Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Films from PHAs
2.2. Determination of MM
2.3. Determination of Crystallinity of a Polymer
2.4. Exploration of Mechanical Properties
2.5. Contact Angle Measurement
2.6. In Vitro Degradation Experiment
2.7. Statistical Analysis
3. Results
3.1. The Decrease in Mass of PHA Films
3.2. Changes in Molecular Mass (MM)
3.3. Degree of Crystallinity
3.4. The Change in Mechanical Properties of PHA Films
3.5. The Change in Hydrophobicity of PHA Films
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Artsis, M.I.; Bonartsev, A.P.; Iordanskii, A.L.; Bonartseva, G.A.; Zaikov, G.E. Biodegradation and Medical Application of Microbial Poly(3-Hydroxybutyrate). Mol. Cryst. Liq. Cryst. 2012, 555, 232–262. [Google Scholar] [CrossRef]
- Chen, G.-Q.; Wu, Q. The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 2005, 26, 6565–6578. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Díaz, M.; Meneses-Acosta, A.; Romo-Uribe, A.; Peña, C.; Segura, D.; Espin, G. Thermo-mechanical properties, microstructure and biocompatibility in poly-β-hydroxybutyrates (PHB) produced by OP and OPN strains of Azotobacter vinelandii. Eur. Polym. J. 2015, 63, 101–112. [Google Scholar] [CrossRef]
- Douglas, T.E.L.; Krawczyk, G.; Pamula, E.; Declercq, H.A.; Schaubroeck, D.; Bucko, M.M.; Balcaen, L.; Van Der Voort, P.; Bliznuk, V.; van den Vreken, N.M.F.; et al. Generation of composites for bone tissue-engineering applications consisting of gellan gum hydrogels mineralized with calcium and magnesium phosphate phases by enzymatic means. J. Tissue Eng. Regen. Med. 2016, 10, 938–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kašpárková, V.; Humpolíček, P.; Capáková, Z.; Bober, P.; Stejskal, J.; Trchová, M.; Rejmontová, P.; Junkar, I.; Lehocký, M.; Mozetič, M. Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. Colloids Surf. B Biointerfaces 2017, 157, 309–316. [Google Scholar] [CrossRef]
- Moisenovich, M.M.; Malyuchenko, N.V.; Arkhipova, A.Y.; Kotlyarova, M.S.; Davydova, L.I.; Goncharenko, A.V.; Agapova, O.I.; Drutskaya, M.S.; Bogush, V.G.; Agapov, I.I.; et al. Novel 3D-microcarriers from recombinant spidroin for regenerative medicine. Dokl. Biochem. Biophys. 2015, 463, 232–235. [Google Scholar] [CrossRef]
- Pramanik, N.; Das, R.; Rath, T.; Kundu, P.P. Microbial Degradation of Linseed Oil-Based Elastomer and Subsequent Accumulation of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer. Appl. Biochem. Biotechnol. 2014, 174, 1613–1630. [Google Scholar] [CrossRef]
- Ramiro-Gutiérrez, M.L.; Will, J.; Boccaccini, A.R.; Díaz-Cuenca, A. Reticulated bioactive scaffolds with improved textural properties for bone tissue engineering: Nanostructured surfaces and porosity. J. Biomed. Mater. Res. Part A 2014, 102, 2982–2992. [Google Scholar] [CrossRef]
- Raucci, M.G.; Alvarez-Perez, M.A.; Demitri, C.; Sannino, A.; Ambrosio, L. Proliferation and osteoblastic differentiation of hMSCs on cellulose-based hydrogels. J. Appl. Biomater. Funct. Mater. 2012, 10, 302–307. [Google Scholar] [CrossRef]
- Stevanović, M.; Pavlović, V.; Petković, J.; Filipič, M.; Uskoković, D. ROS-inducing potential, influence of different porogens and in vitro degradation of poly (D,L-lactide-co-glycolide)-based material. Express Polym. Lett. 2011, 5, 996–1008. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, J.; Ruan, Y.C.; Yu, M.K.; O’Laughlin, M.; Wise, H.; Chen, D.; Tian, L.; Shi, D.; Wang, J.; et al. Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats. Nat. Med. 2016, 22, 1160–1169. [Google Scholar] [CrossRef] [PubMed]
- Bonartsev, A.P.; Bonartseva, G.A.; Shaitan, K.V.; Kirpichnikov, M.P. Poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate)-based biopolymer systems. Biochem. Suppl. Ser. B Biomed. Chem. 2011, 5, 10–21. [Google Scholar] [CrossRef]
- Andreeva, N.V.; Bonartsev, A.P.; Zharkova, I.I.; Makhina, T.K.; Myshkina, V.L.; Kharitonova, E.P.; Voinova, V.V.; Bonartseva, G.A.; Shaitan, K.V.; Belyavskii, A.V. Culturing of Mouse Mesenchymal Stem Cells on Poly (3-hydroxybutyrate) Scaffolds. Bull. Exp. Biol. Med. 2015, 159, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Bonartsev, A.P.; Bonartseva, G.A.; Makhina, T.K.; Myshkina, V.L.; Luchinina, E.S.; Livshits, V.A.; Boskhomdzhiev, A.P.; Markin, V.S.; Iordanskii, A.L. New poly(3-hydroxybutyrate)-based systems for controlled release of dipyridamole and indomethacin. Appl. Biochem. Microbiol. 2006, 42, 625–630. [Google Scholar] [CrossRef]
- Bonartsev, A.P.; Zharkova, I.I.; Yakovlev, S.G.; Myshkina, V.L.; Makhina, T.K.; Zernov, A.L.; Kudryashova, K.S.; Feofanov, A.V.; Akulina, E.A.; Ivanova, E.V.; et al. 3D-scaffolds from poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer for tissue engineering. J. Biomater. Tissue Eng. 2016, 6, 42–52. [Google Scholar] [CrossRef]
- Gredes, T.; Gedrange, T.; Hinüber, C.; Gelinsky, M.; Kunert-Keil, C. Histological and molecular-biological analyses of poly(3-hydroxybutyrate) (PHB) patches for enhancement of bone regeneration. Ann. Anat.-Anat. Anz. 2015, 199, 36–42. [Google Scholar] [CrossRef]
- Misra, S.K.; Ansari, T.I.; Valappil, S.P.; Mohn, D.; Philip, S.E.; Stark, W.J.; Roy, I.; Knowles, J.C.; Salih, V.; Boccaccini, A.R. Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 2010, 31, 2806–2815. [Google Scholar] [CrossRef]
- Olkhov, A.A.; Staroverova, O.V.; Bonartsev, A.P.; Zharkova, I.I.; Sklyanchuk, E.D.; Iordanskii, A.L.; Rogovina, S.Z.; Berlin, A.A.; Ishchenko, A.A. Structure and properties of ultrathin poly-(3-hydroxybutirate) fibers modified by silicon and titanium dioxide particles. Polym. Sci. Ser. D 2015, 8, 100–109. [Google Scholar] [CrossRef]
- Reyes, A.P.; Torres, A.M.; Carreón, P.; Rogelio, J.; Talavera, R.; Muñoz, S.V.; Manuel, V.; Aguilar, V. Novel Poly (3-hydroxybutyrate-g- vinyl alcohol) Polyurethane Scaffold for Tissue Engineering. Nat. Publ. Group 2016, 6, 1–8. [Google Scholar] [CrossRef]
- Ribeiro-Samy, S.; Silva, N.A.; Correlo, V.M.; Fraga, J.S.; Pinto, L.; Teixeira-Castro, A.; Leite-Almeida, H.; Almeida, A.; Gimble, J.M.; Sousa, N.; et al. Development and characterization of a PHB-HV-based 3D scaffold for a tissue engineering and cell-therapy combinatorial approach for spinal cord injury regeneration. Macromol. Biosci. 2013, 13, 1576–1592. [Google Scholar] [CrossRef] [Green Version]
- Shishatskaya, E.I.; Kamendov, I.V.; Starosvetsky, S.I.; Vinnik, Y.S.; Markelova, N.N.; Shageev, A.A.; Khorzhevsky, V.A.; Peryanova, O.V.; Shumilova, A.A. An in vivo study of osteoplastic properties of resorbable poly (3-hydroxybutyrate) in models of segmental osteotomy and chronic osteomyelitis. Artif. Cells Nanomed. Biotechnol. 2014, 42, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.A.C.; Oliveira, R.N.; Mendonça, R.H.; Lourenço, T.G.B.; Colombo, A.P.V.; Tanaka, M.N.; Tude, E.M.O.; da Costa, M.F.; Thiré, R.M.S.M. Evaluation of metronidazole-loaded poly(3-hydroxybutyrate) membranes to potential application in periodontitis treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Bonartsev, A.P.; Yakovlev, S.G.; Filatova, E.V.; Soboleva, G.M.; Makhina, T.K.; Bonartseva, G.A.; Shaitan, K.V.; Popov, V.O.; Kirpichnikov, M.P. Sustained release of the antitumor drug paclitaxel from poly(3-hydroxybutyrate)-based microsphere. Biochem. Suppl. Ser. B Biomed. Chem. 2012, 6, 42–47. [Google Scholar] [CrossRef]
- Bonartsev, A.P.; Zernov, A.L.; Yakovlev, S.G.; Zharkova, I.I.; Myshkina, V.L.; Mahina, T.K.; Bonartseva, G.A.; Andronova, N.V.; Smirnova, G.B.; Borisova, J.A.; et al. New poly(3-hydroxybutyrate) microparticles with paclitaxel sustained release for intraperitoneal administration. Anticancer. Agents Med. Chem. 2016, 17, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Filatova, E.V.; Yakovlev, S.G.; Bonartsev, A.P.; Makhina, T.K.; Myshkina, V.L.; Bonartseva, G.A. Prolonged release of chlorambucil and etoposide from poly-3-oxybutyrate-based microspheres. Appl. Biochem. Microbiol. 2012, 48, 598–602. [Google Scholar] [CrossRef]
- Livshits, V.A.; Bonartsev, A.P.; Iordanskii, A.L.; Ivanov, E.A.; Makhina, T.A.; Myshkina, V.L.; Bonartseva, G.A. Microspheres based on poly(3-hydroxy)butyrate for prolonged drug release. Polym. Sci. Ser. B 2009, 51, 256–263. [Google Scholar] [CrossRef]
- Biazar, E.; Heidari Keshel, S. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration. ASAIO J. 2015, 61, 357–365. [Google Scholar] [CrossRef]
- Levine, A.C.; Heberlig, G.W.; Nomura, C.T. Use of thiolene click chemistry to modify mechanical and thermal properties of polyhydroxyalkanoates (PHAs). Int. J. Biol. Macromol. 2016, 83, 358–365. [Google Scholar] [CrossRef]
- Miroiu, F.M.; Stefan, N.; Visan, A.I.; Nita, C.; Luculescu, C.R.; Rasoga, O.; Socol, M.; Zgura, I.; Cristescu, R.; Craciun, D.; et al. Composite biodegradable biopolymer coatings of silk fibroin—Poly(3-hydroxybutyric-acid-co-3-hydroxyvaleric-acid) for biomedical application. Appl. Surf. Sci. 2015, 355, 123–1131. [Google Scholar] [CrossRef]
- Lenz, R.W.; Marchessault, R.H. Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005, 6, 1–8. [Google Scholar] [CrossRef]
- Bonartsev, A.P.; Yakovlev, S.G.; Zharkova, I.I.; Boskhomdzhiev, A.P.; Bagrov, D.V.; Myshkina, V.L.; Makhina, T.K.; Kharitonova, E.P.; Samsonova, O.V.; Feofanov, A.V.; et al. Cell attachment on poly(3-hydroxybutyrate)-poly(ethylene glycol) copolymer produced by Azotobacter chroococcum 7B. BMC Biochem. 2013, 14, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myshkina, V.L.; Ivanov, E.A.; Nikolaeva, D.A.; Makhina, T.K.; Bonartsev, A.P.; Filatova, E.V.; Ruzhitsky, A.O.; Bonartseva, G.A. Biosynthesis of Poly-3-Hydroxybutyrate–3-Hydroxyvalerate Copolymer by Azotobacter chroococcum Strain 7B. Appl. Biochem. Microbiol. 2010, 46, 289–296. [Google Scholar] [CrossRef]
- Shirazi, R.N.; Aldabbagh, F.; Ronan, W.; Erxleben, A.; Rochev, Y.; McHugh, P. Effects of material thickness and processing method on poly(lactic-co-glycolic acid) degradation and mechanical performance. J. Mater. Sci. Mater. Med. 2016, 27, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwata, T.; Doi, Y.; Tanaka, T.; Akehata, T.; Shiromo, M.; Teramachi, S. Enzymatic Degradation and Adsorption on Poly[(R)-3-hydroxybutyrate] Single Crystals with Two Types of Extracellular PHB Depolymerases from Comamonas acidovorans YM1609 and Alcaligenes faecalis T1. Macromolecules 1997, 30, 5290–5296. [Google Scholar] [CrossRef]
- Song, X.; Liu, F.; Yu, S. Kinetics of poly(3-hydroxybutyrate) hydrolysis using acidic functionalized ionic liquid as catalyst. Catal. Today 2016, 276, 145–149. [Google Scholar] [CrossRef]
- Marois, Y.; Zhang, Z.; Vert, M.; Deng, X.; Lenz, R.; Guidoin, R. Mechanism and rate of degradation of polyhydroxyoctanoate films in aqueous media: A long-term in vitro study. J. Biomed. Mater. Res. 2000, 49, 216–224. [Google Scholar] [CrossRef]
- Mitomo, H.; Barham, P.J.; Morimoto, H. Crystallization and morphology of poly(?-hydroxybutyrate) and its copolymer. Polym. J. 1987, 11, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Toldrá, F.; Torrero, Y.; Flores, J. Simple test for differentiation between fresh pork and frozen/thawed pork. Meat Sci. 1991, 29, 177–181. [Google Scholar] [CrossRef]
- Chung-Wang, Y.J.; Bailey, M.E.; Marshall, R.T. Reduced oxidation of fresh pork in the presence of exogenous hydrolases and bacteria at 2 degrees C. J. Appl. Microbiol. 1997, 82, 317–324. [Google Scholar] [CrossRef]
- Kaneniwa, M.; Yokoyama, M.; Murata, Y.; Kuwahara, R. Enzymatic hydrolysis of lipids in muscle of fish and shellfish during cold storage. Adv. Exp. Med. Biol. 2004, 542, 113–119. [Google Scholar]
- Qu, C.; Wang, H.; Liu, S.; Wang, F.; Liu, C. Effects of microwave heating of wheat on its functional properties and accelerated storage. J. Food Sci. Technol. 2017, 54, 3699–3706. [Google Scholar] [CrossRef] [PubMed]
- Weir, N.A.; Buchanan, F.J.; Orr, J.F.; Dickson, G.R. Degradation of poly-L-lactide. Part 1: In vitro and in vivo physiological temperature degradation. Proc. Inst. Mech. Eng. Part H 2004, 218, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Barham, P.J.; Keller, A.; Otun, E.L.; Holmes, P.A. Crystallization and morphology of a bacterial thermoplastic: Poly (3-hydroxybutyrate). J. Mater. Sci. 1984, 19, 2781–2794. [Google Scholar] [CrossRef]
- Boskhomdzhiev, A.P.; Bonartsev, A.P.; Makhina, T.K.; Myshkina, V.L.; Ivanov, E.A.; Bagrov, D.V.; Filatova, E.V.; Iordanskii, A.L.; Bonartsev, G.A. Biodegradation kinetics of poly(3-hydroxybutyrate)-based biopolymer systems. Biochem. Suppl. Ser. B Biomed. Chem. 2010, 4, 177–183. [Google Scholar] [CrossRef]
- Han, J.; Wu, L.P.; Bin Liu, X.; Hou, J.; Zhao, L.L.; Chen, J.Y.; Zhao, D.H.; Xiang, H. Biodegradation and biocompatibility of haloarchaea-produced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymers. Biomaterials 2017, 139, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Khandal, D.; Pollet, E.; Averous, L. Polyhydroxyalkanoate-based Multiphase Materials. RSC Green Chem. 2015, 30, 119–140. [Google Scholar]
- Sudesh, K.; Abe, H.; Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Prog. Polym. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Lyu, S.; Untereker, D. Degradability of Polymers for Implantable Biomedical Devices. Int. J. Mol. Sci. 2009, 10, 4033–4065. [Google Scholar] [CrossRef] [Green Version]
- Pan, J. Modelling degradation of semi-crystalline biodegradable polyesters. In Modelling Degradation of Bioresorbable Polymeric Medical Devices; Elsevier: Amsterdam, The Netherlands, 2015; pp. 53–69. [Google Scholar]
- Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. Express Polym. Lett. 2014, 8, 791–808. [Google Scholar] [CrossRef] [Green Version]
Substrate | Molecular Mass, kDa | The Content of 3-HV/(3-H4MV)/(PEG) in the Copolymer, % |
---|---|---|
PHB 1095 | 1095 | 0 |
PHBV 2.5% 768 | 768 | 2.5 |
PHBV 5.9% 819 | 819 | 9.0 |
PHBV 9% 1010 | 1010 | 17.6 |
PHBV 17.6% 1190 | 1190 | 5.9 |
PHBV-PEG 290 | 290 | 4.69% 0.15% (PEG) |
PHB-4MV 1340 | 1340 | 0.60 (3-H4MV) |
Sample | Hydrolytic Degradation | Enzymatic Degradation | ||
---|---|---|---|---|
R2 (Not-Autocatalytic Model) | R2 (Autocatalytic Model) | R2 (Not -Autocatalytic Model) | R2 (Autocatalytic Model) | |
PHB 1095 | 0.88 | 0.68 | 0.95 | 0.83 |
PHBV 2.5% 768 | 0.99 | 0.93 | 0.93 | 0.88 |
PHBV 5.9% 819 | 0.96 | 0.89 | 0.92 | 0.90 |
PHBV 9% 1010 | 0.96 | 0.90 | 0.99 | 0.97 |
PHBV 17.6% 1190 | 0.97 | 0.93 | 0.96 | 0.95 |
PHBV-PEG 290 | 0.92 | 0.83 | 0.99 | 0.98 |
PHB-4MV 1340 | 0.97 | 0.91 | 0.99 | 0.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuikov, V.A.; Zhuikova, Y.V.; Makhina, T.K.; Myshkina, V.L.; Rusakov, A.; Useinov, A.; Voinova, V.V.; Bonartseva, G.A.; Berlin, A.A.; Bonartsev, A.P.; et al. Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers 2020, 12, 728. https://doi.org/10.3390/polym12030728
Zhuikov VA, Zhuikova YV, Makhina TK, Myshkina VL, Rusakov A, Useinov A, Voinova VV, Bonartseva GA, Berlin AA, Bonartsev AP, et al. Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers. 2020; 12(3):728. https://doi.org/10.3390/polym12030728
Chicago/Turabian StyleZhuikov, Vsevolod A., Yuliya V. Zhuikova, Tatiana K. Makhina, Vera L. Myshkina, Alexey Rusakov, Alexey Useinov, Vera V. Voinova, Garina A. Bonartseva, Alexandr A. Berlin, Anton P. Bonartsev, and et al. 2020. "Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content" Polymers 12, no. 3: 728. https://doi.org/10.3390/polym12030728
APA StyleZhuikov, V. A., Zhuikova, Y. V., Makhina, T. K., Myshkina, V. L., Rusakov, A., Useinov, A., Voinova, V. V., Bonartseva, G. A., Berlin, A. A., Bonartsev, A. P., & Iordanskii, A. L. (2020). Comparative Structure-Property Characterization of Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)s Films under Hydrolytic and Enzymatic Degradation: Finding a Transition Point in 3-Hydroxyvalerate Content. Polymers, 12(3), 728. https://doi.org/10.3390/polym12030728