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Abstract: Organic electronics became an attractive alternative for practical applications in complementary
logic circuits due to the unique features of organic semiconductors such as solution processability and
ease of large-area manufacturing. Bulk heterojunctions (BHJ), consisting of a blend of two organic
semiconductors of different electronic affinities, allow fabrication of a broad range of devices such as
light-emitting transistors, light-emitting diodes, photovoltaics, photodetectors, ambipolar transistors
and sensors. In this work, the charge carrier transport of BHJ films in field-effect transistors is switched
from electron to hole domination upon processing and post-treatment. Low molecular weight n-type
N,N′-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN2) was blended with
p-type poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) and deposited by
spin-coating to form BHJ films. Systematic investigation of the role of rotation speed, solution temperature,
and thermal annealing on thin film morphology was performed using atomic force microscopy,
scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. It has been determined
that upon thermal annealing the BHJ morphology is modified from small interconnected PDI8-CN2

crystals uniformly distributed in the polymer fraction to large planar PDI8-CN2 crystal domains on top
of the blend film, leading to the switch from electron to hole transport in field-effect transistors.

Keywords: organic electronics; bulk heterojunction; charge carrier transport; organic field-effect
transistor; film morphology

1. Introduction

Electronics based on organic semiconductors (OSCs) offer advantages such as mechanical flexibility,
low cost and large-area fabrication by solution processing [1–5]. Organic light-emitting diodes, solar
cells, memory devices and organic field-effect transistors (OFETs) are constantly improved via synthesis
of new semiconductors as well as development of novel device architectures, thin-film processing and
postprocessing techniques [5–10]. OFETs exhibiting charge carrier mobilities comparable to amorphous
silicon (>1 cm2/Vs) became attractive for future applications in electronics, circumventing conventional
vacuum and photolithographic fabrication processes. Especially unipolar [11,12] and ambipolar [13–16]
OFETs became important for complementary logic circuits and inverters. Although most OSCs
intrinsically conduct electrons and holes, the vulnerability of electron carriers to ambient conditions
(i.e., the detrimental effects of O2 and H2O) results in serious degradation of the n-type transport
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in devices [4,17]. Additionally, an alignment of the electrode work function with the HOMO and
LUMO levels of the semiconductor is necessary for an efficient injection of electrons and holes into
the active layer [18–20]. This means that the type of unipolar conduction, n- or p-type, of an organic
semiconducting film is fixed after the device fabrication and a subsequent modification is challenging
due to the misalignment of the metal work function.

An alternative approach consists of blending two organic semiconductors into a bulk heterojunction
(BHJ) morphology with phase separated p- and n-type fractions [16,21,22]. This method is used
frequently not only in light emitting transistors, light-emitting diodes and photovoltaics [22–27],
but also applied to achieve a balanced transport of electrons and holes in ambipolar OFETs [28]. In most
cases, BHJs are fabricated from a solution of polymer−polymer or polymer−low molecular weight
semiconductor blend. The BHJ morphology strongly determines the charge carrier transport in OFETs.
Since the charge carrier transport in OFETs occurs parallel to the substrate, the BHJ interface needs to
be adapted accordingly to avoid scattering of charges and interruption in the charge carrier path [28].
Further essential requirements are a contact of each semiconductor phase with the source and drain
electrodes and a continuous percolation path for each type of charge carrier. Most studies focus on the
impact of the blend ratio of the semiconducting components on the BHJ film morphology and charge
carrier transport in OFETs [28–30]. However, the influence of processing parameters has not been
studied well so far.

So far, BHJs have only been used to fabricate ambipolar OFETs [16,28,31] with a balanced
transport of holes and electrons. In our novel approach, BHJs are exploited to control the type
of unipolar conduction by tuning the blend morphology, even after device fabrication. Moreover,
we demonstrate for the first time the possibility of switching from unipolar electron to unipolar
hole transport in the solution-processed BHJ OFETs. The transition from n- to p-type device
behavior is achieved by well-controlled changes in the BHJ morphology induced through thermal
post-treatment. The possibility of switching the conduction type in solution-processed OFETs by
post-treatment [32] is important for the fabrication of logic circuits such as complementary inverters.
In this work, we demonstrate the possibility of switching from electron to hole transport in
solution-processed BHJ OFETs. The transition from n- to p-type device behavior is achieved by
controlled changes in the BHJ morphology induced through thermal post-treatment. Blends of
p-type poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene] (PBTTT-C14) and n-type low
molecular weight N,N′-bis(n-octyl)-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) (PDI8-CN2)
were solution cast to form PBTTT-C14:PDI8-CN2 BHJ films in OFETs. Both compounds were
chosen due to their chemical stability, good field-effect mobility, and solution processability [33–38].
Systematic variation of rotation speed, solution temperature, and thermal annealing allowed the
identification of key processing parameters to control the BHJ film morphology. It was observed that
a prolonged drying time and lower spin-coating speed facilitated the formation of larger PDI8-CN2

crystals, while a high solution temperature led to the growth only of small PDI8-CN2 crystals immersed
in the polymer fraction. Thermal annealing after the film deposition significantly changed the blend
morphology and induced a switch from electron to hole transport in OFETs.

2. Materials and Methods

PBTTT-C14 was purchased from Sigma-Aldrich (Saint Louis, MO, USA) and PDI8-CN2 as ActivInk
N1200 from Polyera Corporation (Skokie, IL, USA) (Figure 1a,b). Both compounds were used as
received. The HOMO level of −5.1 eV for PBTTT-C14 [39] and LUMO of −4.3 eV for PDI8-CN2 [40] were
properly aligned with the work function of gold (WF = −5.1 eV) for injection of electrons and holes into
the BHJ film (Figure 1c). The energy gap between these levels was less than 1 eV preventing formation
of the charge carrier traps at semiconductor/electrode interface [16,20,41]. It has been reported that the
effective energy gap allowing charge transfer and increase in the conductivity is below 0.6 eV [42,43].
Due to the relatively high energy gap of 0.8 eV between HOMO of PBTTT-C14 (−5.1 eV) and LUMO of
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PDIC8-CN2 (−4.3 eV) a charge transfer was excluded in our case. A concentration of 20 mg/mL in
1,2-dichlorobenzene of PBTTT-C14 and PDI8-CN2 (50/50 wt %) was used for the solution processing.
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Figure 1. Chemical structures of (a) p-type PBTTT-C14, (b) n-type PDI8-CN2 and (c) an energy level
diagram of the bulk heterojunction (BHJ) organic field-effect transistor (OFET).

Highly p-doped silicon wafers with thermally grown 300 nm silicon dioxide (capacitance of
11 nF cm−2) were used as substrates for the device fabrication. The substrates were ultrasonically
cleaned using standard procedure (15 min acetone, 15 min isopropanol) and dried with N2. BHJ films
were deposited by spin-coating at different rotation speeds ranging from 1000 to 6000 rpm at a
solution temperature from 80 to 180 ◦C in the glovebox in nitrogen atmosphere. Samples fabricated at
different solution temperatures were annealed on a hotplate in the glovebox for 1 h at 140 ◦C. For the
investigation of the post-treatment on the BHJ morphology, samples fabricated at 3000 and 4000 rpm
from solution at 100 and 120 ◦C were annealed at 200 ◦C for 2 h on a hotplate in the glovebox. For one
set of samples fabricated at 4000 rpm from solution at 100 ◦C, the substrates were additionally modified
by octadecyltrichlorosilane (OTS) (Sigma Aldrich Chemie Gmbh, Munich, Germany). After standard
cleaning, these substrates were immersed in piranha solution (a mixture of 3:7 (v/v) of 30% H2O2 and
98% H2SO4) for 30 min. Subsequently, the silicon wafers were rinsed a few times with deionized water
and methanol, dried with the nitrogen flow and immersed in an unstirred solution of 0.5 % OTS in a
mixture of chloroform and hexane (1:4 (v/v)) for 30 min. After the modification, the substrates were
additionally rinsed with chloroform and dried with nitrogen flow.

Bottom gate top contact (BGTC) configuration was employed for the BHJ OFETs. Source-drain
gold electrodes were thermally evaporated through shadow masks to the nominal thickness of 80 nm
(controlled using quartz crystal microbalance). OFETs with channel width (W) of 1 mm and variable
channel lengths (L) of 10–30 µm were fabricated and further characterized using Keithley 4200
source meter (Keithley Instruments, Inc., Cleveland, OH, USA) connected to a needle-probe station.
Charge carrier mobilities were calculated from the transfer characteristics in the saturation regime,
using the following formula [44]:

µsat =
2IDSL

WCi(VG −Vth)
2

where µsat stands for the charge carrier mobility, IDS is the drain current, W the channel width, L the
channel length, Ci the capacitance of gate dielectric, VG the gate voltage and Vth the threshold voltage.

The LEO Gemini 1530 Scanning Electron Microscope (SEM) (Carl Zeiss AG, Oberkochen,
Deutschland) and Veeco Dimension 3100 Atomic Force Microscope (AFM) (Digital Instruments,
Santa Barbara, CA, USA) were used to investigate the morphology and thickness of the BHJ thin films.
Grazing incidence wide-angle X-ray scattering (GIWAXS) was performed at the DELTA Synchrotron
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(Dortmund, Germany), beamline BL09. The photon energy was set to 10 keV (λ = 1.24 Å). During the
measurements, the samples were under vacuum (~1 mbar). The incident angle (αi) of the X-ray beam
was adjusted individually for each sample in the range of 0.19◦–0.20◦. The scattered intensity was
recorded by a 2D image plate (MAR345, marXperts GmbH, Norderstedt, Germany). The exposure
time was 800 s. The q-range (q = 4 × π × sin θ × λ−1) was calibrated using silver behenate standard.
The data was processed and analyzed using Datasqueeze (University of Pennsylvania, Philadelphia,
PA, USA) and OriginPro (OriginLab Corporation, Northampton, MA, USA).

3. Results and Discussion

3.1. Role of Rotation Speed

The molecular organization and the crystallization kinetics of the conjugated molecules can be
controlled during spin-coating parameters through tuning the amount of residual solvent after the
film formation. Since the amount of solvent and drying time are closely related to the spin-coating
speed, in this study, the BHJ films were deposited at various rotation speeds between 1000–6000 rpm.
A solution temperature of 100 ◦C ensured sufficient dissolution and mixing of the semiconductors.
Scanning electron microscopy (SEM) images in Figure 2 show the effect of the rotation speed on
the crystallization of PDI8-CN2 at the top film surface in the presence of PBTTT-C14. Although the
rotation speed did not affect the PBTTT-C14 morphology, a higher rotation speed reduced the amount
of solution remaining on the substrate during spin-coating and decreased the drying time leading to
the growth of only small PDI8-CN2 crystals. Additionally, less solvent remaining in the blend lowered
the recrystallization process.

As evident from Figure 2, in nonannealed BHJ films the PDI8-CN2 crystal size decreased
with increasing rotation speed. Concerning the BHJ formation, the interconnected and uniformly
distributed PDI8-CN2 crystals in the PBTTT-C14 fraction ensured an electron transport in the OFETs [28].
Typical n-type transfer characteristics are presented in Figure S1. Despite evident differences in BHJ
morphology by varying the rotation speed, only minor changes in field-effect mobility were observed
(Table S1). The highest n-type mobility of 2 × 10−4 cm2/(Vs) was determined for rotation speeds of
3000 and 4000 rpm. In these conditions, the optimum size and distribution of the PDI8-CN2 crystals
created the necessary pathways for electrons. However, no hole transport was observed for this series
of transistors.
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Figure 2. SEM images of PBTTT-C14:PDI8-CN2 BHJ films obtained by spin-coating from a 100 ◦C hot
solution at rotation speeds of (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d) 4000 rpm, (e) 5000 rpm,
(f) 6000 rpm.
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3.2. Impact of Solution Temperature

The solution is usually heated to improve the solubility of semiconductors and to prevent
aggregation prior to deposition [34] or to accelerate the solvent evaporation. In this study, the effect of
solution temperature, which varied from 80 to 180 ◦C, on the BHJ morphology was investigated for the
rotation speed of 3000 rpm leading to the highest n-type mobility within the series. Figure 3 shows
atomic force microscopy (AFM) images of the surface of BHJ films obtained for different solution
temperatures at 3000 rpm. After the deposition, each sample was thermally annealed at 140 ◦C for 1 h
to completely remove solvent residues.
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The increase in solution temperature from 80 to 140 ◦C and subsequent annealing did not affect
the surface morphology of the PBTTT-C14:PDI8-CN2 BHJ. However, for films cast at 160 and 200 ◦C,
the deposition temperature was higher than the annealing temperature. For this reason, PDI8-CN2

could not recrystallize during the post-treatment. Additionally, the increase of the solution temperature
accelerated the solvent evaporation during the deposition. For temperatures above 140 ◦C, the growth
kinetics of PDI8-CN2 were much faster leading to significantly smaller crystal needles immersed in the
PBTTT-C14 phase.

Despite the interconnected PDI8-CN2 crystals in the annealed BHJ films for solution temperatures
below 160 ◦C, only a hole transport was found (Figure S2 and Table S2). Although the surface
morphology of the BHJs did not differ significantly in the temperature range of 80–140 ◦C, a maximum
hole charge carrier mobility of 1 × 10−3 cm2/(Vs) was determined for 100 ◦C (Figure 4). For samples
cast above 140 ◦C no field effect was observed. Evident changes in blend morphology were mainly
ascribed to the size of PDI8-CN2 crystals, while the PBTTT-C14 morphology remained unaffected.
It was assumed that despite similarities in the film topography, the solution temperature influenced
the morphology and molecular organization of the bulk BHJ film. Since the charge carrier transport in
OFETs occurs near the dielectric/semiconductor interface [45], differences in the interface morphology
can lead to changes in the field-effect mobility.
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3.3. Effect of Thermal Annealing

The annealing process is mostly used to remove residual solvent and to improve the molecular
organization in thin organic semiconducting films before their use in electronic devices [16,46]. For a
better understanding of the change from electron to hole transport in the BHJ films observed after
thermal post-treatment, the annealing temperature was increased to 200 ◦C (Figure S3) above the
PBTTT-C14 transition to the liquid crystal phase [35–37]. For an annealing temperature of 140 ◦C,
which is lower than the solution temperatures of 160 and 200 ◦C, noticeable differences in the
PBTTT-C14:PDI8-CN2 morphology were observed (Figure 3). However, if the annealing temperature
of 200 ◦C was higher than the solution temperature, the film morphology of the BHJ was independent
of the lower solution temperature (Figure S3). Although the morphology was similar to blend films
annealed at 140 ◦C, the elevated temperature of 200 ◦C enabled recrystallization of PDI8-CN2 and
also in blends cast at 160 and 200 ◦C. The PBTTT-C14 polymer backbones became more mobile at film
annealing at 200 ◦C above the liquid crystal phase transition, facilitating a reorganization of PDI8-CN2

into needle-like crystals on the surface of the BHJ film.
The morphology transition of the optimized-BHJ films (fabricated at 3000 rpm from solutions at 100

or 120 ◦C) upon annealing is evident from SEM images in Figure 5. Before annealing, the blends revealed
a network of interconnected PDI8-CN2 crystals distributed in the PBTTT-C14 fraction (Figures 2 and 5a,c).
Annealing at 200 ◦C promoted growth of the PDI8-CN2 crystals and led to evident phase-separation
of blend components as marked by arrows in Figure 5d. The recrystallization of PDI8-CN2 upon
annealing resulted in larger crystals (Figure 5b,d) as confirmed by GIWAXS results (Figure 6).



Polymers 2020, 12, 2662 7 of 13

Polymers 2020, 10, x 7 of 14 

 

 
Figure 5. SEM images of PBTTT-C14:PDI8-CN2 BHJ films cast at solution temperatures of (a,b) 100 °C 
and (c,d) 120 °C; (a,c) as-cast, (b,d) after thermal annealing at 200 °C (the two phase separated fractions 
are indicated). 

The SEM images (Figure 5a,c) show small PDI8-CN2 crystals in the as-cast films as confirmed by 
the low intensity of corresponding GIWAXS peaks and their relatively broad azimuthal distribution 
as well as Scherrer’s widths (Figure 6). Thermal annealing of the films at 200 °C initiated a crystal 
growth which was manifested by a significant increase of intensity as well as narrowing of the 
azimuthal distribution and Scherrer breadths of the PDI8-CN2 peaks visible in the GIWAXS patterns 
(Figure 6). A similar effect was observed in P3HT-PDI8-CN2 blends where an Ostwald ripening-like 
aggregation of smaller crystals forming eventually large crystal domains was reported [47]. Heating 
the film above the liquid crystal phase transition of PBTTT-C14 reduced the viscosity of the film, which 
probably facilitated migration of PDI8-CN2 to its surface and enabled effective crystal growth on top. 
As revealed by both SEM and GIWAXS (Figures 5 and 6) a crystal growth through Ostwald ripening 
enhanced the planar growth of PDI8-CN2 crystals on top of the BHJ films. In addition to changes in 
the PDI8-CN2 morphology, annealing of the films influenced the crystallinity of the polymer. The 
GIWAXS patterns in Figure 6 reveal an ordered structure and edge-on dominated chain orientation 
of PBTTT-C14 both in pure polymer and in the PBTTT-C14:PDI8-CN2 films. The positions of the 
meridional (h00) Bragg series (Figure 6a) and the equatorial diffuse reflection profile corresponding 
to the π-stacking distance (dπ-π) suggested that alkyl side chains of PBTTT-C14 were (at least partly) 
twisted causing a large separation between the backbones [46]. Deconvolution of the diffuse 
reflection in the range 1.3–1.7 Å−1 revealed the existence of two components: dπ-π1 = 4.4 Å and dπ-π2 = 
3.9 Å, which corresponded to twisted and non-twisted side chain configurations, respectively, in the 
PBTTT-C14 domains [48]. Annealing of the PBTTT-C14 film did not cause significant changes in the 
polymer packing but caused the polymer crystal domains to grow, mainly along the a-lattice vector. 
That growth was manifested by narrowing of the out-of-plane (meridional) diffraction peaks (cf. 
Figure 6a,b). Addition of PDI8-CN2 and formation of the BHJ films did not change the crystal packing 
of the polymer, but significantly reduced the PBTTT-C14 average crystal domain size in the as-cast 
films. This decrease can be concluded from two facts: (i) the meridional peaks for PBTTT-C14 were 
significantly broader in the case of BHJ film than for the pure polymer (Figure 6a,c), and (ii) the higher 
order (300 and 400) peaks were missing in the pattern of the as-cast BHJ film (Figure 6c). The strong 
amorphous halo visible in Figure 6c suggested that in the as-cast BHJ films a large fraction of PBTTT-
C14 remained disordered. Annealing of the BHJ films caused crystals to grow. Comparison of Figure 
6b,d indicated that the h00 (meridional) peaks observed for the annealed pure PBTTT-C14 film (Figure 

Figure 5. SEM images of PBTTT-C14:PDI8-CN2 BHJ films cast at solution temperatures of (a,b) 100 ◦C
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The SEM images (Figure 5a,c) show small PDI8-CN2 crystals in the as-cast films as confirmed by
the low intensity of corresponding GIWAXS peaks and their relatively broad azimuthal distribution as
well as Scherrer’s widths (Figure 6). Thermal annealing of the films at 200 ◦C initiated a crystal growth
which was manifested by a significant increase of intensity as well as narrowing of the azimuthal
distribution and Scherrer breadths of the PDI8-CN2 peaks visible in the GIWAXS patterns (Figure 6).
A similar effect was observed in P3HT-PDI8-CN2 blends where an Ostwald ripening-like aggregation
of smaller crystals forming eventually large crystal domains was reported [47]. Heating the film above
the liquid crystal phase transition of PBTTT-C14 reduced the viscosity of the film, which probably
facilitated migration of PDI8-CN2 to its surface and enabled effective crystal growth on top. As revealed
by both SEM and GIWAXS (Figures 5 and 6) a crystal growth through Ostwald ripening enhanced the
planar growth of PDI8-CN2 crystals on top of the BHJ films. In addition to changes in the PDI8-CN2

morphology, annealing of the films influenced the crystallinity of the polymer. The GIWAXS patterns
in Figure 6 reveal an ordered structure and edge-on dominated chain orientation of PBTTT-C14 both in
pure polymer and in the PBTTT-C14:PDI8-CN2 films. The positions of the meridional (h00) Bragg series
(Figure 6a) and the equatorial diffuse reflection profile corresponding to the π-stacking distance (dπ-π)
suggested that alkyl side chains of PBTTT-C14 were (at least partly) twisted causing a large separation
between the backbones [46]. Deconvolution of the diffuse reflection in the range 1.3–1.7 Å−1 revealed
the existence of two components: dπ-π1 = 4.4 Å and dπ-π2 = 3.9 Å, which corresponded to twisted
and non-twisted side chain configurations, respectively, in the PBTTT-C14 domains [48]. Annealing of
the PBTTT-C14 film did not cause significant changes in the polymer packing but caused the polymer
crystal domains to grow, mainly along the a-lattice vector. That growth was manifested by narrowing of
the out-of-plane (meridional) diffraction peaks (cf. Figure 6a,b). Addition of PDI8-CN2 and formation
of the BHJ films did not change the crystal packing of the polymer, but significantly reduced the
PBTTT-C14 average crystal domain size in the as-cast films. This decrease can be concluded from two
facts: (i) the meridional peaks for PBTTT-C14 were significantly broader in the case of BHJ film than
for the pure polymer (Figure 6a,c), and (ii) the higher order (300 and 400) peaks were missing in the
pattern of the as-cast BHJ film (Figure 6c). The strong amorphous halo visible in Figure 6c suggested
that in the as-cast BHJ films a large fraction of PBTTT-C14 remained disordered. Annealing of the BHJ
films caused crystals to grow. Comparison of Figure 6b,d indicated that the h00 (meridional) peaks
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observed for the annealed pure PBTTT-C14 film (Figure 6b) were broader than those for the annealed
BHJ film (Figure 6d). This suggested that the size of polymer crystal domains in the annealed BHJ film
was larger than in the pure PBTTT-C14 film.
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coated at 3000 rpm from a 100 ◦C hot solution (a) before and (b) after annealing at 200 ◦C and
PBTTT-C14:PDI8-CN2 spin coated at 3000 rpm from solution at 100 ◦C (c) before and (d) after annealing
at 200 ◦C. Numbers in the pattern (a) denote the peaks corresponding to h00 Bragg series of PBTTT-C14.

The electrical evaluation of the BHJ films before and after thermal annealing at 200 ◦C confirmed
the change of conductivity from electron to hole transport. Figure 7 shows output characteristics for
the PBTTT-C14:PDI8-CN2 blend film before and after annealing at 200 ◦C (transfer characteristics are
presented in Figure S5). The strongest difference in electrical properties before and after annealing
was observed for the rotation speed of 4000 rpm and solution temperature of 100 ◦C (Figure 7 and
Figure S4). Before annealing, electron transport was dominating, while after annealing only hole
transport was observed.

In the BHJ films two possible conductive paths were formed: for holes through the PBTTT-C14

phase and for electrons via the network of PDI8-CN2 crystals. Before annealing, dominant electron
transport was established by the PDI8-CN2 crystals, while at the same time the hole conduction was
limited due to disordered PBTTT-C14. When the BHJ film was annealed at 200 ◦C in the liquid crystalline
phase of PBTTT-C14, the order of the polymer chains was improved, especially in the π-stacking
direction [36,37]. The phase separation between PBTTT-C14 and PDI8-CN2 was also improved leading
to the formation of larger PDI8-CN2 crystals which were visible in the SEM images (Figure 5b,d). On the
other hand, PDI8-CN2 recrystallized into crystal sizes below 25 µm which was smaller than the applied
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channel length of the OFETs. Because the PDI8-CN2 crystals were too small to connect the source and
drain electrodes, electron transport was not observed. Before annealing, an electron charge carrier
mobility of 1 × 10−4 cm2/(Vs) was determined, while after annealing a hole mobility of 2 × 10−3 cm2/(Vs)
was found. Based on the S-shape of the output characteristics in the positive range of the applied
voltage (Figure 7a) the electron transport before annealing could probably be improved by reducing
the contact resistance and lowering the charge carrier trapping at dielectric/semiconductor interface.Polymers 2020, 10, x 9 of 14 
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To improve the transistor operation a self-assembled monolayer (SAM) treatment was applied in
order to decrease the electron trapping at the semiconductor/dielectric interface. Figure 8 presents
output characteristics of OFETs in BGTC configuration fabricated on the Si/SiO2 substrate modified by
octadecyltrichlorosilane (OTS). The same switching behavior from electron to hole transport upon
annealing was observed. The OTS monolayer improved the electron transport as evident from
the maximum drain current being almost two orders of magnitude higher than without surface
modification. Moreover, an evident saturation region emerged in the output characteristics at lower
source-drain voltages. The improved electron charge carrier mobility of 1.5 × 10−2 cm2/(Vs) was
only one order of magnitude lower than for PDI8-CN2 single crystal devices [38]. At the same time,
the annealed BHJ films on OTS showed a similar hole mobility of 1 × 10−3 cm2/(Vs) to devices without
surface modification (Figure S6, Table S3). The shape of the p-type output characteristics after annealing
indicated additional contact resistance (Figure 8d). Reduced trapping and enhanced operation of the
n-type semiconductor indicated problems with the hole injection into PBTTT-C14 [18]. The lower hole
mobility in the blend films in comparison to literature values for plain PBTTT-C14 [35] was related to
the presence of PDIC8-CN2 decreasing the polymer order as proven by GIWAXS (Figure 6).



Polymers 2020, 12, 2662 10 of 13

Polymers 2020, 10, x 10 of 14 

 

annealing indicated additional contact resistance (Figure 8d). Reduced trapping and enhanced 
operation of the n-type semiconductor indicated problems with the hole injection into PBTTT-C14 
[18]. The lower hole mobility in the blend films in comparison to literature values for plain PBTTT-
C14 [35] was related to the presence of PDIC8-CN2 decreasing the polymer order as proven by 
GIWAXS (Figure 6). 

 

Figure 8. Output characteristics of OFETs based on PBTTT-C14:PDI8-CN2 BHJ film fabricated at 4000 
rpm from 100 °C hot solution on OTS modified Si/SiO2 substrate for (a,b) n- and (c,d) p-type regimes; 
(a,c) before and (b,d) after annealing at 200 °C. 

4. Conclusions 

BHJ films were solution-processed using a blend of two semiconductors, p-type polymer 
PBTTT-C14 and n-type small molecule PDI8-CN2 applied as an active layer in OFETs. The thin film 
morphology depended on rotation speed, solution temperature and thermal annealing. In the as-cast 
BHJ films, the semiconductors phase separated into a disordered PBTTT-C14 phase and a PDI8-CN2 
crystal network leading to a unipolar electron transport in OFETs. During annealing, less than 25 µm 
long PDI8-CN2 crystals were grown on the top of the film surface. Since the length of the crystals was 
smaller than the channel length of the OFETs, the electron transport between source and drain 
electrodes was interrupted, while the hole conduction was established through the PBTTT-C14 
polymer phase. By changing the processing parameters of the BHJ films, especially by the post-
treatment, the transistor operation is switched from unipolar n-type to unipolar p-type. This concept 
can be further developed for a new generation of high performance and unipolar blend films for 
complementary circuits. Changing the unipolarity of OFETs after fabrication would simplify the 
fabrication of inverters on large-area substrates. Large-area substrates could be covered by the active 
BHJ film in one solution-processing step and then subsequently annealed leading to the array of p- 
and n-type devices. 
  

Figure 8. Output characteristics of OFETs based on PBTTT-C14:PDI8-CN2 BHJ film fabricated at
4000 rpm from 100 ◦C hot solution on OTS modified Si/SiO2 substrate for (a,b) n- and (c,d) p-type
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4. Conclusions

BHJ films were solution-processed using a blend of two semiconductors, p-type polymer
PBTTT-C14 and n-type small molecule PDI8-CN2 applied as an active layer in OFETs. The thin
film morphology depended on rotation speed, solution temperature and thermal annealing. In the
as-cast BHJ films, the semiconductors phase separated into a disordered PBTTT-C14 phase and a
PDI8-CN2 crystal network leading to a unipolar electron transport in OFETs. During annealing,
less than 25 µm long PDI8-CN2 crystals were grown on the top of the film surface. Since the length
of the crystals was smaller than the channel length of the OFETs, the electron transport between
source and drain electrodes was interrupted, while the hole conduction was established through
the PBTTT-C14 polymer phase. By changing the processing parameters of the BHJ films, especially
by the post-treatment, the transistor operation is switched from unipolar n-type to unipolar p-type.
This concept can be further developed for a new generation of high performance and unipolar blend
films for complementary circuits. Changing the unipolarity of OFETs after fabrication would simplify
the fabrication of inverters on large-area substrates. Large-area substrates could be covered by the
active BHJ film in one solution-processing step and then subsequently annealed leading to the array of
p- and n-type devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/12/11/2662/s1,
Figure S1. Transfer characteristics (VDS = +80 V) of OFETs based on PBTTT-C14:PDI8-CN2 composites obtained
by spin-coating for 100 ◦C solution and: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d) 4000 rpm, (e) 5000 rpm,
(f) 6000 rpm rotation speeds. Table S1. Field-effect mobility values for PBTTT-C14:PDI8-CN2 composites obtained
by spin-coating for 100 ◦C solution and different rotation speeds. Figure S2. Transfer characteristic (VDS = −80 V)
of OFETs based on PBTTT-C14:PDI8-CN2 composites fabricated with rotation speed of 4000 rpm and solutions
at (a) 80 ◦C, (b) 100 ◦C, (c) 120 ◦C, (d) 140 ◦C. Table S2. Field-effect mobility values for PBTTT-C14:PDI8-CN2
composites fabricated with rotation speed of 4000 rpm and different solution temperatures. Figure S3. AFM images
of solution temperature dependence for PBTTT-C14:PDI8-CN2 heterojunction composites additionally annealed at
200 ◦C. PBTTT-C14:PDI8-CN2 films obtained at: (a) 80 ◦C, (b) 100 ◦C, (c) 120 ◦C, (d) 140 ◦C, (e) 160 ◦C, (f) 180 ◦C.

http://www.mdpi.com/2073-4360/12/11/2662/s1
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Figure S4. Transfer characteristic (VDS = −80 V) of OFETs based on PBTTT-C14:PDI8-CN2 composite with rotation
speed of 3000 for various solution temperature after annealing at 140 ◦C. Figure S5. Transfer characteristic of
OFETs based on PBTTT-C14:PDI8-CN2 composite with rotation speed of 4000 rpm (a) p-type (VDS = −80 V) and
(b) n-type (VDS = +80 V) behavior. Figure S6. Transfer characteristic of OFETs based on PBTTT-C14:PDI8-CN2
composite fabricated with rotation speed of 4000 rpm on substrate modified by OTS; (a) before annealing—n-type
type (VDS = +60V) (b) annealed at 200 ◦C—p-type (VDS = −60V). Table S3. Field-effect mobility values for
PBTTT-C14:PDI8-CN2 composites fabricated with rotation speed of 4000 rpm on substrate modified by OTS.
Figure S6. Vertical (qz/vert.—upper plots) and horizontal (qx,y, horiz—lower plots) integrations of GIWAXS
patterns shown in Figure 6 in the main part of the paper. The integrations correspond to PBTTT-C14 (a),
annealed PBTTT-C14 (b), PBTTT-C14:PDI8-CN2 blend (c), and the annealed PBTTT-C14:PDI8-CN2 (d). In the
horizontal integrations of PBTTT-C14 the deconvolution of patterns is included. Open points correspond to the
experimental data, color lines show contributions of the π-π—stacking components and amorphous halos whereas
black solid line correspond to the fitted data. If not specified otherwise Miller hkl indices correspond to crystal
structure of PBTTT-C14. Table S4. PBTTT-C14 crystal structure parameters extracted from GIWAXS data shown in
Figure S6. qmax, d, and t denote, respectively, peak position, interplanar spacing and crystal coherence length
(Scherrer coherence) 100 and π-π subscripts correspond to 100 interplanar distance and π-π stacking distance.
Since in PBTTT-C14 there are two distinct π-π systems (see main text for details) there are π-π1 and π-π2 symbols.
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