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Abstract: This review aims to provide an overview of polymers comprising cholesterol moiety/ies
designed to be used in drug delivery. Over the last two decades, there have been many papers
published in this field, which are summarized in this review. The primary focus of this article is
on the methods of synthesis of polymers bearing cholesterol in the main chain or as side chains.
The data related to the composition, molecular weight, and molecular weight distribution of polymers
are presented. Moreover, other aspects, such as forms of carriers, types of encapsulated drugs,
encapsulation efficiency and capacity, are also included.
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1. Introduction

The inability to use the potential of available bioactive substances is an important issue of modern
medicine. Many of the known drug molecules are successful when colliding with cells of bacteria,
fungi, and tumors. However, their application in a conventional form is characterized by limited
effectiveness due to low solubility, poor biodistribution, poor stability and rapid clearance from the
body [1,2]. Therefore, smart drug delivery systems (DDS) are widely investigated and developed to
improve the effectiveness of therapy by optimizing the dose and duration of drug action directly in the
target site [1,3–5].

A variety of DDS, such as stimuli-responsive polymeric nanoparticles, liposomes, organic-inorganic
hybrids, and exosomes, has been reported in scientific journals [6–10]. Among them, polymers
are promising drug carriers because of the flexibility in the control of chemical compositions and
functions of macromolecules (drug conjugation, stimulus sensitivity, stealth properties, specific
targeting, etc.). A plethora of polymers has been used to obtain carriers with an innumerable variety
of physicochemical and biological properties. The most frequently used are biocompatible and
biodegradable polymers of natural or synthetic origin such as chitosan (CS) [11–13] hyaluronic acid
(HA) [13–17], peptides [18], N-(2-hydroxypropyl)methacrylamide (HPMA) [19–27], poly(ethylene
glycol) (PEG) [25,26,28–75], poly(glutamic acid) (PGA) [53,76,77], poly(lactic acid) (PLA) [28,78,79],
and poly(d,l-lactide-co-glycolide) (PLGA) [29,53,80]. Their advantages are low toxicity, reduction of
possible side effects, and ease of excretion [3,4,81].

One of the critical issues related to the efficiency of smart drug nanocarriers is their interaction
with cell membranes. The modification of a carrier structure with a cell-penetrating ligand is a
strategy to improve cellular uptake [82,83]. Cholesterol (Figure 1) is an organic compound, a steroid
lipid, which is an essential structural component of animal cell membranes. It is responsible for
the integration, fluidity, microdomain structure (so-called lipid rafts), and the permeability of the
membrane. Cholesterol owes these properties to its structure—the hydroxyl group interacts with
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water molecules similar to the hydrophilic main groups of phospholipids, while the carbon skeleton
shows a high affinity for the hydrophobic tails of phospholipids. The rigid and flat tetracyclic structure
regulates the fluidity of the cell membrane [84,85]. Furthermore, cholesterol is a precursor in the
biosynthesis of a wide range of biologically important substances, including bile acids, vitamin D,
and sex hormones [86,87].
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Due to its hydroxyl group which can easily be derivatized, large-scale availability, and relatively
low cost, cholesterol has been used as a starting material for the synthesis of diverse steroid-based
molecules [88,89]. High biocompatibility and the ability to be incorporated into cell membranes make
cholesterol and its derivatives increasingly used in DDS.

In this review, we present an overview of numerous publications devoted to polymers comprising
cholesterol designed for drug delivery. We describe the methods of incorporation of cholesterol
moiety/ies into a polymer chain and the forms of drug carriers that have been obtained using
these polymers. We present the types of drugs that have been encapsulated and the effectiveness
(encapsulation efficiency and capacity) of their loading. Some examples of polymers bearing cholesterol
moieties designed for drug delivery have been featured in more general review covering the topic
of cholesterol chemistry and its applications in different research fields [88]. Moreover, there has
been one earlier review concerning polymers comprising cholesterol, published in 2009 [90]. It was
mainly focused on synthesis and strategies of direct ordering and packing of meso- and nanostructures
of cholesterol polymers in the neat or melt state and in solution. It also dealt with their various
applications, including drug delivery. However, the topic of drug delivery systems based on polymers
comprising cholesterol has moved forward significantly since then.

2. Methods of Synthesis of Polymers Containing Cholesterol

A variety of polymerization methods and selective chemical reactions allow for the obtention
of polymers with cholesterol incorporated both in the main chain and in side chains [88,90]. Due to
the methodology of their preparation, polymers comprising cholesterol can be divided into polymers
obtained (I) by polymerization of cholesterol-containing monomers, (II) by post-modification of side
chains, (III) using a chain transfer agent or an initiator containing cholesterol, and (IV) as a result of
chain end post-modification (Figure 2).
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2.1. Polymers Containing Cholesterol in the Main Chain

There are two approaches that give the possibility to introduce cholesterol moiety at the end of
the polymeric chain: the use of cholesterol-containing initiators or chain transfer agents (Figure 3,
Table 1) and post-modification of the reactive chain end (Figure 4, Table 2). These approaches result
in polymers with one cholesteryl moiety. In the context of drug delivery, recent studies [91] show
that even with a relatively long polymer ballast, it is possible to take advantage of the properties of
cholesterol present at the polymer chain end. In such systems, cholesterol plays primarily a guiding
role, but it can also integrate into the biological membrane, which may allow releasing drug molecules
in the immediate vicinity or even inside a pathological cell. Considering solubility in physiological
fluids, one hydrophobic cholesterol moiety is an advantage, as such a system does not have to contain
excessively large hydrophilic part to be soluble.

2.1.1. Cholesterol Introduced to the Main Chain during Polymerization

Free radical polymerization (FRP) is the simplest method used in the synthesis of DDS. Due to the
non-specific nature of free radicals, FRP is a versatile method that allows the polymerization of most vinyl
monomers. The advantage of this type of polymerization is that it is not an expensive and fast method.
Additionally, isolation and purification of the product are relatively easy. The significant disadvantages
of FRP include high dispersity of the obtained systems and dead-end product, due to the termination
processes, which preclude the copolymerization of subsequent blocks. The twentieth century was
rich in the development of new polymerization methods, atom transfer radical polymerization
(ATRP) in 1995 [92,93], and reversible addition–fragmentation chain transfer polymerization (RAFT)
in 1998 [94]. With the growing interest in the field of drug delivery, polymeric carriers, star systems,
dendrimers, and nanogels began to be used. Such structures are easier to obtain using CRP methods
as compared to conventional FRP. Another advantage of controlled radical polymerization is the
eventuality of obtaining a system with lower dispersity and the possibility of creating copolymer
libraries that originate from one precursor polymer. For instance, in RAFT polymerization, there is
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a RAFT agent at the end of the chain, which can be re-initiated to propagate other blocks [95].
Additionally, functionalized monomers can be polymerized by CRP techniques. In the group of radical
polymerizations with reversible deactivation (RDRP), the RAFT method has the greatest tolerance on
reactive functional groups [95]. On the other hand, there is a multitude of types of ATRP, resulting
in the high flexibility of this method [96]. CRP methods are not perfect and free from drawbacks,
particularly when making use of the drug delivery systems thus obtained. Often, it is not possible to
avoid the use of toxic initiators, which contain transition metals such as iron, copper, tin, or osmium
(ATRP) [97]. In RAFT polymerization, it is necessary to use an additional factor which is the chain
transfer agent (CTA), also called the RAFT agent. Dithiocarbonates and trithiocarbonates, which are
used the most often, remain at the end of the polymer chain. This can also be a big disadvantage
because these ends show toxic properties for the human body. However, at the same time, they allow
for further copolymerization or appropriate modification, e.g., to the thiol group [98], which opens up
a variety of possibilities from the Michael reaction to the formation of disulfides.
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Table 1. Cholesterol end-capped polymers reported as drug delivery systems.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

Free Radical Polymerization (FRP)

Chol-pHPMAlac (mono:di = 30:70)

liposome DOX

10.5 (1.60–1.70) 93.0

N/A [24]Chol-pHPMAlac (mono:di = 44:56) 10.0 (1.60–1.70) 99.0

Chol-pHPMAlac (mono:di = 54:46) 11.0 (1.60–1.70) 100

Chol-pHPMAlac (mono:di = 67:33) 11.0 (1.60–1.70) 100

Nitroxide-Mediated Controlled Radical Polymerization (NMP)

Chol-PAA PCLp siRNA N/A 46.0 0.8 [100,101]

Atom Transfer Radical Polymerization (ATRP)

Chol-PDMAEMA liposome
CF

5.4 (1.17) N/A N/A [102]
calcein

Chol-PAA 5% in lip

liposome calcein 7.2 (N/A)

29.6

N/A
[103,104]Chol-PAA 10% in lip 46.1

Chol-PAA 20% in lip 28.8

Chol-PAA 10% in lip crosslinked 24.7

Chol-LC-PDMAEMA liposome calcein N/A N/A N/A [105]

Chol-PLA-SS-PMPC micelle Nile red N/A N/A N/A [79]

Chol-b-pMPC

polymersome ADR

6.4 (N/A) 3.6

N/A [106]9.5 (N/A) 4.2

15.4 (N/A) 4.0

micelle ADR

3.0 (N/A)

N/A N/A [107]6.4 (N/A)

N/A

Chol-PEO micelle ADR

1.7 (1.13)

N/A

10.1

[108]2.3 (1.10) 16.2

2.8 (1.10) 16.9

Chol-PEGMA50

micelle QC

33.2 (1.25)

N/A

15.6

[54]Chol-PEGMA100 52.2 (1.32) 14.1

Chol-PEGMA200 89.1 (1.55) 14.1
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Table 1. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

Reversible Addition–Fragmentation Chain Transfer Polymerization (RAFT)

Chol-PNIPAAm micelle N/A

3.2 (1.27)

N/A N/A [91]
5.7 (1.35)

6.1 (1.51)

8.4 (1.64)

10.9 (1.90)

Ring-Opening Polymerization (ROP)

Chol-PCL (nChol:nPCL = 1:4)

nanoparticle prednisone acetate

2.0 (1.49)

N/A N/A [109]

Chol-PCL (nChol:nPCL = 1:10) 5.5 (1.34)

Chol-PCL (nChol:nPCL = 1:20) 7.2 (1.55)

Chol-PCL (nChol:nPCL = 1:40) 11.4 (1.69)

Chol-PCL (nChol:nPCL = 1:80) 16.2 (1.79)

Chol-pTMC (nChol:nTMC = 1:4)

nanoparticle prednisone acetate

1.8 (1.26)

N/A N/A

[99]

Chol-pTMC (nChol:nTMC = 1:10) 2.7 (1.75)

Chol-pTMC (nChol:nTMC = 1:20) 5.2 (1.78)

Chol-pTMC (nChol:nTMC = 1:40) 9.7 (1.65) 61.7 9.1

Chol-pTMC (nChol:nTMC = 1:80) 13.9 (1.80) N/A N/A

Organocatalytic Ring-Opening Polymerization (OC-ROP)

Chol-PTMC-PEG nanoparticle DOX 6.6 (N/A) N/A 7.3 [52]

Chol-PTMC

surface FITC-BSA

11.3 (1.20)

N/A N/A [78]Chol-PTMC-PLA 10.1 (1.40)

Chol-PTMC-PMBC 2.5 (1.20)

Chol-PMBC 3.3 (1.50)

Abbreviations: ADR, Adriamycin; ATRP, atom transfer radical polymerization; Chol, cholesterol; CF, 5,6-carboxyfluorescein; DMAEMA, 2-(dimethylamino)ethyl methacrylate; DOX,
doxorubicin; FITC-BSA, fluorescein isothiocyanate-labeled bovine serum albumin; LC, lecithin; MBC, 5-methyl-5-benzylcarboxyl-1,3-dioxan-2-one; MPC, 2-methacryloyloxyethyl
phosphorylcholine; NIPAAm, N-isopropylacrylamide; OC-ROP, organocatalytic ring-opening polymerization; PAA, poly(acrylic acid); PCL, poly(ε-caprolactone); PCLp, polymer-caged
lipoplex; PEG, poly(ethylene glycol); PEGMA, poly(ethylene glycol) methyl ether methacrylate; PEO, poly(ethylene oxide); PHPMAlac, poly(N-(2-hydroxypropyl)methacrylamide
mono/dilactate); PLA, poly(lactic acid); RAFT, reversible addition−fragmentation chain transfer polymerization; ROP, ring-opening polymerization; TMC, trimethylene carbonate;
QC, quercetin.
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The majority of the methods used in the synthesis of polymeric drug delivery systems with an
incorporated cholesterol molecule are controlled radical polymerizations such as ATRP [54,79,102–108],
RAFT [91] or NMP [100] (Table 1). This is due to the possibility of controlling the dispersion of the system,
which translates into stability in biological properties and accuracy in predicting the behavior of the carrier
in the human body. Ring-opening polymerization techniques are also widely used, and most popular is
the polymerization of cyclic monomers such as ε-caprolactone [109] and trimethylene carbonate [51,78,99].

2.1.2. Cholesterol Introduced to the Main Chain by Post-Modification

The chemistry of polymers makes it possible to obtain functional macromolecules in a simple,
fast, and relatively inexpensive way. However, in some cases, the presence of certain functional
groups makes it impossible to perform polymerization. Post-polymerization modification, which is a
combination of the achievements of polymer chemistry and organic synthesis, comes to the rescue.
It consists of the preparation of a polymer that has modifiable, available groups, which are then subjected
to various reactions from simple esterification (O-acylation) or amidation (N-acylation) through various
coupling reactions to click reactions (Figure 4). The advantage of this methodology is the formation of
functional products that are impossible to obtain by polymerization. The post-modification approach
allows the creation of a library of functional polymers based on one reactive precursor, which ensures
the maintenance of the same structural parameters such as tacticity, molecular weight distribution,
or the degree of polymerization. In many cases, it turns out that the polymerization of a commercially
available monomer and the subsequent functionalization of the polymer is a less time-consuming and
cost-intensive method than the synthesis and polymerization of an original monomer. Additionally,
the storage of the reactive monomer is at greater risk than the polymeric precursor [110,111]. On the
other hand, it should be remembered that the post-polymerization approach has some important
limitations. In the case of the functionalization of polymer precursors, it should be taken into account
that organic reactions do not run with a 100% yield. This is caused by many factors, such as (I)
availability of reactive groups; (II) possible steric hindrance in the polymer chain; (III) curling, twisting
the polymer; or (IV) the need for additional purification, either from catalysts or other reactants used.
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Table 2. Cholesterol end-capped polymers obtained by post-modification reported as DDS.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

Esterification

Acetylene-PEG10K-G4-Chol16
micelle

DOX

14.2 (1.11) N/A

18.8

[55]
TPL 8.4

DOX + TPL N/A/6.5

Rhodamine-PEG10K-G4-Chol16 DOX 17.6 (1.14) N/A 10.0

mPEG-Chol micelle DTXL N/A 97.6 4.8 [56]

mPEG-Chol/RGD-mPEG-Chol (10% mPEG-Chol w/w)

liposome

PTX (2.5% w/w)

N/A

99.8 0.05

[57]

PTX (5% w/w) 99.6 0.08

PTX (7.5% w/w) 99.1 1.15

PTX (10% w/w) 97.3 1.62

mPEG-Chol/RGD-mPEG-Chol (20% mPEG-Chol w/w)

PTX (2.5% w/w) 99.7 0.53

PTX (5% w/w) 99.1 0.81

PTX (7.5% w/w) 98.9 1.06

PTX (10% w/w) 95.1 1.48

mPEG-Chol
micelle AmB

5.9 (1.04) 42.0 8.8
[58]

mPEG-b-PCL-Chol 10.1 (1.20) 60.0 12.5

TPGS-Chol micelle DTXL N/A 99.2 3.2 [112]

Chol-PEG-GA liposome brucine N/A 82.5 N/A [59]

Chol-PEG2K/(γ-PGA-g-PLGA)

nanoparticle

DOX

N/A

63.8 4.6

[53]

Chol-PEG5K/(γ-PGA-g-PLGA) 66.8 4.8

Chol-PEG10K/(γ-PGA-g-PLGA) 66.6 4.7

Chol-PEG2K/(γ-PGA-g-PLGA)

ICG

86.8 6.2

Chol-PEG5K/(γ-PGA-g-PLGA) 86.8 6.2

Chol-PEG10K/(γ-PGA-g-PLGA) 84.9 6.1

PF127-Chol
micelle

DTXL (temp., ratio,
solvent)

N/A 81.0
N/A [113]

FA-PF127-Chol 65.4–103.2
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Table 2. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

Chol-PSO
micelle PTX

2.4 80.1 18.6
[114]

Chol-PSO-(HE)5-Fmoc/Chol-PSO-(RG)5-Pbf N/A 78.5 17.1

F68-Chol micelle CABA N/A 98.1 3.2 [115]

mPEG-Chol micelle QC N/A 93.5 3.7 [60]

Biotin-PAE-g-mPEG-Chol
micelle DOX

11.8 (1.60) 61.0 5.5 [61]
PAE-g-mPEG-Chol N/A 47.0 4.2

mPEG–PLA-Chol micelle CUR N/A 93.7 11.9 [28]

PEG-PLLA-Chol
micelle DOX N/A 45.3 8.3 [62,63]

PEG-PDLA-Chol 48.2 8.8

Chol-PEG micelle PTX N/A >90 N/A [64]

Chol–PEG–DUP1 micelle PTX N/A 96.4 24.9 [65]

Chol-mPEG-RGD/mPEG-PLGA nanoparticle

CUR (2% w/w)

N/A

100 2.00

[29]

CUR (3% w/w) 98.7 2.96

CUR (4% w/w) 97.8 3.91

CUR (5% w/w) 96.0 4.80

CUR (7% w/w) 70.7 4.95

P(NIPAAm-co-DMAAm)-g-Chol
micelle Py

2.9 (1.20)
N/A

0.8 mg/g
[116]

P(NIPAAm-co-DMAAm)-g-Chol 6.4 (1.30) 1 mg/g

Chol-PEG-TPP liposome CF N/A 1.8 N/A [66]

mPEG-b-PCL-Chol micelle CUR 6.6 (1.17) 32.0 8.8 [117]

Amidation

Chol−PEG−PpIX micelle anchored to liposome itself N/A N/A N/A [67]

HA–SA–CYS–Chol micelle DTXL 30.1 (1.70) 89.7 4.8 [16]

HA-Chol nanoparticle

DTXL

N/A

66.9 1.9

[17]TMX 76.5 4.1

DTXL/TMX 83.1/92.5 1.4/3.4
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Table 2. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

PEG-PAsp(DET)-Chol micelle pDNA N/A N/A N/A [68]

DMEDA-HPbCD-Chol:Pluronic F127

polyplex siRNA
N/A N/A N/A [118]DMEDA-HPbCD-Chol:Pluronic L81

DMEDA-HPbCD-Chol:Pluronic L35

PAMAM-Chol micelle RES N/A N/A 46.5 [119]

PEG-Chol-α-TOC micelle

CUR (5% w/w)

N/A

97.2 4.6

[69]
CUR (10% w/w) 98.4 8.4

CUR (15% w/w) 98.6 14.2

CUR (20% w/w) 74.3 15.2

mPEG-b-PEP-g-Chol) linear

micelle DOX

5.8 (1.45) 42.1 15.7

[70]mPEG-b-PEP-g-Chol) Y-shape 6.0 (1.33) 50.4 20.2

mPEG-b-PEP-g-Chol) Fork-shape 6.5 (1.48) 58.5 23.1

mPEG-b-PAMAM-G1-Chol1

micelle

DOX

5.3 (N/A)

40.0 4.7

[71]

PTX 5.4 0.7

DOX/PTX 38.1/6.5 4.3/0.7

mPEG-b-PAMAM-G2-Chol2

DOX

5.9 (N/A)

40.7 4.8

PTX 7.2 0.8

DOX/PTX 38.4/6.9 4.2/0.8

mPEG-b-PAMAM-G4-Chol4

DOX

7.2 (N/A)

40.2 4.8

PTX 8.3 1.0

DOX/PTX 34.5/8.3 3.9/1.0

mPEG-b-PAMAM-G8-Chol8

DOX

N/A

40.1 4.7

PTX 18.2 2.2

DOX/PTX 36.8/19.4 4.2/2.2

Chol-P(HEMA-Lys) liposome siRNA N/A (1.20) N/A N/A [120]

mPEG-P(HPMA-g-His)-Chol liposome DOX 12.3 (1.06) 81.3 18.2 [25,26]
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Table 2. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

(Chol-PLGVRK-PEG):(DUPA-PEG-Chol) = 1:9 micelle
CABA (25% w/w)

N/A
79.7 12.0

[72]
CABA (200% w/w) 38.9 43.8

Chol-g-uPA-PAA liposome CF N/A N/A N/A [121]

CS-g-Chol-g-FA micelle

PTX (4h dialysis)

N/A

75.6 12.9

[11]
PTX (8h dialysis) 63.1 10.5

PTX (12h dialysis) 56.5 7.4

PTX (24h dialysis) 32.7 5.5

Chol-DP7 micelle itself N/A N/A N/A [122]

Radical Cross-Coupling

p(HPMA-r-NAS)-Chol

polyplex siRNA

17.7 (1.40)

N/A N/A [27]p(HPMA-r-AEDA)-Chol 24.7 (1.20)

p(HPMA-DMAE-r-AEDA)-Chol 34.1 (1.30)

Hydrazone Formation

mPEG-Hz-Chol liposome
Arctigenin N/A 93.8 N/A [73]

GEM 2.6 (N/A) 37.0 4.0 [74,75]

Abbreviations: AEDA, 2-((2-azidoethyl) disulfanyl) ethan-1-amine hydrochloride; AmB, Amphotericin B; CABA, cabazitaxel; Chol, cholesterol; CF, 5,6-carboxyfluorescein; CS, chitosan; CUR,
curcumin; CYS, cystamine; DMAE, 2-(dimethylamino)ethyl 1H-imidazole-1-carboxylate; DMAAm, N,N-dimethylacrylamide; DMEDA, N,N-dimethylaminoethylamine; pDNA, plasmid
DNA; DOX, doxorubicin; DP7, antimicrobial peptide (VQWRIRVAVIRK); DTXL, docetaxel; DUP1, peptide (CFRPNRAQDYNTN); DUPA, 2-[3-(1,3-dicarboxypropyl) ureido]pentanedioic
acid; F68, Pluronic F68; FA, folic acid; Fmoc, 9-fluorenylmethoxycarbonyl; GA, glutamic acid; GEM, gemcitabine; HA, hyaluronic acid; (HE)5, histidine-glutamic acid decapeptide;
HEMA, hydroxyethyl methylacrylate; HIS, histidine; HPbCD, modified 2-hydroxypropyl-b-cyclodextrin macrocycles; HPMA, N-(2-hydroxypropyl) methacrylamide; Hz, hydrazone;
ICG, indocyanine green; Lys, lysine; mPEG, (poly(ethylene glycol) methylether methacrylate; NAS, N-acryloxysuccinimide; NIPAAm, N-isopropylacrylamide; PAA, poly(acrylic acid);
PAE, poly(β-amino ester); PAMAM, polyamidoamine; PAsp(DET), poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide}; Pbf, 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl;
PCL, poly(ε-caprolactone); PDLA, poly(d-lactide acid); PEG, poly(ethylene glycol); PEP, peptide; PF127, Synperonic PE/F 127; PGA, poly(glutamic acid); PLA, poly(lactic acid); PLGA,
poly(d,l-lactide-co-glycolide); PLGVRK, matrix metalloproteinase-2 responsive peptide; PLLA, poly(l-lactide acid); PplX, protoporphyrin IX; PSO, polyoxyethylene sorbitol oleate; PTX,
paclitaxel; Py, pyrene; QC, quercetin; RES, resveratrol; (RG)5, arginine-glycine decapeptide; RGD, arginylglycylaspartic acid; SA, succinic anhydride; TMX, tamoxifen; TPGS, tocopheryl
poly(ethylene glycol) succinate; TPL, triptolide; TPP, triphenylphosphine; α-TOC, α-tocopherol; uPA, short peptide sequence for urokinase plasminogen activator.
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The introduction of cholesterol at the end of the polymer chain by post-modification occurs
mainly through basic organic chemistry reactions such as esterification and amidation (Table 2).
In this case, the simpler the better, thus reducing the time, cost, and risk of failure. The esterification
of the OH-terminated polymer in dichloromethane in the presence of 4-dimethylaminopyridine
(DMAP) with commercially available cholesteryl chloroformate and triethylamine is often used [58,
112,114,116]. Reactions with succinyl cholesterol have been also reported, and, in these cases,
dicyclohexylcarbodiimide (DCC) or 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC) was
used [56,57,59]. Amidation is mainly based on EDC coupling, where the NHS ester derivative
of cholesterol or polymer is dissolved in an organic solvent (DCM, MeOH, or DMSO); then, in the
presence of EDC, it reacts with a previously prepared amine-terminated derivative of a polymer or
cholesterol, respectively [25,26,67,69,72,120]. There is also the possibility to introduce cholesterol in a
radical cross-coupling [27] reaction or by hydrazone formation [73–75].

2.2. Polymers Containing Cholesterol as Side Chains

Similarly to the polymers containing cholesterol in the main chain, the incorporation of cholesterol
to the side chains can occur by polymerization of a cholesterol-containing monomer (Figure 5, Table 3)
or by post-polymerization modification (Figure 6, Table 4). Compared to cholesterol end-capped
polymers, this approach allows the incorporation of multiple cholesterol molecules into a single
polymeric chain. However, it carries a large ballast of the hydrophobic part, which has a negative effect
on aqueous solubility. As a consequence, it creates the need to extend or add a new hydrophilic block
(most often PEG), which in turn increases the weight of the carrier introduced into the body.

2.2.1. Polymers Containing Cholesterol Moieties as Side Chains Obtained by Polymerization of
Cholesterol-Based Monomers

Many different polymerization techniques are used to obtain polymeric drug carriers with
cholesterol moieties as side chains, ranging from free radical polymerization to various types of
controlled polymerization methods, such as RAFT, ATRP, and a variety of ring-opening polymerization
methods such as ring-opening metathesis polymerization (ROMP) and organocatalytic ring-opening
polymerization (OC-ROP) (Figure 5, Table 3). The variation of the methods used is due to many factors.
One, as in all areas of life, is economics, i.e., the method should be non-expensive, technically simple,
limit the use of toxic chemicals and give a clean product with high efficiency. However, in the case of
DDS, it is not easy to achieve, because products that have a complex spatial structure and consist of
many block-elements are considered. Drug delivery systems, due to their destination—the human
body—should be characterized as accurately as possible. The more monodisperse sample, the more
accurate its properties and expected behavior in the body. In the case of polymeric systems characterized
by high dispersity, it is almost impossible to conclude the mechanism of action, metabolism, or removal.
Therefore, the controlled polymerization techniques, which allow precise designing of polymers of
desired molecular weight (number of repeating units), spatial structure, and low dispersion, are the
methods of choice.

Similar copolymers of HPMA and various methacrylic cholesterol derivatives have been obtained by
FRP or RAFT. The copolymer obtained by the controlled polymerization was characterized by significantly
lower dispersion (1.39) [23] than the analogous copolymers produced by FRP (1.65–1.90) [19–22], despite the
weight being approximately twice as high. The most important feature of ROPs is the ability to polymerize
functionalized cyclic olefins [96]. However, it also carries a toxic ballast in the form of initiators or catalysts
based on transition metals such as tin, ruthenium, or molybdenum in the ROMP [96].
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Table 3. Polymers bearing cholesterol in side chains reported as drug delivery systems.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

Free Radical Polymerization (FRP)

mPEG-Chol-DMA (nChol:nDMA = 1:7)

polymersome FITC-CM-Dex N/A

60.0

N/A [30]

mPEG-Chol-DMA (nChol:nDMA = 1:3) 59.0

mPEG-Chol-DMA (nChol:nDMA = 1:1)

N/AmPEG-Chol-DMA (nChol:nDMA = 3:1)

mPEG-Chol

Atom Transfer Radical Polymerization (ATRP)

PEG-SS-PAECChol
polymersome Calcein

6.7 (1.14) 68.0 5.5
[35]

PEG-b-PAECChol 6.0 (1.13) 74.0 6.0

Reversible Addition–Fragmentation Chain Transfer Polymerization (RAFT)

P(AChol15-co-mPEG5,110)
micelle CPT

39.0 (1.44) N/A 5.5
[36]

P(AChol3-co-mPEG23,22) 25.0 (1.26) N/A 3.5

P(CholDEGA-b-(AAA-r-BnAAA)) (52% hydrogenated)

micelle

Nile red

N/A

25.0 N/A

[123]

P(CholDEGA-b-(AAA-r-BnAAA)) (70% hydrogenated) 25.0 N/A

P(CholDEGA-b-(AAA-r-BnAAA)) (85% hydrogenated) 5.0 N/A

P(CholDEGA-b-(AAA-r-BnAAA)) (52% hydrogenated)

IBU

>40 >25

P(CholDEGA-b-(AAA-r-BnAAA)) (70% hydrogenated) >30 >25

P(CholDEGA-b-(AAA-r-BnAAA)) (85% hydrogenated) >15 >10

PLL(PMA-co-MAChol) liposome PTX 33.0 (1.05) N/A N/A [124,125]

P(MAA-co-MAChol) (2 mol% chol)

nanocomplex DOX

16.5 (1.19)

N/A N/A [126,127]P(MAA-co-MAChol) (4 mol% chol) 15.8 (1.10)

P(MAA-co-MAChol) (8 mol% chol) 18.0 (1.11)
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Table 3. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Lit.

P(MAgala18-b-MAChol14)

micelle DOX

12.8 (1.26) 47.1 10.5

[128]
P(MAgala18-b-(MAA5-co-MAChol14))

N/A

61.5 13.3

P(MAgala18-b-(MAA16-co-MAChol12)) 81.9 17.0

P(MAgala18-b-(MAA26-co-MAChol9)) 91.2 18.6

P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-Chol) nanoparticle DOX 50 (1.39) N/A 6.0 [23]

Organocatalytic Ring-Opening Polymerization (OC-ROP)

mPEG113-b-P(MTC-Chol)4
micelle N/A

7.5 (1.12)
N/A N/A [31]

mPEG113-b-P(MTC-Chol)11 11.8 (1.21)

mPEG113-b-P(MTC-Chol11)

nanoparticle PTX

11.8 (1.21)

N/A

3.8

[32]
mPEG113-b-P(MTC-Chol8-co-TMC8) 10.7 (1.18) 9.2

mPEG113-b-P(MTC-Chol11-co-TMC30) 14.8 (1.20) 15.0

mPEG113-b-P(MTC-Chol18-co-TMC55) 21.7 (1.17) 8.4

Ring-Opening Metathesis Polymerization (ROMP)

P(NBChol-b-NBmPEG) nanoparticle DOX 162 (1.30) 58.0 14.5 [33]

P(NBChol)50-b-(NBmPEG)170

nanoparticle DOX

126 (1.24) 88.4 22.1

[34]P(NBChol)75-b-(NBmPEG)255 216 (1.16) 68.8 17.2

P(NBChol)180-b-(NBmPEG)222 118 (1.16) 79.2 19.8

Abbreviations: AAA, ascorbyl acrylate; AChol, cholesteryl acrylate; AECChol, cholesteryl acryloyoxy ethyl carbonate; ATRP, atom transfer radical polymerization; BnAAA, benzyl
protected ascorbylacrylate; Chol, cholesterol; CholDEGA, cholesteryl diethyleneglycol acrylate; CPT, S-(+)-camptothecin; DMA, 1-decyl methacrylate; DOX, doxorubicin; DTXL,
docetaxel; FITC-CM-Dex, fluorescein isothiocyanate carboxymethyl dextran; HIS, histidine; HPMA, N-(2-hydroxypropyl)methacrylamide; IBU, ibuprofen; MAA, methacrylic acid;
MA-εAhx-Chol, cholest-5-en-3β-yl 6-methacrylamido hexanohydrazide; MA-εAhx-Chol43, cholest-4-en-3β-yl 6-methacrylamido hexanohydrazide; MA-εAhx-Chol5α, 5α-cholestan-3β-yl
6-methacrylamido hexanohydrazide; MA-εAhx-NHNH2, 6-methacrylamido hexanohydrazide; MA-εAhx-LevChol, cholest-5-en-3β-yl 4-oxopentano 6-methacrylamido hexanohydrazide;
MA-εAhx-opB-Chol, cholest-5-en-3β-yl-4-(2-oxopropyl)-benzoate; MAChol, 6-cholesteryloxyhexyl methacrylate; MAgala, 6-Omethacryloyl-D-galactopyranose; mPEG, (poly(ethylene
glycol) methylether methacrylate; MTC-Chol, cholesteryl 2-(5-methyl-2-oxo-1;3-dioxane-5-carboxyloyloxy)ethyl carbamate); NB, norbornene; OC-ROP, organocatalytic ring-opening
polymerization; PAE, poly(β-amino ester); PEG, poly(ethylene glycol); PLL, poly(l-lysine); PTX, paclitaxel; RAFT, reversible addition−fragmentation chain transfer polymerization; ROMP,
ring-opening metathesis polymerization; SS, disulfide bridge; TMC, trimethylene carbonate.
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2.2.2. Polymers Bearing Cholesterol Moieties as Side Chains Obtained by Post-Modification

In addition to the classical amidation or esterification methods, which require the use of catalysts
such as 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC), dicyclohexylcarbodiimide (DCC),
4-dimethylaminopyridine (DMAP), or 1,8-diazabicyklo[5.4.0]undek-7-en (DBU), there are increasing
possibilities of functionalization of polymers through post-modification, growing with the development
of organic chemistry. The use of polymers in the drug delivery process requires the highest purity of
polymer systems. Toxic catalysts and solvents, or complex and time- and cost-consuming purification
processes force scientists to create new synthetic methods that take place under milder conditions.
Alternative methods such as supercritical CO2-assisted spray drying (SASD) [80], nucleophilic
substitution (Br to N) [129–131] or N-acylation [132] are gaining popularity due to the lack of catalysts
and simple isolation and purification of reaction products (Figure 6, Table 4).
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Table 4. Polymers containing cholesterol moieties in side chains introduced by post-modification.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Dg (%) Lit.

Amidation

PEI-Chol liposome pDNA (pGL3
promoter) N/A N/A N/A N/A [134]

HA-Chol nanogel rhGH/EPO
lysozyme/exendin-4

52.0 (N/A)

N/A N/A

3.0

[14]

54.0 (N/A) 7.0

59.0 (N/A) 15.0

66.0 (N/A) 27.0

75.0 (N/A) 42.0

P(MPC-co-NPEM)-g-Chol (nMPC:nChol = 86:14)
micelle DOX

11.2 (1.95) 53.8 21.5

100

[135]
P(MPC-co-NPEM)-g-Chol-g-FA (nMPC:nChol:nFA = 56:14:30) 12.1 (2.16) 53.5 21.4

P(MPC-co-NPEM)-g-Chol-g-FA (nMPC:nChol = 74:26)

micelle

DOX

6.6 (N/A) 48.6 19.6

[136]

P(MPC-co-NPEM)-g-Chol-g-FA (nMPC:nChol:nFA = 64:27:9)

N/A

52.6 21.1

P(MPC-co-NPEM)-g-Chol-g-FA (nMPC:nChol:nFA = 61:16:23)

DOX (10% w/w) 81.9 8.2

DOX (20% w/w) 77.9 15.6

DOX (40% w/w) 62.3 24.9

DOX (50% w/w) 67.4 33.7

P(MPC-co-NPEM)-g-Chol-g-FA (nMPC:nChol:nFA = 58:11:31) DOX 11.4 (N/A) 58.8 23.5

γ-PGA-g-Chol hydrogel DOX N/A N/A 6.39 96.2 [76]

PEI-Chol polyplex siRNA N/A N/A N/A N/A [137,
138]

PEI-Chol (nPEI:nChol = 1:7.5)

micelle SFB

9.8 (N/A)

N/A

N/A

N/A [37]
PEI-Chol (nPEI:nChol = 1:15.5) 13.1 (N/A) 13.1

PEI-Chol-PEG (nPEI:nChol:nPEG = 1:7.5:1) 15.3 (N/A) N/A

PEI-Chol-PEG (nPEI:nChol:nPEG = 1:15.5:1) 23.9 (N/A) N/A

Chol-CA-Spe nanogel siRNA N/A N/A N/A 3.1 [139]

Cyc-PEI-Chol (nChol:nCyc = 0.17)

polyplex siRNA

28.8 (N/A)

N/A N/A N/A [140]Cyc-PEI-Chol (nChol:nCyc = 0.33) 32.4 (N/A)

Cyc-PEI-Chol (nChol:nCyc = 0.53) 36.9 (N/A)
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Table 4. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Dg (%) Lit.

PEI-Chol nanoparticle Ce6 N/A N/A 35 N/A [141]

Chol-GC

micelle

DOX

N/A

80.9 10.8

6.1 [142]

Chol-GC-FA 87.0 11.6

NLS-Chol-GC 77.4 10.4

NLS-Chol-GC-FA 79.0 10.6

Chol-GC

Cou6

89.8 1.76

Chol-GC-FA 87.0 1.71

NLS-Chol-GC 90.1 1.77

NLS-Chol-GC-FA 89.6 1.73

PEI-Chol (nChol:nPEI = 25.8)

polyplex siRNA N/A N/A N/A N/A [143]

PEI-Chol (nChol:nPEI = 52.5)

PEI-Chol (nChol:nPEI = 102.44)

F-PEI-Chol (nChol:nF-PEI = 21.3)

F-PEI-Chol (nChol:nF-PEI = 50.9)

F-PEI-Chol (nChol:nF-PEI = 105.6)

PAMD-Chol (17% w/w of Chol)

polyplex siRNA

16.7

N/A N/A N/A [144]PAMD-Chol (25% w/w of Chol) 18.5

PAMD-Chol (34% w/w of Chol) 21.1

PEI-Chol N/A siRNA N/A N/A N/A N/A [132]

Click Reaction

PNIPAAm10-SS-P(αN3CL-g-CholPA)10
micelle IMC

6.0 (1.24) 82.8 40.4
N/A [133]

PNIPAAm10-SS-P(αN3CL10-g-PyrePA3/-CholPA7) 5.7 (1.40) 71.9 35.9

acL-Chol-PN
nanogel FITC-BSA

1 020 (N/A)
N/A N/A

1.7
[145]

acS-Chol-PN 1 130 (N/A) 1.5

Hydrazone Formation

P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-Chol) nanoparticle
DOX

21.1 (1.65)
98.0 1.7

[19]
DTXL 95.0 5.5
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Table 4. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Dg (%) Lit.

P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-opBChol)

micelle DOX

38.0 (1.8)

N/A

9.4

[20]P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-Chol5α) 24.5 (1.9) 8.1

P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-Chol43) 25.5 (1.8) 8.2

P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-Chol5α)

micelle DOX

26.6 (1.88)

N/A

8.2

N/A [21,22]
P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-opBChol) 30.7 (1.65) 11.2

P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-LevChol) 28.5 (1.89) 10.9

P(HPMA-co-MA-εAhx-NHNH2-co-MA-εAhx-Chol43) 26.8 (1.72) 7.9

Nucleophilic Substitution (Br to N)

Chol-g-P(MSC-PDL) nanoparticle
plasmid

p3XFLAG-CMV-p53 8.3 (1.95) N/A N/A 9.7
[129]

miR-23b [130]

Chol-PHP polyplex pDNA 12.5 (N/A) N/A N/A 31.6 [131]

Supercritical CO2-Assisted Spray Drying (SASD)

PURE-G4-OMeOx48[PLGA-Chol]
microparticle SDF N/A N/A

19.1
N/A [80]

PURE-G4-OEtOx48[PLGA-Chol] 22.1

Boronate Linkage

mPEG-PLL-g-DHPA/Chol-PBA (DHPA:Chol-PBA = 3:1)
nanoassembly DOX N/A

8.1 2.0
N/A [38]

mPEG-PLL-g-DHPA/Chol-PBA (DHPA:Chol-PBA = 3:2) 30.1 7.5

Esterification

PAE(-SS-mPEG)-g-Chol) nanoparticle DOX 12.95 (1.45) 55.4 10.8 N/A [39]

PAE(-SS-mPEG)-g-Chol)/PAE-g-mPEG-g-Chol/(mass ratio = 2:1)

micelle

DOX (10% w/w)

12.95 (1.45)/8.79 (1.90)

61.2 16.1

N/A [39,146]

DOX (20% w/w) 64.7 26.4

DOX (30% w/w) 55.7 28.8

PAE(-SS-mPEG)-g-Chol)/PAE-g-mPEG-g-Chol/(mass ratio = 1:1)

DOX (10% w/w) 63.5 16.7

DOX (20% w/w) 69.8 28.5

DOX (30% w/w) 60.9 31.5

PAE(-SS-mPEG)-g-Chol)/PAE-g-mPEG-g-Chol/(mass ratio = 1:2)

DOX (10% w/w) 59.1 15.8

DOX (20% w/w) 63.0 25.7

DOX (30% w/w) 53.9 27.9
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Table 4. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Dg (%) Lit.

poly(BAC-AMPD)-g-PEG-g-Chol micelle DOX N/A 27.1 5.4 54.5 [40]

Chol-CS nanoparticle

ATRA (10% w/w)

N/A

88.7 8.0

4 [12]
ATRA (20% w/w) 82.3 11.8

ATRA (40% w/w) 77.9 24.3

ATRA (50% w/w) 74.0 28.3

rPAA-Chol nanoparticle siRNA

9.7 (N/A)

N/A N/A

14.0

[147,
148]

10.9 (N/A) 29.0

13.5 (N/A) 57.0

15.9 (N/A) 87.0

(PAE-g-Chol)-b-PEG-b-(PAE-g-Chol) micelle

DOX (10% w/w)

N/A

33.6 4.2

48.0 [41]
DOX (20% w/w) 48.7 13.5

DOX (50% w/w) 59.5 20.1

DOX (80% w/w) 55.3 24.3

PEG-PMMI-CholC6 liposome RAPA 74.0 (1.51) 76.9 N/A 4.9 [42]

PEG-PMMI-CholC6 liposome MTX N/A 63.1 N/A N/A [43]

PMMI-CholC6
micelle PX

57.1 (1.60) 30.0 6.2 4.9
[44]

PEG-PMMI-CholC6 74.3 (1.51) 40.3 8.3 16.4

Chol-PEG22- hbPG35 liposome
Atto 488 tetrazine

N/A
>40

N/A N/A [45]
Alexa Fluor 594

azide >40

HA-Chol micelle

α -TOC

N/A

77.6 16.1

4.6 [15]CUR 82.8 3.3

CoQ10 86.2 10.7
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Table 4. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Dg (%) Lit.

L-PGA-g-Chol nanoparticle HSA N/A N/A N/A 0.065 [77]

PEI-CyD-g-Chol micelle DOX N/A N/A

5.4 5.2

[149]7.4 7.9

12.8 18.6

Chol-AL-AG liposome N/A 27.0 (N/A) N/A N/A N/A [150]

mPEG-Dlabile-PAE-g-Chol micelle DOX N/A 53.5 11.2 55 [46]

Chol-XG nanogel PTX 20 000 (N/A) N/A N/A N/A [151]

Dex-Chol micelle
RAPA 10%

43.8 (N/A)
79.9 7.3

4 [152]
RAPA 20% 90.1 12.6

mPEG-b-P(MBC78-{g-DMDPTA36; g-Chol30}-co-LA110)
polyplex miRNA-34a

43.5 (N/A)
N/A N/A N/A [47]

mPEG-b-P(MBC65-{g-DMDPTA11; g-Chol19;
g-Morph6;}-co-LA120) 35.4 (N/A)

Chol-PN
nanoparticle MTX N/A

N/A

5.2 3.6

[48]
6.7 5.7

8.6 6.7

mPEG-PLL-g-DHPA/Chol-PBA (DHPA:Chol-PBA 1:1) 55.6 13.9

Dex-Chol

micelle DOX N/A

41.5 6.3

13.0 [153]HIS-Dex-Chol (24% HIS graft ratio) 46.1 7.6

HIS-Dex-Chol (46% HIS graft ratio) 56.3 12.3

Chol-g-P(HEMA10-co-DEAEMA25)-b-PPEGMA10

micelle

DOX (12.5% w/w)

14.3 (1.47)

20.0 4.1

N/A [49]

DOX (25% w/w) 38.0 8.7

DOX (50% w/w) 30.0 13.1

Chol-g-P(HEMA10-co-DEAEMA35)-b-PPEGMA10

DOX (12.5% w/w)

16.4 (1.54)

25.0 4.5

DOX (25% w/w) 48.5 10.8

DOX (50% w/w) 36.7 15.5
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Table 4. Cont.

Polymer Form of Carrier Drug or Dye Mn or Mw (kDa) (Ð) LE (%) LC (%) Dg (%) Lit.

PAE-g-mPEG-Chol micelle
DOX (25% w/w)

8.8 (1.90)
25.5 9.5

62.0 [50]DOX (50% w/w) 60.0 28.3

DOX (100% w/w) 52.8 30.7

HMW-Chol-g-AlgA

nanoparticle acetamiprid

112.2 (N/A) 90.8

N/A

4.6

[154]MMW-Chol-g-AlgA 64.5 (N/A) 86.8 5.4

LMW-Chol-g-AlgA 47.5 (N/A) 81.0 5.7

P(NIPAAm-co-NHMAAm)-g-Chol micelle Py 8.1 (1.40) N/A 0.4 N/A [155]

HPC-PEG-Chol-biotin micelle PTX N/A N/A 8.4 3.6 [51]

CNC-Chol nanocrystal FA N/A 58 N/A 17 [156]

Chol-Imi-OS nanoparticle CUR N/A 17.8 4.2 N/A [157]

Abbreviations: acL, acid labile; acS, acid stabile; AG, arabinogalactan; AL, alanine; AlgA, alginic acid; AMPD, 4-(aminomethyl)piperidine; ATRA, all-trans retinoic acid; α-azo-caprolactone
(αN3CL); BAC, N,N-cystaminebis(acrylamide); CA-Spe, cycloamylose with spermine group; Ce6, chlorin e6; Chol, cholesterol; CholC6, 6-(cholesteryloxycarbonyloxy) hexanol;
CholPA, cholestryl 4-pentynoate; CNC, cellulose nanocrystals; coQ10, coenzyme Q10; Cou6, coumarin 6; CS, chitosan; CUR, curcumin; Cyc, cyclam; CyDex, cycloldextrin; DEAEMA,
2-(diethylamino)ethyl methacrylate, Dex, dextrin; Dg, degree of grafting; DHPA, 3-(2;4-dihydroxyphenyl)propionic acid; DMDPTA, N,N-dimethyldipropylenetriamine; DOX, doxorubicin;
EPO, erythropoietin; F, heptafluorobutyric anhydride; FA, folic acid; FITC-BSA, fluorescein isothiocyanate-labeled bovine serum albumin; GC, glycol chitosan; HA, hyaluronic acid; hbPG,
hyperbranched poly(glycerol); HEMA, hydroxyethyl methylacrylate; HIS, histidine; HMW, high molecular weight; HPC, hydroxypropyl cellulose; HSA, human serum albumin; IMC,
indomethacine; IMI, imidazole; LA, lactic acid; LMW, low molecular weight; L-PGA, poly(l-glutamic acid); miR-23b, micro RNA-23b; MBC, 5-methyl-5-benzylcarboxyl-1,3-dioxan-2-one;
MMW, medium molecular weight; morph, 4-(2-aminoethyl) morpholine; MPC, 2-methacryloyloxyethyl phosphorylcholine; mPEG, (poly(ethylene glycol) methylether methacrylate; MSC,
N-methyldiethanolamine-co-diethyl sebacate; MTX, mitoxantrone; NHMAAm, N-hydroxylmethylacrylamide; NIPAAm, N-isopropylacrylamide; NLS, nuclear localization signal; NPEM,
p-nitrophenyloxycarbonylpoly(ethylene glycol)methacrylate; OS, oxidized-starch; PAE, poly(β-amino ester); PAMD, plerixafor/AMD3100; PBA, poly(3-boronophenyl)carbamate; PDL,
ω-pentadecanolide; pDNA, plasmid DNA; PEG, poly(ethylene glycol); PEGMA, poly(ethylene glycol) methyl ether methacrylate; PEI, polyethylenimines; PGA, poly(glutamic acid); PHP,
poly[hexamethylene diacrylate-β-(5-amino-1-pentanol)]; γ-PGA, poly(γ-glutamic acid); PLGA, poly(d,l-lactide-co-glycolide); PLL, poly(l-lysine); PMMI, poly(monomethyl itaconate); PN,
pullulan; PTX, paclitaxel; PURE-G4-OEtOx48, ethoxylated polyurea; PURE-G4-OMeOx48, methoxylated polyurea; PX, piroxicam; Py, pyrene; PyrePA, pyrenylmethyl 4-pentynoate; RAPA,
rapamycin; rPAA, bioreducible poly(amidoamine); SASD, supercritical CO2-assisted spray drying; SDF, sildenafil; SFB, sorafenib; SS, disulfide bridge; α-TOC, α-tocopherol;XG, xyloglucan.
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The major disadvantage of the post-modification approach is reaction efficiency (usually much
below 1) and, as a consequence, a need to use an additional analytical method to determine the
degree of post-modification, which increases costs and time of the process. The search for new organic
reactions carried out under mild conditions (e.g., Michael addition [144] or orthogonal reactions [158])
and with high yield, the usage of magnetically separable catalysts [159] and the development of new
and accurate methods of physicochemical analysis allow us to assume that the post-modification
procedure will be further explored.

In the available scientific literature, there are many simplifications, which make it difficult to
draw faultless conclusions. The complete physicochemical characterization of the final product
is often missing. For instance, the molecular weight and/or dispersity index of the system after
post-modification are not determined (Table 4).

3. Form of Carriers

There are various forms of drug carriers obtained from polymers bearing cholesteryl moiety/ies
(Figure 7).
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Micellar systems are the simplest constructs in the drug delivery area. They are made of
amphiphilic copolymers, the major part of which is hydrophilic. The size of micelles ranges from 5 to
100 nm. These nanospheres are formed in thermodynamic conditions through self-assembly or with
an additional factor. They are characterized by a critical micelle concentration (CMC), which is in the
range of 10−7 to 10−3 M in water. At the appropriate concentration, the micelles may disintegrate and
return to be unimers [160], which may be both the advantage or disadvantage depending on their
application. The most common method to obtain micelles used in drug delivery is the precipitation
method, where the appropriate selection of the conditions (temperature, concentration, solvent, or their
mixture) plays a key role in loading efficiency [161]. During the formation of micelles, it is also possible
to encapsulate active substances, which are mostly hydrophobic compounds [162].

Nanoparticles (NPs) are nanostructures made of amphiphilic copolymers with predominated
lipophobic part, which are prepared under kinetic conditions. Their sizes are in the range of 50–200 nm.
NPs are characterized by higher colloidal stability than micelles, and they do not decay into unimers.
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In drug delivery, they protect against coagulation, aggregation, or phagocytosis, and especially in the
case of core/shell type nanoparticles, the core is responsible for the transport of the hydrophobic drug,
while the shell acts as a shield and may have a guiding function [160].

Liposomes, i.e., phospholipid vesicles, are spherical structures made of a lipid bilayer. Due to
the trapping of water inside the structure, they play the role of transporters of hydrophilic substances
in living organisms. Similar structures—polymersomes—can be formed by polymeric amphiphilic
compounds, in which the hydrophilic part is in the range of 20–40 wt. %. As liposomes, they are
dedicated to transporting hydrophilic substances. Their sizes vary from 100 to 1000 nm [163]. One of
the methods of producing polymersomes is the film rehydration method [164]. In the literature,
there are examples of liposomes composed, inter alia, of cholesterol and other lipids, which are the
building block of the double membrane and are not covalently bonded to the polymeric drug carrier.
In such a case, the liposome is just a frame or a transporter of the proper working system. Constructing
such systems is widespread due to high durability, simplicity of preparation and easy-to-predict
behavior [165–169].

Polymer gels are a three-dimensional network of polymer chains, which is formed by chemical or
physical cross-linking. A specific group is hydrogels, which are insoluble in water and do not lose their
structural integrity, even in the case of high water concentration. Due to their high water absorption,
even over 90 wt. %, they are sorbents with great use, for example, in diapers. Hydrogels that occur in
the form of nanoparticles are called nanogels. They have diameters of tens to hundreds of nanometers.
These are porous materials that can be filled with, for example, drug molecules. It is possible to design
properties of hydro and nanogels, such as swelling, degradation, and chemical functionality by the use
of various biopolymers or synthetic polymers as well as various cross-linking methods [170–174].

Nanoparticles that are formed by self-assembly of cationic polymers and DNA or RNA are called
polyplexes. Such materials are capable of transporting exogenous genetic material into cells in a
process called transfection [175].

Cholesterol has many functions in polymeric drug carriers. Its role in cellular uptake is crucial,
and cholesterol-containing polymers are characterized by increased cellular uptake in the endocytotic
pathway. The mode of action is not clearly described due to the differences in the spatial structure of
carriers, encapsulated drugs and pathological targets. Cholesterol stimulates cellular uptake in a lipid
rafter-dependent manner [67], by activating the low-density lipoprotein (LDL) receptor [38] and by
interacting with glycosphingolipid-rich microdomains in the plasma membrane [127]. Cholesteryl
moiety acts as a cell-penetrating agent that stiffens the membrane by embedding into it, which leads
to membrane disintegration and tumor growth inhibition [91]. Additionally, the use of cholesterol
drug carriers results in higher cellular uptake of the drug. The use of the same dose of loaded drug as
the free drug leads to increased apoptosis of neoplastic cells [38,136]. Cholesterol may also function
as complexing agent of hydrophobic drugs [76]. Still, there is a gap in the literature on the effect of
the number of cholesterol groups in the polymer chain on the stability of plasma membranes and
drug delivery.

4. Drug Encapsulation and Release

Drug loading capacity (DLC or LC) and drug encapsulation efficiency (DEE or EE) are the basic
and most frequently determined parameters in drug delivery and applications. They are expressed
as a percentage of the amount of drug-loaded per carrier weight or the amount of drug effectively
entrapped in the carrier, respectively. The EE can be calculated as the total weight of the entrapped
drug divided by the total weight of the drug added, while the LC is the quotient of the total weight of
the entrapped drug and the total weight of the drug-loaded carrier.

EE (%) =
total weight of the entrapped drug

total weight of drug added
× 100
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LC (%) =
total weight of the entrapped drug

total weight of the drug− loaded carrier
× 100

These parameters depend on many factors, including the mass ratio of drug to a vehicle;
the method of preparing micelles, nanoparticles, liposomes, and other forms; composition, architecture
and arrangement of the polymeric carrier; size and functional groups of the drug molecule; the number
of functional groups in the carrier that can complex the drug; the type of drug-carrier interactions;
the tendency of polymer chains to twist and self-organize; and the time of dialysis and frequency of
water changes.

The variable mass ratio of drug to vehicle is the most frequently studied and easiest to perform
the comparison. The same procedure is carried out only by changing the amount of the drug, and the
results of such studies show that the research problem is complex. In most cases, as the number of
drug increases, EE decreases with increasing LC values [12,29,57,72,136], and, in some cases, both
LC and EE values increase [41,152]. It seems logical that by increasing the mass of the added drug,
we increase the final loaded mass of the drug in the carrier, but one should consider whether the limit
is. The results of the research [29,69] show that there is a critical point at which the maximum value of
loading capacity of the DDS is reached, and at some point, there is a drastic decrease in EE from>95%
to about 70%, while the LC increase is around 1%.

The preparation of nanoparticles has a huge impact on loading capacity and encapsulation
efficiency, with solvent selection, temperature, and dialysis time, playing an important role. A solvent,
in which both the drug and polymer have the best solubility and can be easily removed without
destroying the structures formed, should be selected. A common choice is DMSO or DMF as well as
other volatile organic solvents [113]. Dialysis at elevated temperature often leads to an increase in
EE [113], while prolonged time reduces both EE and LC values [11].

An effort is being made to determine the relationship between the structure of a carrier and a
drug molecule by studies on loading different molecules into the same carrier [15,19,53], and there are
also reports on co-loading. It is a very individual matter, and, to date, due to the complexity of the
problem, it has not been possible to find a clear answer as to which factors determine the effectiveness
of loading. Co loading reduces the LC value [17,55,71], however, it may positively influence EE [17].

Considering the composition of polymeric drug carriers containing a cholesteryl (Chol) moiety,
a relevant parameter is the ratio of hydrophilic to hydrophobic parts. The addition of hydrophobic
block lowers EE and LC values, whereas hydrophilic units such as PEG [44], folic acid (FA) [136],
poly(ε-caprolactone) (PCL) [58], or histidine (HIS) [153], raise these parameters significantly.

The influence of the cholesterol content in the carrier does not translate unequivocally into the
encapsulation efficiency or loading capacity [48,128,149,154]. On the other hand, a positive effect is
exerted by the change of the carrier’s architecture from linear to dendrimer, which raises both the EE
and LC values [70].

In vivo release kinetics studies have been described in many articles. Due to the different local
environment of neoplastic cells and normal cells, in particular, the slightly acidic environment within
neoplastic cells, research is conducted in order to obtain a pH-sensitive carrier that will release drug
molecules at a pH below 6. The conducted research indicates that drug delivery systems not only enable
the control of the release depending on pH, but also slow down the release of the active substance
over time, which reduces toxicity and reduces the side effects of the used therapies [11,19,20,112,146].
Most of the systems in which cholesterol is covalently bound to the polymer chain by groups are easily
hydrolyzed under physiological conditions, and the products of metabolism are an important aspect of
the research. Steroid groups ensure the biocompatibility of polymeric carriers and reduce the toxicity
of such systems on normal cells [91]. Chytil et al. investigated the amount of cholesterol derivatives
released from hydrazone bonding systems. Despite the hydrolysis, the systems were characterized by
low toxicity and, at the appropriate pH, a high percentage of drug molecules released [20].
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5. Conclusions

The number of publications that have emerged in recent years shows huge potential hidden
in the use of natural products in medical applications. The challenges in the field of drug delivery
(specific targeting, intracellular delivery, stimuli-controlled release, etc.) may be met by the application
of systems based on polymers containing steroids or their derivatives. Due to the high availability,
relatively low price, and hydroxyl group that can easily be derivatized, cholesterol is mainly used
for this purpose. The introduction of cholesteryl groups into the structure of the carrier improves its
biological properties, biocompatibility, and biodistribution. Polymer chemistry and organic chemistry
are developing rapidly, which increases the synthetic possibilities and enables the formation of more
complex and more effective systems. Both approaches, polymerization of functional monomers
and post-modification, have been successful in the synthesis of polymeric drug carriers containing
cholesterol moiety/ies in the main chain or as side chains. Both have advantages and disadvantages that
should be taken into account in the course of designing and preparing DDS. Certainly, the molecular
weight and molecular weight distribution of the system are factors that have a significant impact on
its behavior in the biological environment, and, hence, they should be accurately defined. In this
regard, various controlled radical polymerization techniques are the methods of choice as they
provide polymers with well-defined properties. In the case of post-modification, the efficiency of
the reaction should be taken into account, as it has a huge impact on the properties of the system.
The use of diverse polymers and possibility of their modification allows the encapsulation of almost any
substance. Polymeric drug carriers containing cholesterol in their structure are mainly tested for the
transport of anti-cancer [16,17,48,70–72], anti-fungal [58,152], antibacterial [117], and anti-inflammatory
drugs [44,99,117] as well as antioxidants [15,54,117]. By using cholesterol-containing systems, endocytosis
or fusion of siRNA [100] or pDNA [134] is possible. It is worth noting that there are promising studies on
the transmembrane transport of cholesterol-modified siRNA [176].
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AAA, ascorbyl acrylate; Achol, cholesteryl acrylate; acL, acid labile; acS, acid stabile; ADR, Adriamycin;
AECChol, cholesteryl acryloyoxy ethyl carbonate; AEDA, 2-((2-azidoethyl) disulfanyl) ethan-1-amine
hydrochloride; AG, arabinogalactan; AL, alanina; AlgA, alginic acid; AmB, amphotericin B; AMPD,
4-(aminomethyl)piperidine; ATRA, all-trans retinoic acid; ATRP, atom transfer radical polymerization;
(αN3CL), α-azo-caprolactone; BAC, N,N-cystaminebis(acrylamide); BnAAA, benzyl protected ascorbylacrylate;
CABA, cabazitaxel; CA-Spe, cycloamylose with spermine group; Ce6, chlorin e6; CF, 5,6-carboxyfluorescein;
Chol, cholesterol; CholC6, 6-(cholesteryloxycarbonyloxy) hexanol; CholDEGA, cholesteryl diethyleneglycol
acrylate; CholPA, cholestryl 4-pentynoate; CNC, cellulose nanocrystals; coQ10, coenzyme Q10; Cou6,
coumarin 6; CPT, S-(+)-camptothecin; CS, chitosan; CUR, curcumin; Cyc, cyclam; CyDex, cycloldextrin;
CYS, cystamine; DBU, 1,8-diazabicyklo[5.4.0]undek-7-en, DCC, dicyclohexylcarbodiimide; DEAEMA,
2-(diethylamino)ethyl methacrylate; Dex, dextrin; Dg, degree of grafting; DHPA, 3-(2,4-dihydroxyphenyl)propionic
acid; DMA, 1-decyl methacrylate; DMAAm, N,N-dimethylacrylamide; DMAE, 2-(dimethylamino)ethyl
1H-imidazole-1-carboxylate; DMAEMA, 2-(dimethylamino)ethyl methacrylate; DMAP, 4-dimethylaminopyridine,
DMDPTA, N,N-dimethyldipropylenetriamine; DMEDA, N,N-dimethylaminoethylamine; DOX, doxorubicin;
DP7, antimicrobial peptide (VQWRIRVAVIRK); DTXL, docetaxel; DUP1, peptide (CFRPNRAQDYNTN); DUPA,
2-[3-(1,3- dicarboxypropyl) ureido]pentanedioic acid; EDC, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide;
EPO, erythropoietin; F, heptafluorobutyric anhydride; F68, pluronic F68; FA, folic acid; FITC-BSA,
fluorescein isothiocyanate-labeled bovine serum albumin; FITC-CM-Dex, fluorescein isothiocyanate
carboxymethyl dextran; Fmoc, 9-fluorenylmethoxycarbonyl; GA, glutamic acid; GC, glycyrrhetinic acid;
GCS, glycol chitosan; GEM, gemcitabine; HA, hyaluronic acid; hbPG, hyperbranched poly(glycerol); (HE)5,
histidine-glutamic acid decapeptide; HEMA, hydroxyethyl methylacrylate; HIS, histidine; HMW, high
molecular weight; HPbCD, modified 2-hydroxypropyl-b-cyclodextrin macrocycles; HPC, hydroxypropyl
cellulose; HPMA, N-(2-hydroxypropyl) methacrylamide; HSA, human serum albumin; Hz, hydrazone;
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IBU, ibuprofen; ICG, indocyanine green; IMC, indomethacine; IMI, imidazole; LA, lactic acid; LC,
lecithin; LMW, low molecular weight; L-PGA, poly(l-glutamic acid); Lys, lysine; MAA, methacrylic
acid; MAChol, 6-cholesteryloxyhexyl methacrylate; MA-εAhx-Chol, cholest-5-en-3β-yl 6-methacrylamido
hexanohydrazide; MA-εAhx-Chol43, cholest-4-en-3β-yl 6-methacrylamido hexanohydrazide; MA-εAhx-Chol5α,
5α-cholestan-3β-yl 6-methacrylamido hexanohydrazide; MA-εAhx-LevChol, cholest-5-en-3β-yl-4-oxopentano
6-methacrylamido hexanohydrazide; MA-εAhx-NHNH2, 6-methacrylamido hexanohydrazide; MAgala,
6-Omethacryloyl-D-galactopyranose; MBC, 5-methyl-5-benzylcarboxyl-1,3-dioxan-2-one; MMW, medium
molecular weight; morph, 4-(2-aminoethyl) morpholine; MPC, 2-methacryloyloxyethyl phosphorylcholine;
mPEG, (poly(ethylene glycol) methylether methacrylate; MSC, N-methyldiethanolamine-co-diethyl
sebacate; MTC-Chol, cholesteryl 2-(5-methyl-2-oxo-1;3-dioxane-5-carboxyloyloxy)ethyl
carbamate); MTX, mitoxantrone; NAS, N-acryloxysuccinimide; NB, norbornene; NHMAAm,
N-hydroxylmethylacrylamide; NIPAAm, N-isopropylacrylamide; NLS, nuclear localization signal;
NPEM, p-nitrophenyloxycarbonylpoly(ethylene glycol)methacrylate; OC, α-tocopherol; OC-ROP,
organocatalytic ring-opening polymerization; opB-Chol, cholest-5-en-3β-yl-4-(2-oxopropyl)-benzoate;
OS, oxidized-starch; PAA, poly(acrylic acid); PAE, poly(β-amino ester); PAMAM, polyamidoamine;
PAMD, plerixafor/AMD3100; PAMPS, poly(2-(acrylamido)-2-methylpropanesulfonic acid) sodium salt;
PAsp(DET), poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide}; PBA, poly(3-boronophenyl)carbamate; Pbf,
2,2,3,6,7-pentamethyldihydrobenzofuran-5-sulfonyl; PCL, poly(ε-caprolactone); PCLp, polymer-caged lipoplex;
PDL,ω-pentadecanolide; PDLA, poly(d-lactide acid); pDNA, plasmid DNA; PEG, poly(ethylene glycol); PEGMA,
poly(ethylene glycol) methyl ether methacrylate; PEI, polyethylenimines; PEO, poly(ethylene oxide); PEP, peptide;
PF127, Synperonic PE/F 127; PGA, poly(γ-glutamic acid); PHPMAlac, poly(N-(2-hydroxypropyl)methacrylamide
mono/dilactate); PHP, poly[hexamethylene diacrylate-β-(5-amino-1-pentanol)]; PLA, poly(lactic acid); PLGA,
poly(d,l-lactide-co-glycolide); PLGVRK, matrix metalloproteinase-2 responsive peptide; PLL, poly(l-lysine);
PLLA, poly(l-lactide acid); PMMI, poly(monomethyl itaconate); PN, pullulan; PplX, protoporphyrin IX; PSO,
polyoxyethylene sorbitol oleate; PTX, paclitaxel; PURE-G4-OEtOx48, ethoxylated polyurea; PURE-G4-OMeOx48,
methoxylated polyurea; PX, piroxicam; Py, pyrene; PyrePA, pyrenylmethyl 4-pentynoate; QC, quercetin; RAFT,
reversible addition−fragmentation chain transfer polymerization; RAPA, rapamycin; RES, resveratrol; (RG)5,
arginine-glycine decapeptide; RGD, arginylglycylaspartic acid; ROMP, ring-opening metathesis polymerization;
ROP, ring-opening polymerization; rPAA, bioreducible poly(amidoamine); SA, succinic anhydride; SASD,
supercritical CO2-assisted spray drying; SDF, sildenafil; SFB, sorafenib; SS, disulfide bridge; TMC, trimethylene
carbonate; TMX, tamoxifen; α-TOC, α-tocopherol; TPGS, tocopheryl poly(ethylene glycol) succinate; TPL,
triptolide; TPP, triphenylphosphine; uPA, short peptide sequence for urokinase plasminogen activator;
XG, xyloglucan.
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