Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Porous (PVDF-SiO2) Membrane-Phase Inversion Method
2.3. Preparation of the P2-Type Na-Fe-Mn-O2 Cathode Material
2.4. Physical Characterization Techniques
2.5. Electrochemical Measurements of Polymer Electrolyte Membrane
3. Results and Discussion
3.1. Surface Morphology Analysis
3.2. Electrochemical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Delmas, C. Sodium and Sodium-Ion Batteries: 50 Years of Research. Adv. Energy Mater. 2018, 8, 1703137. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion Batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.P.; Yu, L.; Wang, X.; Srinivasan, M.; Xu, Z.J. Recent Developments in Electrode Materials for Sodium-Ion Batteries. J. Mater. Chem. A 2015, 3, 9353–9378. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries. Adv. Energy Mater. 2012, 2, 710–721. [Google Scholar] [CrossRef]
- Pan, H.; Hu, Y.S.; Chen, L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360. [Google Scholar] [CrossRef]
- Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L.F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem. Int. Ed. 2015, 54, 3431–3448. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Myung, S.-T.; Sun, Y.-K. Sodium-Ion Batteries: Present and Future. Chem. Soc. Rev. 2017, 46, 3529–3614. [Google Scholar] [CrossRef] [Green Version]
- Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative Electrodes for Na-Ion Batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028. [Google Scholar] [CrossRef]
- Gauthier, M.; Bélanger, A.; Bouchard, P.; Kapfer, B.; Ricard, S.; Vassort, G.; Armand, M.; Sanchez, J.-Y.; Krause, L. Large lithium polymer battery development The immobile solvent concept. J. Power Sources 1995, 54, 163–169. [Google Scholar] [CrossRef]
- Kim, J.I.; Choi, Y.; Chung, K.Y.; Park, J.H. A Structural Gel-Polymer Electrolyte for Sodium Ion Batteries. Adv. Funct. Mater. 2017, 27, 1701768. [Google Scholar] [CrossRef]
- Luo, X.; Pan, W.; Liu, H.; Gong, J.; Wu, H. Glass Fiber Fabric Mat as the Separator for Lithium-Ion Battery with High Safety Performance. Ionics 2015, 21, 3135–3139. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiao, S.; Shi, Y.; Yang, Y.; Hou, Y.; Wu, Y. A Composite Gel Polymer Electrolyte with High Performance Based on Poly(Vinylidene Fluoride) and Polyborate for Lithium Ion Batteries. Adv. Energy Mater. 2013, 4, 1300647. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, B.; Huang, X.; Chen, S.; Wang, G. Honeycomb like Porous Gel Polymer Electrolyte Membrane for Lithium Ion Batteries with Enhanced Safety. Sci. Rep. 2014, 4, 6007. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Qiu, X.; Tang, X.; Zhu, W.; Chen, L. PVDF–PEO blends based microporous polymer electrolyte: Effect of PEO on pore configurations and ionic conductivity. J. Power Sources 2006, 157, 501–506. [Google Scholar] [CrossRef]
- Lang, W.Z.; Xu, Z.L.; Yang, H.; Tong, W. Preparation and characterization of PVDF–PFSA blend hollow fiber membrane. J. Membr. Sci. 2007, 288, 123–131. [Google Scholar] [CrossRef]
- Chiang, C.Y.; Shen, Y.J.; Reddy, M.J.; Chu, P.P. Complexation of poly(vinylidene fluoride): LiPF6 solid polymer electrolyte with enhanced ion conduction in ‘wet’form. J. Power Sources 2003, 123, 222–229. [Google Scholar] [CrossRef]
- Mohamed, N.S.; Arof, A.K. Investigation of electrical and electrochemical properties of PVDF-based polymer electrolytes. J. Power Sources 2004, 132, 229–234. [Google Scholar] [CrossRef]
- Yan, L.; Li, Y.S.; Xiang, C.B.; Xianda, S. Effect of nano-sized Al2O3-particle addition on PVDF ultra filtration membrane performance. J. Membr. Sci. 2006, 276, 162–167. [Google Scholar] [CrossRef]
- Yang, Y.N.; Zhang, H.X.; Wang, P.; Zheng, Q.; Li, J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J. Membr. Sci. 2007, 288, 231–238. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Chang, Z.; Li, M.X.; Wang, X.W.; Wu, Y.P. A sodium ion conducting gel polymer electrolyte. Solid State Ion. 2015, 269, 1–7. [Google Scholar] [CrossRef]
- Kumar, D.; Hashmi, S.A. Ion transport and ion–filler-polymer interaction in poly(methyl methacrylate)-based, sodium ion conducting, gel polymer electrolytes dispersed with silica nanoparticles. J. Power Sources 2010, 195, 5101–5108. [Google Scholar] [CrossRef]
- Harshlata; Mishra, K.; Rai, D.K. Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique. In AIP Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2018; Volume 1942, p. 140050. [Google Scholar]
- Janakiraman, S.; Padmaraj, O.; Ghosh, S.; Venimadhav, A. A porous poly(vinylidene fluoride-co-hexafluoropropylene) based separator-cum-gel polymer electrolyte for sodium-ion battery. J. Electroanal. Chem. 2018, 826, 142–149. [Google Scholar] [CrossRef]
- Wu, C.G.; Lu, M.I.; Chuang, H.J. PVDF-HFP/P123 hybrid with meso pores: A new matrix for high-conducting, low-leakage porous polymer electrolyte. Polymer 2005, 46, 5929–5938. [Google Scholar] [CrossRef]
- Cheng, C.L.; Wan, C.C.; Wang, Y.Y. Preparation of porous, chemically cross-linked, PVDF-based gel polymer electrolytes for rechargeable lithium batteries. J. Power Sources 2004, 134, 202–210. [Google Scholar] [CrossRef]
- Kim, J.W.; Cho, W.J.; Ha, C.S. Morphology, crystalline structure, and properties of poly(vinylidene fluoride)/silica hybrid composites. J. Polym. Sci. B Polym. Phys. 2002, 40, 19–30. [Google Scholar] [CrossRef]
- Buckley, J.; Cebe, P.; Cherdack, D. Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 2006, 47, 2411–2422. [Google Scholar] [CrossRef]
- Yu, L.Y.; Xu, Z.L.; Shen, H.M.; Yang, H. Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method. J. Membr. Sci. 2009, 337, 257–265. [Google Scholar] [CrossRef]
- Song, J.Y.; Cheng, C.L.; Wang, Y.Y.; Wan, C.C. Microstructure of poly(vinylidene fluoride)-based polymer electrolyte and its effect on transport properties. J. Electrochem. Soc. 2002, 149, A1230–A1236. [Google Scholar] [CrossRef]
- Caimi, S.; Wu, H.; Morbidelli, M. PVdF-HFP and Ionic Liquid-Based, Freestanding Thin Separator for Lithium-Ion Batteries. ACS Appl. Energy Mater. 2018, 1, 5224–5232. [Google Scholar] [CrossRef]
- Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl-Nmethylpyrrolidinium bis (trifluoromethanesulfonyl)-imide ionic liquid. J. Power Sources 2010, 195, 559–566. [Google Scholar] [CrossRef]
- Caimi, S.; Klaue, A.; Wu, H.; Morbidelli, M. Effect of SiO2 nanoparticles on the performance of PVdF-HFP/ionic liquid separator for lithium-ion batteries. Nanomaterials 2018, 8, 926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subadevi, R.; Sivakumar, M.; Rajendran, S.; Wu, H.C.; Wu, N.L. Development and characterizations of PVdF-PEMA gel polymer electrolytes. Ionics 2012, 18, 283–289. [Google Scholar] [CrossRef]
- Xu, J.; Chou, S.L.; Wang, J.L.; Liu, H.K.; Dou, S.X. Layered P2-Na0.66Fe0.5Mn0.5O2 Cathode Material for Rechargeable Sodium-Ion Batteries. ChemElectroChem 2014, 1, 371–374. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax [Fe1/2Mn1/2] O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Xu, J.; Meng, Y.S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys. Chem. Chem. Phys. 2013, 15, 3304–3312. [Google Scholar] [CrossRef] [PubMed]
- Carlier, D.; Cheng, J.H.; Berthelot, R.; Guignard, M.; Yoncheva, M.; Stoyanova, R.; Delmas, C. The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans. 2011, 40, 9306–9312. [Google Scholar] [CrossRef]
- Paleo, A.J.; Martínez-Boubeta, C.; Balcells, L.; Costa, C.M.; Sencadas, V.; Lanceros-Mendez, S. Thermal, dielectrical and mechanical response of α and β-poly(vinilydene fluoride)/Co-MgO nanocomposites. Nanoscale Res. Lett. 2011, 6, 1–4. [Google Scholar] [CrossRef]
- Terabe, K.; Hasegawa, T.; Nakayama, T.; Aono, M. Quantized conductance atomic switch. Nature 2005, 433, 47–50. [Google Scholar] [CrossRef]
- Idris, N.H.; Rahman, M.M.; Wang, J.-Z.; Liu, H.-K. Microporous gel polymer electrolytes for lithium rechargeable battery application. J. Power Sources 2012, 201, 294–300. [Google Scholar] [CrossRef] [Green Version]
Separator Type | Electrolyte Solution | Ionic Conductivity(σ) S cm−1 |
---|---|---|
Celgard@2400/monolayer (PP) | 1 M NaPF6/PC | 1.6 × 10−2 S cm−1 |
Cellulose/NKK Japan | 1 M NaPF6/PC | 1.3 × 10−2 S cm−1 |
PVdF-SiO2 | 1 M NaPF6/PC | 4.7 × 10−2 S cm−1 |
S. No. | Type of Separator Membrane | Obtained Ionic Conductivity | Reference |
---|---|---|---|
1 | PVDF-HEFpoly(vinylidenedifluoride-co-hexafluoropropylene | 0.16 × 10−3 S cm−1 | [20] |
2 | Poly(vinylidene fluoride-hexafluoropropylene) | 0.3 × 10−3 S cm−1 | [21] |
3 | poly(vinylidenefluoridecohexafluororopylene) [P(VdF-co-HFP)] | 1.3 × 10−3 S cm−1 | [22] |
4 | PMMA–EC–PC–NaClO4 | 3.4 × 10−3 S cm−1 | [23] |
5 | PVdF-SiO2 | 4.7 × 10−2 S cm−1 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arjunan, P.; Kouthaman, M.; Subadevi, R.; Diwakar, K.; Liu, W.-R.; Huang, C.-H.; Sivakumar, M. Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery. Polymers 2020, 12, 405. https://doi.org/10.3390/polym12020405
Arjunan P, Kouthaman M, Subadevi R, Diwakar K, Liu W-R, Huang C-H, Sivakumar M. Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery. Polymers. 2020; 12(2):405. https://doi.org/10.3390/polym12020405
Chicago/Turabian StyleArjunan, Ponnaiah, Mathiyalagan Kouthaman, Rengapillai Subadevi, Karuppiah Diwakar, Wei-Ren Liu, Chia-Hung Huang, and Marimuthu Sivakumar. 2020. "Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery" Polymers 12, no. 2: 405. https://doi.org/10.3390/polym12020405
APA StyleArjunan, P., Kouthaman, M., Subadevi, R., Diwakar, K., Liu, W. -R., Huang, C. -H., & Sivakumar, M. (2020). Superior Ionic Transferring Polymer with Silicon Dioxide Composite Membrane via Phase Inversion Method Designed for High Performance Sodium-Ion Battery. Polymers, 12(2), 405. https://doi.org/10.3390/polym12020405