Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of Treatment
3.2. Effect of Stacking Sequence
3.3. Damping Properties Versus Moisture Content
4. Conclusions
- −
- All the NFRP materials (i.e., regardless the stacking sequence) experienced decreases of the storage modulus and glass transition temperature, as well as the increase of the loss factor peaks with salt-fog exposition time and moisture content;
- −
- Full laminates reinforced with flax fibers or hybrid laminates having more flax fabrics than jute ones in their stacking sequence evidenced a clear effectiveness of NaHCO3 treatment on the retention of their damping properties during exposition to salt-fog environments;
- −
- Conversely, the proposed treatment had no beneficial effect on jute-based laminates (in terms of preservation of damping properties), thus evidencing that the efficacy of treatment is strictly related to the fiber’s chemical composition;
- −
- A relationship between the decrease of the damping properties of the composites and their progressive increase of water absorption during the salt-fog exposition was evaluated in order to better discriminate how mechanical parameters are affected by degradative phenomena, thus indicating that the fiber–matrix interfacial water diffusion plays a relevant role in the degradation triggering and propagation.
Author Contributions
Funding
Conflicts of Interest
References
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Singh, H.; Singh, J.I.P.; Singh, S.; Dhawan, V.; Tiwari, S.K. A brief review of Jute Fibre and its composites. Mater. Today-Proc. 2018, 5, 28427–28437. [Google Scholar] [CrossRef]
- Baley, C. Influence of kink bands on the tensile strength of flax fibers. J. Mater. Sci. 2004, 39, 331–334. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Krishnaraj, V.; Senthil Kumar, M.; Zitoune, R. Sound and vibration damping properties of flax fiber reinforced composites. Procedia Eng. 2014, 97, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Shah, D.U.; Schubel, P.J.; Clifford, M.J. Can flax replace E-glass in structural composites? A small wind turbine blade case study. Compos. Part B Eng. 2013, 52, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.P.; Ng, B.M.P.; Rammohan, A.V.; Tran, L.Q.N. An investigation of the sound absorption properties of flax/epoxy composites compared with glass/epoxy composites. J. Nat. Fibers 2017, 14, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Cicala, G.; Cristaldi, G.; Recca, G.; Ziegmann, G.; El-Sabbagh, A.; Dickert, M. Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Mater. Des. 2009, 30, 2538–2542. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Misra, M. Studies on Jute composites—A literature review. Polym. Plast. Technol. Eng. 1995, 34, 729–792. [Google Scholar] [CrossRef]
- Gassan, J.; Bledzki, A.K. Possibilities for improving the mechanical properties of jute/epoxy composites by alkali treatment of fibres. Compos. Sci. Technol. 1999, 59, 1303–1309. [Google Scholar] [CrossRef]
- Le Duigou, A.; Davies, P.; Baley, C. Seawater ageing of flax/poly(lactic acid) biocomposites. Polym. Degrad. Stab. 2009, 94, 1151–1162. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, H.N.; Zhang, Z.Y.; Richardson, M.O.W. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N. Effect of water, seawater and alkaline solution ageing on mechanical properties of flax fabric/epoxy composites used for civil engineering applications. Constr. Build. Mater. 2015, 99, 118–127. [Google Scholar] [CrossRef]
- Le Duigou, A.; Bourmaud, A.; Davies, P.; Baley, C. Long term immersion in natural seawater of Flax/PLA biocomposite. Ocean Eng. 2014, 90, 140–148. [Google Scholar] [CrossRef] [Green Version]
- Ramadan, R.; Saad, G.; Awwad, E.; Khatib, H.; Mabsout, M. Short-term durability of hemp fibers. Procedia Eng. 2017, 200, 120–127. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Khanlou, H.M.; Hall, W.; Öchsner, A.; Francucci, G. Environmental effects on the durability and the mechanical performance of flax fiber/bio-epoxy composites. Compos. Part B Eng. 2019, 171, 284–293. [Google Scholar] [CrossRef]
- Ma, G.; Yan, L.; Shen, W.; Zhu, D.; Huang, L.; Kasal, B. Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineral-based basalt. Compos. Part B Eng. 2018, 153, 398–412. [Google Scholar] [CrossRef]
- Sodoke, F.K.; Toubal, L.; Laperrière, L. Wetting/drying cyclic effects on mechanical and physicochemical properties of quasi-isotopic flax/epoxy composites. Polym. Degrad. Stab. 2019, 161, 121–130. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V.; Scalici, T.; Valenza, A. Experimental assessment of the improved properties during aging of flax/glass hybrid composite laminates for marine applications. J. Appl. Polym. Sci. 2019, 136, 47203. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Ji, J.; Yang, Y.; Shen, J.; Ye, M. The hygrothermal aging process and mechanism of the novolac epoxy resin. Compos. Part B Eng. 2016, 107, 1–8. [Google Scholar] [CrossRef]
- Akil, H.M.; Cheng, L.W.; Mohd Ishak, Z.A.; Abu Bakar, A.; Abd Rahman, M.A. Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2009, 69, 1942–1948. [Google Scholar] [CrossRef]
- Simar, A.; Gigliotti, M.; Grandidier, J.C.; Ammar-Khodja, I. Evidence of thermo-oxidation phenomena occurring during hygrothermal aging of thermosetting resins for RTM composite applications. Compos. Part A Appl. Sci. Manuf. 2014, 66, 175–182. [Google Scholar]
- Lettieri, M.; Frigione, M. Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhesive. Constr. Build. Mater. 2012, 30, 753–760. [Google Scholar] [CrossRef]
- Masoodi, R.; Pillai, K.M. A study on moisture absorption and swelling in bio-based jute-epoxy composites. J. Reinf. Plast. Compos. 2012, 31, 285–294. [Google Scholar] [CrossRef]
- Thuault, A.; Eve, S.; Blond, D.; Bréard, J.; Gomina, M. Effects of the hygrothermal environment on the mechanical properties of flax fibres. J. Compos. Mater. 2014, 48, 1699–1707. [Google Scholar]
- Gogoi, R.; Tyagi, A.K. Surface modification of jute fabric by treating with silane coupling agent for reducing its moisture regain characteristics. J. Nat. Fibers 2019, 1–10. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Scalici, T.; Valenza, A. Evolution of the bearing failure map of pinned flax composite laminates aged in marine environment. Compos. Part B Eng. 2020, 187, 107864. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V.; Bruzzaniti, P.; Scalici, T.; Valenza, A. Pinned hybrid glass-flax composite laminates aged in salt-fog environment: Mechanical durability. Polymers 2020, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Ashbee, K.H.G.; Wyatt, R.C. Water damage in glass fibre/resin composites. Proc. R. Soc. Lond. 1969, 312, 553–564. [Google Scholar]
- Calabrese, L.; Fiore, V.; Bruzzaniti, P.G.; Scalici, T.; Valenza, A. An aging evaluation of the bearing performances of glass fiber composite laminate in salt spray fog environment. Fibers 2019, 7, 96. [Google Scholar] [CrossRef] [Green Version]
- Fathi, B.; Foruzanmehr, M.; Elkoun, S.; Robert, M. Novel approach for silane treatment of flax fiber to improve the interfacial adhesion in flax/bio epoxy composites. J. Compos. Mater. 2019, 53, 2229–2238. [Google Scholar]
- Sayeed, M.M.A.; Paharia, A. Optimisation of the surface treatment of jute fibres for natural fibre reinforced polymer composites using Weibull analysis. J. Text. Inst. 2019, 110, 1588–1595. [Google Scholar] [CrossRef]
- Fiore, V.; Sanfilippo, C.; Calabrese, L. Influence of sodium bicarbonate treatment on the aging resistance of natural fiber reinforced polymer composites under marine environment. Polym. Test. 2019, 80, 106100. [Google Scholar] [CrossRef]
- Wang, X.; Petrů, M.; Yu, H. The effect of surface treatment on the creep behavior of flax fiber reinforced composites under hygrothermal aging conditions. Constr. Build. Mater. 2019, 208, 220–227. [Google Scholar] [CrossRef]
- El-Abbassi, F.E.; Assarar, M.; Ayad, R.; Lamdouar, N. Effect of alkali treatment on Alfa fibre as reinforcement for polypropylene based eco-composites: Mechanical behaviour and water ageing. Compos. Struct. 2015, 133, 451–457. [Google Scholar] [CrossRef]
- Berges, M.; Léger, R.; Placet, V.; Person, V.; Corn, S.; Gabrion, X.; Rousseau, J.; Ramasso, E.; Ienny, P.; Fontaine, S. Influence of moisture uptake on the static, cyclic and dynamic behaviour of unidirectional flax fibre-reinforced epoxy laminates. Compos. Part A Appl. Sci. Manuf. 2016, 88, 165–177. [Google Scholar] [CrossRef] [Green Version]
- Cheour, K.; Assarar, M.; Scida, D.; Ayad, R.; Gong, X.L. Effect of water ageing on the mechanical and damping properties of flax-fibre reinforced composite materials. Compos. Struct. 2016, 152, 259–266. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Badagliacco, D.; Enea, D.; Alaimo, G.; Valenza, A. Aging resistance of bio-epoxy jute-basalt hybrid composites as novel multilayer structures for cladding. Compos. Struct. 2017, 160, 1319–1328. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Di Bella, G.; Scalici, T.; Galtieri, G.; Valenza, A.; Proverbio, E. Effects of aging in salt spray conditions on flax and flax/basalt reinforced composites: Wettability and dynamic mechanical properties. Compos. Part B Eng. 2016, 93, 35–42. [Google Scholar] [CrossRef]
- Mazuki, A.A.M.; Akil, H.M.; Safiee, S.; Ishak, Z.A.M.; Bakar, A.A. Degradation of dynamic mechanical properties of pultruded kenaf fiber reinforced composites after immersion in various solutions. Compos. Part B Eng. 2011, 42, 71–76. [Google Scholar] [CrossRef]
- Wang, X.; Petrů, M. Effect of hygrothermal aging and surface treatment on the dynamic mechanical behavior of flax fiber reinforced composites. Materials 2019, 12, 2376. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.T.L.; Brodowsky, H.; Mäder, E. Jute fibre/polypropylene composites II. Thermal, hydrothermal and dynamic mechanical behaviour. Compos. Sci. Technol. 2007, 67, 2707–2714. [Google Scholar] [CrossRef]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Nicoletti, F.; Vitale, G.; Prestipino, M.; Valenza, A. A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites. Compos. Part B Eng. 2016, 85, 150–160. [Google Scholar] [CrossRef]
- dos Santos, J.C.; Siqueira, R.L.; Vieira, L.M.G.; Freire, R.T.S.; Mano, V.; Panzera, T.H. Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polym. Test. 2018, 67, 533–544. [Google Scholar] [CrossRef]
- dos Santos, J.C.; de Oliveira, L.Á.; Gomes Vieira, L.M.; Mano, V.; Freire, R.T.S.; Panzera, T.H. Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites. Constr. Build. Mater. 2019, 211, 427–436. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Valenza, A. Effect of sodium bicarbonate treatment on mechanical properties of flax-reinforced epoxy composite materials. J. Compos. Mater. 2018, 52, 1061–1072. [Google Scholar] [CrossRef]
- Chaitanya, S.; Singh, I. Sisal fiber-reinforced green composites: Effect of ecofriendly fiber treatment. Polym. Compos. 2018, 39, 4310–4321. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L. Effect of stacking sequence and sodium bicarbonate treatment on quasi-static and dynamic mechanical properties of flax/jute epoxy-based composites. Materials 2019, 12, 1363. [Google Scholar] [CrossRef] [Green Version]
- Mukhtar, I.; Leman, Z.; Zainudin, E.S.; Ishak, M.R. Effectiveness of Alkali and Sodium bicarbonate treatments on sugar palm fiber: Mechanical, thermal, and chemical investigations. J. Nat. Fibers 2018, 1–13. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalil, H.P.S.; Hassan, A.; Dungani, R.; Hadiyane, A. Effect of jute fibre loading on tensile and dynamic mechanical properties of oil palm epoxy composites. Compos. Part B Eng. 2013, 45, 619–624. [Google Scholar] [CrossRef]
- Shanmugam, D.; Thiruchitrambalam, M. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites. Mater. Des. 2013, 50, 533–542. [Google Scholar] [CrossRef]
- Martínez-Hernández, A.L.; Velasco-Santos, C.; de-Icaza, M.; Castaño, V.M. Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers. Compos. Part B Eng. 2007, 38, 405–410. [Google Scholar] [CrossRef]
- Selver, E.; Ucar, N.; Gulmez, T. Effect of stacking sequence on tensile, flexural and thermomechanical properties of hybrid flax/glass and jute/glass thermoset composites. J. Ind. Text. 2018, 48, 494–520. [Google Scholar] [CrossRef]
- Pothan, L.A.; George, C.N.; John, M.J.; Thomas, S. Dynamic mechanical and dielectric behavior of banana-glass hybrid fiber reinforced polyester composites. J. Reinf. Plast. Compos. 2010, 29, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Fiore, V.; Scalici, T.; Calabrese, L.; Valenza, A.; Proverbio, E. Effect of external basalt layers on durability behaviour of flax reinforced composites. Compos. Part B Eng. 2016, 84, 258–265. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Bennett, N.; Lopez-Arraiza, A.; Vallejo, F.J. Effects of water immersion ageing on the mechanical properties of flax and jute fibre biocomposites evaluated by nanoindentation and flexural testing. J. Compos. Mater. 2014, 48, 1399–1406. [Google Scholar] [CrossRef] [Green Version]
- Mustata, F.S.C.; Mustata, A. Dielectric behaviour of some woven fabrics on the basis of natural cellulosic fibers. Adv. Mater. Sci. Eng. 2014, 2014, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hamad, S.F.; Stehling, N.; Holland, C.; Foreman, J.P.; Rodenburg, C. Low-Voltage SEM of natural plant fibers: Microstructure properties (surface and cross-section) and their link to the tensile properties. Procedia Eng. 2017, 200, 295–302. [Google Scholar] [CrossRef]
- Fiore, V.; Scalici, T.; Vitale, G.; Valenza, A. Static and dynamic mechanical properties of Arundo Donax fillers-epoxy composites. Mater. Des. 2014, 57, 456–464. [Google Scholar] [CrossRef]
Code | Stacking Sequence 1 | Fabrics |
---|---|---|
Flax-AR | [F]5 | as received |
Flax-T | [F]5 | treated |
Jute-AR | [J]5 | as received |
Jute-T | [J]5 | treated |
F Hybrid-AR | [F/J/F/J/F] | as received |
F Hybrid-T | [F/J/F/J/F] | treated |
J Hybrid-AR | [J/F/J/F/J] | as received |
J Hybrid-T | [J/F/J/F/J] | treated |
Aging Days | Flax-AR | Flax-T | Flax-AR | Flax-T |
---|---|---|---|---|
First Peak T [°C] | First Peak Height | |||
0 | 75.4 ± 1.5 | 77.2 ± 0.5 | 0.57 ± 0.04 | 0.37 ± 0.03 |
30 | 70.2 ± 0.4 | 76.2 ± 0.7 | 0.99 ± 0.01 | 0.37 ± 0.00 |
60 | 65.5 ± 0.5 | 76.5 ± 1.0 | 1.15 ± 0.01 | 0.38 ± 0.02 |
Second Peak T [°C] | Second Peak Height | |||
0 | 105.6 ± 1.3 | 104.7 ± 1.3 | 0.32 ± 0.02 | 0.28 ± 0.01 |
30 | 102.6 ± 2.7 | 105.3 ± 1.6 | 0.88 ± 0.05 | 0.31 ± 0.02 |
60 | 95.2 ± 1.3 | 102.3 ± 2.3 | 1.13 ± 0.12 | 0.37 ± 0.05 |
Aging Days | Jute-AR | Jute-T | Jute-AR | Jute-T |
---|---|---|---|---|
First Peak T [°C] | First Peak Height | |||
0 | 82.0 ± 0.1 | 81.5 ± 0.7 | 0.22 ± 0.01 | 0.33 ± 0.01 |
30 | 78.6 ± 0.6 | 76.2 ± 0.8 | 0.26 ± 0.02 | 0.51 ± 0.00 |
60 | 76.3 ± 1.1 | 72.0 ± 1.6 | 0.31 ± 0.05 | 0.62 ± 0.01 |
Second Peak T [°C] | Second Peak Height | |||
0 | 108.3 ± 1.0 | 109.0 ± 4.6 | 0.16 ± 0.01 | 0.23 ± 0.07 |
30 | 106.7 ± 2.1 | 108.0 ± 2.4 | 0.22 ± 0.01 | 0.46 ± 0.05 |
60 | 105.0 ± 1.9 | 104.9 ± 2.5 | 0.24 ± 0.04 | 0.51 ± 0.08 |
Aging Days | F Hybrid-AR | F Hybrid-T | F Hybrid-AR | F Hybrid-T |
---|---|---|---|---|
First Peak T [°C] | First Peak height | |||
0 | 75.7 ± 0.3 | 79.4 ± 0.8 | 0.48 ± 0.03 | 0.24 ± 0.01 |
30 | 73.0 ± 1.5 | 81.3 ± 0.6 | 0.61 ± 0.04 | 0.25 ± 0.01 |
60 | 68.0 ± 0.9 | 77.6 ± 3.5 | 0.69 ± 0.01 | 0.28 ± 0.02 |
Second Peak T [°C] | Second Peak Height | |||
0 | 107.0 ± 0.7 | 102.2 ± 2.4 | 0.42 ± 0.04 | 0.20 ± 0.03 |
30 | 102.2 ± 2.4 | 99.9 ± 1.4 | 0.68 ± 0.02 | 0.23 ± 0.01 |
60 | 101.9 ± 2.9 | 102.5 ± 4.7 | 0.87 ± 0.01 | 0.28 ± 0.01 |
Aging Days | J Hybrid-AR | J Hybrid-T | J Hybrid-AR | J Hybrid-T |
---|---|---|---|---|
First Peak T [°C] | First Peak Height | |||
0 | 81.9 ± 0.9 | 79.9 ± 0.2 | 0.33 ± 0.02 | 0.43 ± 0.00 |
30 | 80.5 ± 2.0 | 80.5 ± 3.4 | 0.38 ± 0.02 | 0.56 ± 0.12 |
60 | 71.8 ± 0.1 | 74.5 ± 5.5 | 0.46 ± 0.02 | 0.63 ± 0.04 |
Second Peak T [°C] | Second Peak Height | |||
0 | 106.8 ± 1.1 | 109.6 ± 1.1 | 0.18 ± 0.03 | 0.38 ± 0.04 |
30 | 105.9 ± 5.0 | 100.1 ± 3.0 | 0.27 ± 0.07 | 0.62 ± 0.01 |
60 | 103.6 ± 4.2 | 99.9 ± 2.7 | 0.33 ± 0.02 | 0.86 ± 0.09 |
Laminate | 30 Days | 60 Days |
---|---|---|
Flax-AR | 13.7 ± 0.5 | 14.2 ± 0.5 |
Flax-T | 10.1 ± 0.5 | 10.5 ± 0.5 |
Jute-AR | 10.7 ± 0.3 | 11.7 ± 0.6 |
Jute-T | 12.9 ± 0.3 | 13.6 ± 0.7 |
F Hybrid-AR | 12.1 ± 0.7 | 12.9 ± 0.5 |
F Hybrid-T | 10.5 ± 0.5 | 11.1 ± 0.5 |
J Hybrid-AR | 11.5 ± 0.6 | 12.4 ± 0.5 |
J Hybrid-T | 12.4 ± 0.3 | 13.1 ± 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fiore, V.; Sanfilippo, C.; Calabrese, L. Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment. Polymers 2020, 12, 716. https://doi.org/10.3390/polym12030716
Fiore V, Sanfilippo C, Calabrese L. Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment. Polymers. 2020; 12(3):716. https://doi.org/10.3390/polym12030716
Chicago/Turabian StyleFiore, Vincenzo, Carmelo Sanfilippo, and Luigi Calabrese. 2020. "Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment" Polymers 12, no. 3: 716. https://doi.org/10.3390/polym12030716
APA StyleFiore, V., Sanfilippo, C., & Calabrese, L. (2020). Dynamic Mechanical Behavior Analysis of Flax/Jute Fiber-Reinforced Composites under Salt-Fog Spray Environment. Polymers, 12(3), 716. https://doi.org/10.3390/polym12030716