Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrospinning and Scaffold Preparation
2.2. Material Characterizations
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. Differential Scanning Calorimetry (DSC)
2.2.3. Gel Permeation Chromatography (GPC)
2.2.4. Mechanical Testing
2.3. Statistical Analysis
3. Results
3.1. Fiber Morphology and Diameter
3.1.1. Fiber Morphology
3.1.2. Fiber Diameter
3.2. Differential Scanning Calorimetry (DSC)
3.3. Gel Permeation Chromatography (GPC)
3.3.1. Weight Average Molecular Weight (Mw)
3.3.2. Number Average Molecular Weight (Mn)
3.4. Mechanical Properties
3.4.1. Young’s Modulus
3.4.2. Ultimate Tensile Strength
3.4.3. Maximum Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- King, R.N.; Lyman, D.J. Polymers in contact with the body. Environ. Health Perspect. 1975, 11, 71–74. [Google Scholar] [CrossRef]
- Tamariz, E.; Rios-Ramrez, A. Biodegradation of Medical Purpose Polymeric Materials and Their Impact on Biocompatibility. In Biodegradation—Life of Science; IntechOpen Limited: London, UK, 2013. [Google Scholar]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Hydrolytic degradation of biodegradable polyesters under simulated environmental conditions. J. Appl. Polym. Sci. 2015, 132, 4548. [Google Scholar] [CrossRef]
- Tsuji, H.; Muramatsu, H. Blends of aliphatic polyesters. IV. Morphology, swelling behavior, and surface and bulk properties of blends from hydrophobic poly(L-lactide) and hydrophilic poly(vinyl alcohol). J. Appl. Polym. Sci. 2001, 81, 2151–2160. [Google Scholar] [CrossRef]
- Tsuji, H.; Mizuno, A.; Ikada, Y. Blends of aliphatic polyesters. III. Biodegradation of solution-cast blends from poly(L-lactide) and poly(ε-caprolactone). J. Appl. Polym. Sci. 1998, 70, 2259–2268. [Google Scholar] [CrossRef]
- Tsuji, H.; Ikada, Y. Blends of aliphatic polyesters. II. Hydrolysis of solution-cast blends from poly(L-lactide) and poly(ε-caprolactone) in phosphate-buffered solution. J. Appl. Polym. Sci. 1998, 67, 405–415. [Google Scholar] [CrossRef]
- Tsuji, H.; Ishizaka, T. Blends of aliphatic polyesters. VI. Lipase-catalyzed hydrolysis and visualized phase structure of biodegradable blends from poly(ε-caprolactone) and poly(L-lactide). Int. J. Biol. Macromol. 2001, 95, 2269–2276. [Google Scholar] [CrossRef]
- Pospíšil, J.; Horák, Z.; Kruliš, Z.; Nešpůrek, S.; Kuroda, S.I. Degradation and aging of polymer blends. I. Thermomechanical and thermal degradation. Polym. Degrad. Stab. 1999, 65, 405–414. [Google Scholar] [CrossRef]
- Lyu, S.; Untereker, D. Degradability of polymers for implantable biomedical devices. Int. J. Mol. Sci. 2009, 10, 4033–4065. [Google Scholar] [CrossRef] [Green Version]
- Vroman, I.; Tighzert, L. Biodegradable polymers. Materials 2009, 2, 307–344. [Google Scholar] [CrossRef]
- Boldt, J. Synthetic Biopolymers. Springer Ser. Surf. Sci. 2016, 308–329. [Google Scholar]
- Van De Velde, K.; Kiekens, P. Biopolymers: Overview of several properties and consequences on their applications. Polym. Test. 2002, 21, 433–442. [Google Scholar] [CrossRef]
- Shamsah, A.; Cartmell, S.; Richardson, S.; Bosworth, L. Mimicking the Annulus Fibrosus Using Electrospun Polyester Blended Scaffolds. Nanomaterials 2019, 9, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsah, A.H.; Cartmell, S.H.; Richardson, S.M.; Bosworth, L.A. Tissue Engineering the Annulus Fibrosus Using 3D Rings of Electrospun PCL:PLLA Angle-Ply Nanofiber Sheets. Front. Bioeng. Biotechnol. 2019, 7, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iatridis, J.C.; Nicoll, S.B.; Michalek, A.J.; Walter, B.A.; Gupta, M.S. Role of biomechanics in intervertebral disc degeneration and regenerative therapies: What needs repairing in the disc and what are promising biomaterials for its repair? Spine J. 2013, 13, 243–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavakoli, J. Tissue Engineering of the Intervertebral Disc’s Annulus Fibrosus: A Scaffold-Based Review Study. Tissue Eng. Regen. Med. 2017, 14, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Andriano, K.P.; Pohjonen, T.; Toermaelae, P. Processing and characterization of absorbable polylactide polymers for use in surgical implants. J. Appl. Biomater. 1994, 5, 133–140. [Google Scholar] [CrossRef]
- Labet, M.; Thielemans, W. Synthesis of polycaprolactone: A review. Chem. Soc. Rev. 2009, 38, 3484–3504. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, S.; Li, Q. Microstructure design of biodegradable scaffold and its effect on tissue regeneration. Biomaterials 2011, 32, 5003–5014. [Google Scholar] [CrossRef]
- Bosworth, L.A.; Downes, S. Physicochemical characterisation of degrading polycaprolactone scaffolds. Polym. Degrad. Stab. 2010, 95, 2269–2276. [Google Scholar] [CrossRef]
- Leja, K.; Lewandowicz, G. Polymer Biodegradation and Biodegradable Polymers—A Review. Polish J. Environ. Stud 2010, 19, 255–266. [Google Scholar]
- Navarro-Baena, I.; Sessini, V.; Dominici, F.; Torre, L.; Kenny, J.M.; Peponi, L. Design of biodegradable blends based on PLA and PCL: From morphological, thermal and mechanical studies to shape memory behavior. Polym. Degrad. Stab. 2016, 132, 97–108. [Google Scholar] [CrossRef]
- Brinkmann, M.; Rannou, P. Molecular weight dependence of chain packing and semicrystalline structure in oriented films of regioregular poly(3-hexylthiophene)revealed by high-resolution transmission electron microscopy. Macromolecules 2009, 42, 1125–1130. [Google Scholar] [CrossRef]
- Orozco-Castellanos, L.M.; Marcos-Fernández, A.; Martínez-Richa, A. Hydrolytic degradation of poly (ε-caprolactone ) with different end groups and poly (ε-caprolactone-co-γ-butyrolactone). Characterization and kinetics of hydrocortisone delivery. Polym. Adv. Technol. 2011, 22, 430–436. [Google Scholar] [CrossRef] [Green Version]
- Bölgen, N.; Mencelo, Y.Z.; Glu, K.A.; Vargel, I.; Skin, E.P. In vitro and in vivo degradation of non-woven materials made of poly(ε-caprolactone) nanofibers prepared by electrospinning under different conditions. J. Biomater. Sci. Polym. Edn 2005, 16, 1537–1555. [Google Scholar] [CrossRef] [Green Version]
- Holland, S.J.; Tighe, B.J.; Gould, P.L. Polymers for biodegradable medical devices. 1. The potential of polyesters as controlled macromolecular release systems. J. Control. Release 1986, 4, 155–180. [Google Scholar] [CrossRef]
- Vieira, A.C.; Vieira, J.C.; Ferra, J.M.; Magalhães, F.D.; Guedes, R.M.; Marques, A.T. Mechanical study of PLA-PCL fibers during in vitro degradation. J. Mech. Behav. Biomed. Mater. 2011, 4, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Shalumon, K.T.; Anjana, J.; Mony, U.; Jayakumar, R.; Chen, J. Process study, development and degradation behavior of different size scale electrospun poly (caprolactone) and poly (lactic acid) fibers. J. Polym. Res. 2018, 25, 82. [Google Scholar] [CrossRef]
- Skaggs, D.L.; Weidenbaum, M.; Iatridis, J.C.; Ratcliffe, A.; Mow, V.C. Regional variation in tensile properties and biochemical composition of the human lumbar anulus fibrosus. Spine 1994, 19, 1310–1319. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsah, A.H.; Cartmell, S.H.; Richardson, S.M.; Bosworth, L.A. Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro. Polymers 2020, 12, 700. https://doi.org/10.3390/polym12030700
Shamsah AH, Cartmell SH, Richardson SM, Bosworth LA. Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro. Polymers. 2020; 12(3):700. https://doi.org/10.3390/polym12030700
Chicago/Turabian StyleShamsah, Alyah H., Sarah H. Cartmell, Stephen M. Richardson, and Lucy A. Bosworth. 2020. "Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro" Polymers 12, no. 3: 700. https://doi.org/10.3390/polym12030700
APA StyleShamsah, A. H., Cartmell, S. H., Richardson, S. M., & Bosworth, L. A. (2020). Material Characterization of PCL:PLLA Electrospun Fibers Following Six Months Degradation In Vitro. Polymers, 12(3), 700. https://doi.org/10.3390/polym12030700