptide delivery systems based on bioadhesive
38	Polyurethane- incorporated chitosan/alginat e core-shell nano-particles forcontrolled Oral insulin delivery	Bhattacharyya, Aditi; Nasim, Farhat; Mishra, Roshnara; Bharti, Ram P.; Kundu, P.P.	201 8	Wiley Online Library	India	Journal of Applied Polymer Science	16	2	In vivo	Nanoparticles	Oral	The insulin encapsulation efficiencies of CS-ALG, PU- CS/ALG, CS/PU- ALG, and PU- CS/PU-ALG nanoparticles was 58, 79.5, 74.97, and 98.5%, respectively.	about 800 minutes	polymers. Chitosan (CS) and polyurethane-chitosan (PU-CS) nano-particles (NPs) were prepared for the core formation by complex coacervation method whereas alginate (ALG) and PU-ALG were crosslinked by ionic gelation method to form the protective shelllayer over the core. Effects of PU incorporation either within the core or shell or both were investigated by different in vitro and in vivo parameters. Fourier transform infrared (FTIR) spectroscopy of

			1				different compositions
							of nano-particles
							showed distinct
							characteristic peaks for
							CS, PU, and ALG,
							indicating their
							presence in variable
							ratios. Significance of
							polyurethane-
							incorporated systems
							towards insulin
							encapsulation
							efficiency, swelling
							parameters, insulin
							release, and in vivo
							pharmacological effect
							were also studied.
							Particle sizes, zeta
							potential,
							morphological
							analysis,
							mucoadhesion study,
							and in vivo acute
							toxicity studies of
							these core-shell
							nanoparticles were
							also performed.
							Bioavailability of
							insulin ranged from
							9.04 to 11.6% for
							polyurethane-
							incorporated chitosan-
							alginate core–shell
							nano-particle
							formulations which
							was significantly higher
							than the insulin
							bioavailability of basic
							CS/ALG core-shell
							nanoparticle system.

			1	1										This work examined
														the feasibility of
														preparing a pH-
														responsive
														nanoparticle (NP)
														system composed of
														chitosan and
														poly(gamma-glutamic
														acid) conjugated with
														ethylene glycol
														tetraacetic acid
														(gammaPGA-EGTA) for
														Oral insulin delivery in
														diabetic rats during an
														Oral glucose tolerance
														test (OGTT). OGTT has
														been used largely as a
														model to mimic the
														period that comprises
														and follows a meal,
	Noninvesive													which is often
	Noninvasive imaging Oral													associated with postprandial
	absorption of													hyperglycemia. Based
	insulin													on Forster resonance
	delivered by											Their insulin		energy transfer (FRET),
	nanoparticles	Chuang EY ; Lin										loading		this work also
	and its	KJ ; Su FY ; Mi FL				Journal of						efficiency and		demonstrated the
39	stimulated	; Maiti B ; Chen	201	Elsevier	Taiwan	Controlled	10	36	In vivo	Nanoparticles	Oral	content were	10 hours	ability of gammaPGA-
35	glucose	CT ; Wey SP ;	3	LISEVIEI	Taiwaii	Release	10	50		Nanoparticles	Orai	77.4 ± 3.9% and	10110013	EGTA to protect insulin
	utilization in	Yen TC ; Juang				Neleuse						17.8 ± 2.4%,		from an intestinal
	controlling	JH ; Sung HW										respectively.		proteolytic attack in
	postprandial											respectively.		living rats, owing to its
	hyperglycemia													ability to deprive the
	during OGTT in													environmental
	diabetic rats.													calcium. Additionally,
	diddette rats.													EGTA-conjugated NPs
														were effective in
														disrupting the
														epithelial tight
														junctions,
														consequently
														facilitating the
														paracellular
														permeation of insulin
														throughout the entire
														small intestine.
														Moreover, results of
														positron emission
														tomography and
														computer tomography
														demonstrated the
														effective absorption of
														the permeated insulin
														into the systemic
														circulation as well as
1	1													promotion of the

														glucose utilization in the myocardium, and skeletal muscles of the chest wall, forelimbs and hindlimbs, resulting in a significant glucose- lowering effect. Above results indicate that as-prepared EGTA- conjugated NPs are a promising Oral insulin delivery system to control postprandial hyperglycemia and thus may potentially prevent the related diabetic complications.
40	Microcapsules of alginate/chitosa n containing magnetic nanoparticles for controlled release of insulin	Priscilla Vanessa Finotelli; Daniel Da Silva; Mauro Sola-Penna; Alexandre Malta Rossi; Marcos Farina; Leonardo Rodrigues Andrade; Armando Yoshihaki Takeuchi; Maria Helena Rocha- Leão	201 0	Elsevier	Brazil	Colloids and Surfaces B: Biointerfac es	6	114	In vivo	Microcapsules	Subcutaneous	The insulin encapsulation efficiency was 33.3 ± 5.2% and 34.0 ± 5.0% for alginate and alginate/chitosa n beads, for insulin concentration of 10 wt%, respectively.	24 hours	The challenge of this work was to investigate the potential of alginate/chitosan beads containing magnetite nanoparticles as a drug delivery system. The insulin beads were prepared by dripping a solution of sodium alginate containing insulin into a CaCl2 solution. Magnetite nanoparticles of 5nm mean size were synthesized inside the alginate egg-box structure by co- precipitation of Fe(III) and Fe(II) in the presence of NH4OH. Quantitative analysis revealed that insulin encapsulation depends on the initial protein

														content and 35% of insulin was entrapped by alginate beads for a protein concentration of 10wt%. It was verified that approximately 50% of the insulin was released to Milli-Q
														water in 800h release experiments. The application of oscillating magnetic field increased three fold the insulin release. The results suggest that the alginate/chitosan
														system containing magnetite nanoparticles is a promising system for clinical applications of controlled release of insulin in the presence of an oscillating magnetic field in a subcutaneous implant
41	Chitosan- alginate blended nanoparticles as carriers for the transmucosal delivery of macromolecule <u>S</u>	Goycoolea, Francisco M.; Lollo, Giovanna; Remunan- Lopez, Carmen; Quaglia, Fabiana; Alonso, Maria J.	200 9	ACS Publication	Spain/ Mexico/ Italy	Biomacrom olecules	8	176	In vivo	Nanoparticles	Nasal	CS-TPP- ALGnanoparticl es were able to associate insulin with efficiencies of between ~41 to ~52% and load efficiency of ~51 to ~53%.	5 hours	Nanoparticles intended for use in the transmucosal delivery of macromolecules were prepared by the ionic gelation of chitosan (CS) hydrochloride with pentasodium tripolyphosphate (TPP) and concomitant complexation with sodium alginate (ALG). The incorporation of a small proportion of ALG of increasing molecular weight (Mw; from 4 to 74 kDa) into the nanoparticles led to a monotonic increase in colloidal size from ~260 to ~525 nm. This increase in size was regarded as a

														more expanded structures. Insulin, taken as a model peptide, was associated to CS-TPP- ALG nanoparticles with efficiencies in the range of ~41 to ~52%, irrespective of the Mw of the ALG incorporated in the formulation. These CS- TPP-ALG nanoparticles exhibited a capacity to enhance the systemic absorption of insulin after Nasal administration to conscious rabbits. Interestingly, it was observed that the duration of the hypoglycaemic response was affected by the ALG's Mw. Briefly, this work describes a new nanoparticulate composition of potential value for increasing Nasal insulin absorption.
42	Fabrication and characterization of complex nanoparticles based on carboxymethyl short chain amylose and chitosan by ionic gelation	Ji, Na and Hong, Yan and Gu, Zhengbiao and Cheng, Li and Li, Zhaofeng and Li, Caiming	201 8	Royal Society of Chimestry	China	Food & Function	38	2	in vitro	Nanoparticles	Oral	CMSCA/CS NPs show 24 an insulin encapsulation efficiency of 85.2% and loading capacity of 6.55%.	8 hours	We aimed to investigate whether the combination of the modification of short chain amylose (SCA) with chitosan (CS) through the electrostatic interaction could be considered as a candidate for Oral delivery of bioactive ingredients. Carboxymethyl short chain amylose (CMSCA) was synthesized by reacting SCA with monochloroacetic acid. The changes in SCA levels after the reaction were investigated by zeta- potential

		1								determinentien. Dermien
										determination, Fourier
										transform infrared
										(FTIR) spectroscopy,
										differential scanning
										calorimetry,
										thermogravimetry and
										derivative
										thermogravimetry.
										Complex nanoparticles
										(NPs) were then
										synthesized using
										CMSCA and CS by ionic
										gelation. FTIR spectral
										analysis revealed that
										the complex NPs were
										synthesized by
										hydrogen bonding and
										electrostatic
										interactions between
										CMSCA and CS.
										CMSCA/CS NPs show
										an insulin
										encapsulation
										efficiency of 85.2% and
										exhibit sustained
										release of insulin in
										vitro. CMSCA/CS NPs
										were observed to
										show excellent
										cytocompatibility by
										cell culture. These
										findings demonstrated
										that CMSCA/CS NPs
										constructed by the
										ionic gelation method
										could be further
										exploited as a
										potential Oral delivery
										system for peptide
										drugs. kcopy;
										2018 The Royal Society
										of Chemistry.
L		1	I	I	I	1	1			or enemistry.

-		1	r			1								
														Chitosan, an amino-
														polysaccharide, has
														been proposed as a
														promising biopolymer
														for tissue repair and drug delivery. Chitosan
														solutions containing
														glycerol-2-phosphate
														(b-GP) have been
														described as injectable
														in situ gelling
														thermosensitive
														formulations, which
														undergo sol-gel
														transition at
														physiological pH and
														temperatures. This
														feature makes them
														suitable for the
														parenteral
														administration of
														drugs, especially for
														peptides and proteins. The aim of the present
	Characterizatio													study was to get a
	<u>n of</u>	Sabine Kempe,												deeper insight into the
	thermosensitive	Hendrik Metz,				European								macro- and
	chitosan-based	Martin Bastrop,				Journal of								microstructure of
43	hydrogels by	Annette	200	Elsevier	Germany	Pharmaceu	8	77	In vitro	Hydrogels	Not informed	Not informed	48 hours	chitosan/b-GP
	rheology and	Hvilsom, Renata	8		,	tics and	-			,				systems. In addition to
	electron	Vidor Contri,				Biopharma								, oscillating rheology,
	paramagnetic	Karsten Mäder				ceutics								electron paramagnetic
	resonance spectroscopy													resonance (EPR)
	<u>spectroscopy</u>													spectroscopy was
														applied to examine the
														microviscosity and pH
														inside the gels
														depending on the b-GP
														concentration and to
														follow the loading and release of spin-labelled
														Insulin. All chitosan/b-
														GP solutions showed a
														physiological pH
														ranging from 6.6 to 6.8
														that did not change
														during gelation,
														irrespective of the
														proportion of b-GP.
														The dynamics of the
														spin-labelled Insulin
														and its microviscosity
														inside the gels and
														during release were
														monitored by EPR
														spectroscopy. The
			<u> </u>							l	l			results indicate that

														incorporated into the aqueous environment of the gel and was released in its native form. The in vitro drug release from the gels was governed by diffusion of drug from the gel matrix. A sustained release of Insulin was observed over a period of 2 weeks. Increasing the proportion of b-GP increased the amount of released Insulin and the velocity thereof
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

						1								As most of
														As most of polypeptides are
														marginally stable, a
														mild formulation
														procedure would be
														beneficial for the
														activities of these
														drugs. The objective of
														the present study was
														to develop a novel pH-
														sensitive nanoparticle
														system that was
														suitable for
														entrapment of
														hydrophilic insulin but
														without affecting its
														conformation.
														Chitosan was
														incorporated as a
														positively charged
														material, and one of
														the three
												Both insulin		poly(methylmethacryla
	Preparation and	Li, Ming-Guang										entrapment		te/methylmethacrylic
	characterization	and Lu, Wan-										efficiency		acid) copolymers,
	of insulin	Liang and										(62,04 to		consisting of Eudragit
	nanoparticles	Wang, Jian-				Journal of						72,57%) and		L100-55, L100, and
	employing	Cheng and	200	Ingenta		Nanoscienc						loading		S100, was used as a
44	Chitosan and	Zhang, Xuan	6	Connect	China	e and	13	34	in vitro	Nanoparticles	Oral	percentage	8 hours	negatively charged
	poly(methylmet					Nanotechn						(0,87 to 3,10%)		polymer for
	hacrylate/meth	and Wang, Xue-				ology						using chitosan-		preparation of three
	ylmethacrylic	Qing and Wu,										Eudragit L100- 55 as matrix		insulin nanoparticles,
	acid) copolymer	Cui-Shuan and										materials were		respectively. Three nanoparticles obtained
												the highest.		were spherical. The
												the highest.		mean diameters were
														in the range from 200
														nm to 250 nm, and the
														entrapment
														efficiencies, from 50%
														to 70%. The surface
														analysis indicated that
														insulin was evenly
														distributed in the
														nanoparticles. Polymer
														ratio of chitosan to
														Eudragit was the factor
														which influenced the
														nanoparticles
														significantly.
														Characterization
														results showed that
														the electrostatic
														interactions existed,
1														thus providing a mild
1														formulation procedure
														which did not affect

							the chemical integrity
							and the conformation
							of insulin. In vitro
							release studies
							revealed that all three
							types of the
							nanoparticles
							exhibited a pH-
							dependant
							characteristic. The
							modeling data
							indicated that the
							release kinetics of
							insulin was nonlinear,
							and during the release
							process, the
							nanoparticles showed
							a polynomial swelling.
							On overall estimation,
							the insulin chitosan-
							Eudragit L100-55
							nanoparticles may be
							better for the Oral
							delivery. This new pH-
							sensitive nanoparticle
							formulation using
							chitosan and Eudragit
							L100-55 polymer may
							provide a useful
							approach for
							entrapment of
							hydrophilic
							polypeptides without
							affecting their
							conformation.
							Copyright © 2006
							American Scientific
							Publishers. All rights
							reserved.

	1		r –											Chitosan and its
														derivatives are widely
														used in drug delivery
														systems due to their
														bio-degradebility, bio-
														compatibility and
														absorption enhancing
														properties. Many
														peptide and protein
														derived therapeutics
														cannot be
														administered through
														Oral rout because of
														the proteolytic
														condition of gastro-
														intestinal tract and
														their low bio-
														availability. Insulin is a
														peptide drug which is
														widely used in
														diabetics as repeated
														daily injection. Due to
	Preparation and													the fact that there are
	characterization													receptors for
	<u>of novel</u>	Omid, Nersi												didpeptides and
	derivatives of	Jafary;										The loading		vitamine B12 in small
	chitosan and	Babanejad,										efficacy of the		intestine, in this
	trimethyl	Niloofar; Amini,	201			Journal of						particles is low		research work novel
45	<u>chitosan</u>	Hossein; Amini,	4	Springer	Iran	Polymer	16	11	in vitro	Nanoparticles	Oral	which may	6 hours	derivatives of chitosan
	conjugated with	Mohsen; Rafiee	-			Research						again be due to		and trimethyl chitosan
	dipeptides and	Tehrani,										low solubility of		conjugated with glycyl-
	vitamin B12 as	Morteza;										the polymer.		glycine, alanyl-alaninie
	candidates for	Dorkoosh, Farid												and vitamine B12 were
	Oral delivery of													synthesized and
	insulin													characterized. The
														structure of conjugates
1														as well as substitution
1														of different functional
														groups was confirmed
														by different
														instrumental analytical
														methods such as Fourier transform
														infrared, magnetic resonance, and X-ray
														diffraction
														spectroscopy. Nano- particles of
														aforementioned loaded with insulin
														were prepared and
														their size, surface
														electrical charge and
														morphology
														characterized and their
														release profile were
														studied. The results
L	1	1	1	1		l		l		L	1			studied. The results

							are promising and reveal that these new chitosan and trimethyl chitosan derivatives are potential vehicles for protein and peptide drug molecules.

46 A Lange			1												
46 Indicational and series of the series of															In this study, we investigated the
A Magana A A A A A A A A A A A A A A A A A A															
46 International transient of t															
46 United to the state of the s															
46															
 A Parket and A Parket and A Parket and A Parket A Par															
46 $\frac{1}{42}$ $\frac{1}{42$															
 Activity of the state of the st															surface tension
 Activity of the state of the st															properties of insulin-
48 Particulation of province in an experimental province in an experimental province in the pr															
46 b b c b c b c b c b c b c b c b c b c b															
46 A A A A A A A A A A A A A A A A A A A															
46 Unit of the output of the sector of the s															
46 Optimization of explosion of explo															
46 Optimization of interactions by exchooring (shait suffices arethoology) Praysia Sahoo, tok Hoong suffices arethoology) Praysia Sahoo, tok Hoong suffices Praysia Sahoo, tok Hoong suffices Praysia Sahoo, tok Hoong to apality (ICC) are are are are are are are are are are arethoology) Praysia Sahoo, tok Hoong to apality (ICC) are are are are are are are are are are															
46 Optimization of phr-scoolew scatosymetry, is dicker scatosymetry, is dicker scatosymetry, is dicker respectively. Party is a shoo, is dicker scatosymetry, is dicker scatosymetry, is dicker scatosymetry, is dicker respectively. Party is a shoo, is dicker scatosymetry, is dicker scatosymetry, is dicker scatosymetry, is dicker respectively. Party is a shoo, is dicker scatosymetry, is dicker scatosymetry, is dicker scatosymetry, is dicker scatosymetry, is dicker respectively. Party is a shoo, is dicker scatosymetry, is dis dis dicker scatosymetry, is dicker scatosyme															-
 46 47 46 47 47 47 48 44 49 4															
 46 Outmation of the social constraints of the social cons															
46 Outmination of autoscience radioscience autoscience autoscience radiosci radiosci radiosci radioscience radiosci radioscience radioscience															
46Continization of carboomethy encremental Encremental <br< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></br<>															
46 A A A A A A A A A A A A A A A A A A A															
46Optimization of ultrespondive ted ford: manoparticlesPartyusa Sahoo; tok Hoong de regressional be used; optimized hoong by shak hysomathula; onad; Kozo deleversional de long; Shak hysomathula; vong Chung201 7FisevierMalayala apaReactive and and polymers113in vitroNanoparticlesOralFine resulting optimized napacity and entraperticles. had loading optimized intermolecular intermol															
46 distance of the subscription of the subs															
46 at a bit responsibility of the summer the performance of the per		Ontimization of													
46 introduction carboxymethysis Partyusa sharos processes process															
46 icit carageenan/Line Kok Hoong Kok Hoong Factor <			Pratvusa Sahoo:												
45 HAVE A															
46 itosan nanosattides for Oral insulin response wrface Noranthulis; itor Oral insulin deliver user wrface 201 voisihori of Asyam; tip 202 voisihori of Asyam; tip 203 voisihori of Asyam; tip Pisevier Malaysia/ apan and Polymers 11 3 in vitro Nanoparticles in vitro Oral Capacity and efficiency of 10,7 ± 0.6%, and 86.9 ± 2.6%, respectively. 12 hours of the existing interantice constructing components of the constructing components of the constructing comp							Reactive						had loading		
46 nanoparticles Yoshinoi 7 Esevier Japan Functional 11 3 in vitro Nanoparticles Oral entrapment 11 outrs and extaiting 10 Group and the exting Takayama; Lip Yong Chung Yong Chu				201		Malaysia/							capacity and		
for Oralinstillin Onuki; Kozo O'nuki; Kozo O'nuki; Kozo O'nuki; Kozo Inter existing response Takayama; Lip Yong Chung Yong Chung Yong Chung Inter existing wethodology Yong Chung Yong Chung Yong Chung Sinface Inter existing methodology Yong Chung Yong Chung Yong Chung Yong Chung Sinface methodology Yong Chung Yong Chung Yong Chung Yong Chung Yong Chung Constituting Components Takayama; Lip Yong Chung Yong Chung Yong Chung Yong Chung Yong Chung Yong Chung Yong Chung	46				Elsevier	-		11	3	in vitro	Nanoparticles	Oral	entrapment	12 hours	and extent
deliver using response surface methodology Takayama; Lip Yong Chung Takayama; Lip Yong Chung Takayama; Lip Yong Chung Interaction between interactions between 2.6%, the different components of the instructions between respectively. understand 2.6%, the different components of the instructions between the different components of the instructions between interactions br>interactions between interactions interaction interaction interactions interactions interactions i						Japan							efficiency of		of the existing
response surface methodology Yong Chung Yong Chung Interfactions between the respectively. Interfactions between constituting constitut							Polymers						10.7 ± 0.6%,		intermolecular
Image: Surface methodology 2.6%, respectively. the different components of the insulin-hydrophobized chitosan PECs. Through the surface tension ad diffusion coefficients at the air-water interface and around 34, 24, 25, and 50% hydrophobized thitosans, respectively. Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image: Surface methodology Image													and 86.9 ±		interactions between
Sundee methodology respectively. constituting constructing cons constructi			Yong Chung												the different
Internototototototototototototototototototot															
In the second se		methodology													
chitosan PECs. Through the surface tension and diffusion coefficients at the air- water interface and ITC experiments with different I-Ch proportions, we demonstrated that around 34, 24, 25, and 60–80 insulin molecules saturated 0, 5, 10, and 50% hydrophobized chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
Through the surface tension and diffusion coefficients at the air- water interface and ITC experiments with different I-Ch proportions, we demonstrated that around 34, 24, 25, and 60–80 insulin molecules saturated 0, 5, 100% hydrophobized chitosans, respectively. Surface demonstrate that air-water interface demonstrate that air-water interface demonstrate that the interaction of insulin															
tension and diffusion coefficients at the air- water interface demonstrated that the interaction of insulin															
Coefficients at the air- water interface demonstrated that the air-water															
water interface and ITC experiments with different I-Ch proportions, we demonstrated that around 34, 24, 25, and 600-80 isularited 0, 5, 10, and 50% hydrophobized chitossion experiments at the air-water interface demonstrated that the interaction of insulin															
In the second se															
different I-Ch proportions, we demonstrated that around 34, 24, 25, and 60–80 insulin molecules saturated 0, 5, 10, and 50% hydrophobized chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
proportions, we demonstrated that around 34, 24, 25, and 60–80 insultion 60–80															
we demonstrated that around 34, 24, 25, and 60–80 insulin molecules saturated 0, 5, 10, and 50% hydrophobized chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
around 34, 24, 25, and 60–80 insulin molecules saturated 0, 5, 10, and 50% hydrophobized chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
60-80 insulin molecules saturated 0, 5, 10, and 50% hydrophobized chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
herein a been and a be															
5, 10, and 50% hydrophobized chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
hydrophobized chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
chitosans, respectively. Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
Surface tension experiments at the air-water interface demonstrated that the interaction of insulin															
experiments at the air-water interface demonstrated that the interaction of insulin															
air-water interface demonstrated that the interaction of insulin															
demonstrated that the interaction of insulin															
interaction of insulin															
molecules on the															
															molecules on the

														unmodified chitosan increased the hydrophobicity; this was mainly due to electrostatic interaction. On the contrary, insulin– hydrophobized chitosan interaction lowered the PEC hydrophobicity because of insulin alkyl chain interaction, and therefore, the hydrophilic insulin groups at the PEC surface contributed to a higher surface tension.
47	Probing insulin's secondary structure after entrapment into alginate/chitosa n nanoparticles	B. Sarmento; D.C. Ferreira; L. Jorgensen; M. van de Weert	200 7	Elsevier	Potugal/ Denmark	European Journal of Pharmaceu tics and Biopharma ceutics	8	184	in vitro	Nanoparticles	Oral	Decreasing the alginate:chitosa n mass ratio from 6:1 to 3.3:1 led to an increase in AE to 91% and a decrease of the LC to 6,5%.	2 hours	The aim of the present study was to probe the structural integrity of insulin after being entrapped into chitosan/alginate nanoparticles produced by ionotropic polyelectrolyte pre- gelation. By manipulating the alginate:chitosan mass ratio and the pH during nanoparticle production, desired nanoparticles with a mean size of 850 (±88) nm and insulin association efficiency of 81 (±2)% were obtained. Insulin secondary structure was assessed by Fourier transform

							Li I	nfrared (FTIR) and
								circular dichroism (CD)
								after entrapment into
								nanoparticles and
								after release from the
								particles under
								gastrointestinal
								simulated conditions.
								TIR second-derivative
								pectra and area-
								overlap compared to
								an insulin standard
								confirmed that no
							s	significant
								conformational
							c	changes of insulin
								occurred in terms of a-
							h	nelix and b-sheet
							c	content. Far-UV-CD
								pectra corroborated
								he preservation of
								nsulin structure
								during the
							ľ	nanoparticle
								production procedure.
							T	The presented
								nanoparticulate
								system is a promising
								carrier for insulin Oral
								delivery since it
								preserves insulin
								structure and
								herefore also,
								potentially, its
L		I					b	bioactivity.

			1	-										Insulin is mainly
														administered via
														subcutaneous route by
														injection which is the
														cause of painful and
														possible infections.
														Oral insulin
														administration would
														present a more
														convenient form of
														application because it
														is less invasive. Oral
														delivery of insulin to
														the gastrointestinal
														tract is one of the
														most challenging
														issues, because it
														numerous barriers to
														overcome in order to
														create an effective
														system for insulin
														delivery. In the present
												The entrapment		study, insulin-loaded
		Djamel Tahtat;										of insulin		alginate/chitosan
		Mohamed										increased with		blend gel beads were
		Mahlous;				Internation						the increase of		prepared with
	Oral delivery of	Samah				al Journal						chitosan		different mass ratios.
	insulin from	Benamer; Assia	201			of						content in the		Chitosan was
48	alginate/chitosa	Nacer Khodja;	3	Elsevier	Algeria	Biological	9	65	in vitro	Beads	Oral	beads. The	6 hours	depolymerized by
	n crosslinked by glutaraldehyde	Habiba Oussedik-				Macromole						loading		gamma irradiation at a dose of 80 kGy
	glutaraldenyde	Ousseuk- Oumehdi;				cules						efficiency were 1.86% for 8:2,		reducing its molecular
		Fatima Laraba-										2,12% for 7:3		weight for ideal blend
		Djebari										and 2,16% for		with sodium alginate.
		Djebuli										6:4.		The homogeneous
												0.4.		solution of alginate
														and chitosan was
														dripped into CaCl2
														solution (2%), the
														resultant calcium
														crosslinked beads
														were dipped in
														glutaraldehyde (2%)
														solution sequentially
														to prepare dual
														crosslinked beads with
														improved mechanical
														properties so as to
														withstand the
														simulated gastric fluid
														(SGF) and simulated
														intestinal fluid (SIF).
														Morphological
														structure, FTIR analysis,
														thermogravimetry
1														analysis, specific
L	1	1	I	I		I	I							analysis, specific

			1				auntana anagi gal
							surface area, gel
							fraction, swelling
							kinetics in SGF and SIF,
							loading efficiency,
							insulin release
							behavior,
							mucoadhesivity of the
							alginate/chitosan
							beads were
							investigated. The
							cumulative insulin
							release of pure
							alginate beads (10:0)
1							reached as maximum
							level 100% in 3 h after
							they were dipped in
1							SIF. Concerning the
1							beads Alg/Chi (8:2),
							Alg/Chi (7:3) and
							Alg/Chi (6:4) the
							cumulative release of
							insulin reached 90.5%,
							89.2% and 70.2%,
							respectively in 6 h. The
							rate of 100% was
							reached after 24 h for
							Alg/Chi (8:2), Alg/Chi
							(7:3) and after 73 h for
							Alg/Chi (6:4). The
							presence of chitosan in
							the blend beads
							decreased the
							cumulative insulin
							release in gastric
							media and enhanced
							behavior of
							alginate/chitosan
1							beads in intestinal
1							medium due to the
1							crosslinking. The
1							alginate/chitosan
							beads crosslinked by
							glutaraldehyde may be
							considered as
							potential insulin
							carriers for Oral drug
							delivery system.

	1	1	r	1	1	1							1	
														Intestinal epithelium is
														a major barrier limiting
														the absorption of Oral
														insulin owing to the
														presence of
														intercellular tight
														junctions (TJs).
														Previous studies
														proved that
														carboxymethyl
														chitosan/chitosannano
														particles (CMCS/CS-
														NPs) exhibited surface
														charge depending
														promotion of intestinal
														absorption. This study
														further confirmed the
														better performances
														of insulin:CMCS/CS-
														NPs(-) in enhancing
														epithelial permeation,
														increasing
														bioavailability and
	Mechanism of	Wang, Juan and												extending blood
	surface charge	Kong, Ming and												duration of insulin
	triggered	Zhou, Zhenjin												than
	intestinal	and Yan, Dong												insulin:CMCS/CSNPs(+)
	epithelial tight	and Yu,	201			Carbohydr								
49	junction	Xiaoping and	7	Elsevier	China	ate	7	19	In vivo	Nanoparticles	Oral	Not informed	13 hours	Immunohistochemistry
	opening upon	Cheng, Xiaojie	,			Polymers								sections found that TJs
	<u>chitosan</u>	and Feng, Chao												on jejunum epithelium
	nanoparticles	and Liu, Ya and												completely
	for insulin Oral	Chen, Xiguang												disappeared in
	<u>delivery</u>	enen, Aiguang												insulin:CMCS/CS-
														NPs(-) group, partially
														existed in
														insulin:CMCS/CS-
														NPs(+) group and
														appeared no change in
														control. Surface
														charges of CMCS/CS-
														NPs triggered
														intestinal epithelial TJs
														opening through
														different mechanisms.
														Although a down-
														regulation of TJs
														protein claudin-4 was
														detected in both
														nanoparticles groups,
														for phosphorylated
														claudin-4, the
														activating form, whose
														down-regulation
														occurred only in
														insulin:CMCS/CS-
														NPs(-) group. Counting
								•		•				

														upon synergetic effects of Ca2+ deprivation from adherens junctions and claudin-4 dephosphorylation and degradation, CMCS/CS-NPs(-) triggered more extensive disintegration of TJs and stronger paracellular permeability than the positive
50	Effective protection and controlled release of insulin by cationic - cyclodextrin polymers from alginate/chitosa n nanoparticles	Nan Zhang; Jiahui Li; Wenfeng Jiang; Chunhong Ren; Jianshu Li; Jianyu Xin; Ke Li	201 0	Elsevier	China	Internation al Journal of Pharmaceu tics	7	151	in vitro	Nanoparticles	Oral	The nanoparticles can load insulin with the association efficiency (AE) up to 87%.	6 hours	In an alginate/chitosan nanoparticle system, insulin was protected by forming complexes with cationic - cyclodextrin polymers (CPCDs), which were synthesized from - cyclodextrin (-CD), epichlorohydrin (EP) and choline chloride (CC) through a one- step polycondensation. Due to the electrostatic attraction between insulin and CPCDs, as well as the assistance of its polymeric chains, CPCDs could effectively protect insulin under simulated gastrointestinal conditions. The nanoparticles have their mean size lower than 350 nm and can load insulin with the association efficiency

														(AE) up to 87%. It is notable that the cumulative insulin release in simulated intestinal fluid was significantly higher (40%) than that without CPCDs (18%) because insulin was mainly retained in the core of the nanoparticles and well protected against degradation in simulated gastric fluid. Far-UV circular dichroism analysis also corroborated the preservation of insulin
51	Preparation and evaluation of chitosan- ethylenediamin etetra acetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin	Fuying Cui,Chunbai He, Miao He,Cui Tang, Lichen Yin,Feng Qian,Chunhua Yin.	200 8	Wiley Online Library	China	Journal of Biomedical Materials Research Part A	8	46	In vivo	Films	Transbuccal	Insulin loaded films with the dose of 5,14 and 83 IU/Kg	5 hours	structure during the nanoparticle preparation and release process. This manuscript describes the development of a new porous, flexible bilaminated film for buccal protein administration by a simple and mild casting procedure. It consists of a mucoadhesive layer (chitosan- ethylenediaminetetraa cetic acid hydrogel film) containing protein drugs and an impermeable protective layer made of ethylcellose. The obtained mucoadhesive layer was characterized in terms of Fourier transform infrared spectroscopy, rheology, swelling, and mucoadhesion. Rheology results showed that chitosan- ethylenediaminetetraa cetic acid hydrogel (10:2) possessed the greatest degree of

							viscoelasticity and was
							well-structured
							compared with other
							hydrogels. The in vitro
							mucoadhesion studies
							also showed that the
							mucoadhesive force of
							the hydrogel remained
							over 17,000 N/m2
							during 4 h in the
							simulated oral cavity.
							The insulin loaded
							bilaminated film
							showed a pronounced
							hypoglycemic effect
							following buccal
							administration to
							healthy rats, achieving
							a 17% pharmacological
							availability compared
							with subcutaneous
							insulin injection.
							According to these
							results, the
							bilaminated film would
							be a promising delivery
							carrier for protein
							drugs via the buccal
							route

			r	1		r			[1				
														For enhanced Oral
														insulin delivery, a
														strategy of acid-
														resistant and enteric hydrogels
														encapsulating insulin-
														loaded nanoparticles
														was developed. The
														nanoparticles were
														prepared by the
														formation of an
														anionic insulin/heparin
														sodium (Ins/HS)
														aggregate, followed by
														coating of chitosan
														(CS) on the surface.
														The nanoparticles,
														tagged as CS/Ins/HS
														NPs, exhibited
														excellent mucosa
														affinity, effective
														protease inhibition and marked
	Dual Stimuli-													and marked paracellular
	Responsive													permeation
	Nanoparticle-													enhancement.
	Incorporated	Liang Liu, Ying				ACS						Encapsulating		Moreover, to improve
	Hydrogels as an	Zhang,				Biomaterial						insulin into	12 hours	the acid-stability of
52	Oral Insulin	Shuangjiang Yu,	201	ACS	China	s Science &	44	0	In vivo	Nanoparticle	Oral	chitosan/insulin	and 21	CS/Ins/HS NPs and
	Carrier for	Zhiming Yang,	8	Publication		Engineerin		-				/heparin	days	impart the capacity of
	IntestineTarget	Chaoliang He,				g						nanoparticles		intestine-targeted
	ed Delivery and	and Xuesi Chen				_						30 UI/Kg		delivery, a pH- and
	<u>Enhanced</u> Paracellular													amylase-responsive
	Permeation													hydrogel was
	renneation													synthesized via free
														radical
														copolymerization,
														using methacrylic acid
														as the monomer and
														acrylate-grafted-
														carboxymethyl starch
														as the crosslinker. The
														resulting hydrogel exhibited sharp pH-
														sensitivity in
														gastrointestinal tract
														and rapid enteric
														behavior under
														intestinal amylase. The
														additional protection
														for insulin in artificial
														gastric fluid was
														confirmed by
														packaging CS/Ins/HS
														NPs into the hydrogel.
														The obtained
														nanoparticle-

		r		1	r		
							incorporated hydrogel
							was named as
							NPs@Gel-2. The
							release of insulin from
							NPs@Gel-2 was
							evidently accelerated
							in artificial intestinal
							fluid containing α-
							amylase. Furthermore,
							the hypoglycemic
							effects were evaluated
							with type-1 diabetic
							rats. Compared to
							subcutaneous injection
							of insulin solution, the
							relative
							pharmacological
							availability (rPA) for
							Oral intake of
							NPs@Gel-2 (30 IU/kg)
							was determined to be
							8.6%, along with rPA of
							4.6% for Oral
							administration of
							unpackaged CS/Ins/HS
							NPs (30 IU/kg). Finally,
							the two-week
							therapeutic outcomes
							in diabetic rats were
							displayed after twice-
							daily treatments by
							Oral intake of
							NPs@Gel-2, showing
							the relief of diabetic
							symptoms and
							suppression of weight
							loss in the rats.
							Therefore, this dual
							stimuli-responsive
							nanoparticle-
							incorporated hydrogel
							system could be a
							promising platform for
							Oral insulin delivery.

	1													Oral inculin delivery
														Oral insulin delivery that better mimics
														physiological pathways
														is a necessity as it
														ensures patient
														comfort and
														compliance. A system
														which is based on a
														vehicle of nano order
														where positively
														charged chitosan
														interacts with
														negatively charged
														insulin and forms a
														polyelectrolyte
														complex (PEC)
														solubilizate, which is
														then solubilized into
														an oily phase of oleic
														acid, labrasol, and plurol oleaque-
														protects insulin against
	Low Molecular													enzymatic
	<u>Weight</u>	Amani M.												gastrointestinal
	Chitosan-Insulin	Elsayed, Aseel												reduction. The use of
	<u>Complexes</u>	H. Khaled,												an anionic fatty acid in
	Solubilized in a	Mayyas M. Al												the oily phase, such as
	Mixture of Self-	Remawi, Nidal	201		Saudi	Marine								oleic acid, is thought to
53	Assembled	A. Qinna,	8	MDPI	Arabia/Jor	Drug	15	2	In vivo	Nanoparticles	Oral	Not informed	12 hours	allow an interaction
	Labrosol and	Hussam Abu	-		dan	8								with cationic chitosan,
	Plurol Oleaque	Farsakh and												hence reducing
	and Their	Adnan A.												particle size.
	Glucose	Badwan,												Formulations were
	Reduction	,												assessed based on
	Activity in Rats													their hypoglycaemic
														capacities in diabetic
														rats as compared to
														conventional
														subcutaneous dosage
														forms. 50 IU/kg Oral
														insulin strength could
														only induce blood
														glucose reduction
														equivalent to that of 5
														IU/kg (1 International
														unit = 0.0347 mg of
														human insulin).
														Parameters that
														influence the
														pharmacological
														availability were
1														evaluated. A
														preliminary
1														investigation of the
														mechanism of
1														absorption suggests

														the involvement of the lymphatic route.
54	Biodistribution, pharmacodyna mics and pharmacokinetii cs of insulin analogues in a rat model: Oral delivery using pH-Responsive nanoparticles <u>VS.</u> subcutaneous injection	Kiran Sonaje, Kun-Ju Lin, Shiaw-Pyng Wey, Che-Kuan Lin, Tzyy-Harn Yeh, Ho-Ngoc Nguyen, Chia- Wei Hsu, Tzu- Chen Yen, Jyuhn-Huarng Juang, Hsing- Wen Sung,	201 0	Elsevier	Taiwan	Biomaterial s	9	158	In vivo	Nanoparticles	Oral	The formulations were released at pH 2.5, the cumulative amount of aspart-insulin released from test NPs was about 20%, while it was approximately 35% at pH 6.6.	24 hours	In this study, we report the biodistribution of aspart-insulin, a rapid- acting insulin analogue, following Oral or subcutaneous (SC) administration to rats using the single- photon emission computed tomography (SPECT)/computed tomography (CT). Oral delivery of aspart- insulin was achieved using a pH-responsive nanoparticle (NP) system composed of chitosan (CS) and poly(g-glutamic acid). The results obtained in the SPECT/CT study indicate that the Orally administered aspart- insulin was absorbed into the systemic circulation, while the drug carrier (CS) was mainly retained in the gastrointestinal tract. Via the SC route, the peak aspart-insulin concentration in the peripheral tissue/plasma was observed at 20 min

-		1	1		1	1			6
									after injection. Within
									3 h, half of the initial
									dose (ID) of aspart-
									insulin was degraded
									and excreted into the
									urinary bladder. In
									contrast, via Oral
									delivery, there was
									constantly circulating
									aspart-insulin in the
									peripheral
									tissue/plasma during
									the course of the
									study, while 20% of
									the ID of aspart-insulin
									was metabolized and
									excreted into the
									urinary bladder. In the
									pharmacodynamic
									(PD) and
									pharmacokinetic (PK)
									evaluation in a diabetic
									rat model, the Orally
									administered aspart-
									insulin loaded NPs
									produced a slower
									hypoglycemic
									response for a
									prolonged period of
									time, whereas the SC
									injection of
									aspartinsulin produced
									a more pronounced
									hypoglycemic effect
									for a relatively shorter
	1								duration. Finally,
	1								comparison of the
	1								
	1								PD/PK profiles of the
	1								Orally administered
	1								aspart-insulin with
	1								those of the SC
	1								injection of NPH-
	1								insulin, an
	1								intermediate-acting
	1								insulin preparation,
	1								suggests the suitability
	1								of our NP system to be
	1								used as a non-invasive
	1								alternative for the
	1								basal insulin therapy.

55	Encapsulation of insulin in chitosan-coated alginate beads: Oral therapeutic peptide delivery	Seçil Önal; Figen Zihnioglu	Taylor & Francis	Turkey	Journal Artificial Cells, Blood Substitutes , and Biotechnol ogy	9	50	in vitro	Beads	Oral	not informed	6 hours	Insulin was encapsulated in calcium alginate beads coated with chitosan. Its release from alginate-chitosan and alginate- chitosanglutaraldehyd e beads was studied in artificial gastric (pH 1.2) and intestinal (pH 7.5) fluids. By comparing the release amounts, the ionic interaction between alginate-chitosan matrix with the medium pH's, intestinal fluid was found to be the better. The degradation of released insulin was also searched, even after 6 h incubation, the beads remained stable and the undegraded insulin seemed to be
	peptide delivery				ogy								also searched, even after 6 h incubation, the beads remained stable and the undegraded insulin

Strings of search*:

PubMed: ((((chitosan) AND insulin) AND ((delivery system) OR controlled delivery system))

Science Direct: ((((chitosan) AND insulin) AND ((delivery system) OR controlled delivery system))

Engineering Village: (1) chitosan and insulin and controlled delivery system

(2) (chitosan and insulin and delivery system)

HubMed: ((((chitosan) AND insulin) AND ((delivery system) OR controlled delivery system))

 $\ensuremath{^*}\xspace$ All the searches were performed in the search advanced model of the websites.

Start tool:

Start tool (StArt 2.3,4.2) is available to download in http://lapes.dc.ufscar.br/tools/start_tool .