Nano-Indentation Response of Ultrahigh Molecular Weight Polyethylene (UHMWPE): A Detailed Analysis
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Effect of Amplitude, Frequency and Contact Depth
3.2. Effect of Strain Rate
3.3. Analysis of Creep Behavior
3.4. Effect of Holding Time on Hardness and Modulus
3.5. Recommended Holding Time
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lin, L.; Argon, A.S. Structure and plastic deformation of polyethylene. J. Mater. Sci. 1994, 29, 294–323. [Google Scholar] [CrossRef]
- Meyer, R.; Pruitt, L. The effect of cyclic true strain on the morphology, structure, and relaxation behavior of ultra high molecular weight polyethylene. Polymers 2001, 42, 5293–5306. [Google Scholar] [CrossRef]
- Bergström, J.; Rimnac, C.; Kurtz, S. Prediction of multiaxial mechanical behavior for conventional and highly crosslinked UHMWPE using a hybrid constitutive model. Biomaterials 2003, 24, 1365–1380. [Google Scholar] [CrossRef]
- Sobieraj, M.; Rimnac, C.M. Ultra high molecular weight polyethylene: Mechanics, morphology, and clinical behavior. J. Mech. Behav. Biomed. Mater. 2008, 2, 433–443. [Google Scholar] [CrossRef] [Green Version]
- Sreekanth, P.R.; Kanagaraj, S. Assessment of bulk and surface properties of medical grade UHMWPE based nanocomposites using Nanoindentation and microtensile testing. J. Mech. Behav. Biomed. Mater. 2013, 18, 140–151. [Google Scholar] [CrossRef]
- Iqbal, T.; Briscoe, B.J.; Yasin, S.; Luckham, P. Nanoindentation response of poly(ether ether ketone) surfaces-A semicrystalline bimodal behavior. J. Appl. Polym. Sci. 2013, 130, 4401–4409. [Google Scholar] [CrossRef]
- Iqbal, T.; Briscoe, B.J.; Yasin, S.; Luckham, P. Continuous stiffness mode nanoindentation response of poly(methyl methacrylate) surfaces. Chin. J. Polym. Sci. 2013, 31, 1096–1107. [Google Scholar] [CrossRef]
- Iqbal, T.; Yasin, S.; Zafar, M.; Zahid, S.; Ishteyaque, S.; Briscoe, B.J. Nanoindentation Response of Scratched Polymeric Surfaces. Tribol. Trans. 2015, 58, 801–806. [Google Scholar] [CrossRef]
- Iqbal, T.; Briscoe, B.J.; Yasin, S.; Luckham, P.F. Nanosurface Mechanical Properties of Polymers Based on Continuous Stiffness Indentation. J. Macromol. Sci. Part B 2014, 53, 1522–1532. [Google Scholar] [CrossRef]
- Iqbal, T.; Yasin, S.; Shakeel, A.; Mahmood, H.; Nazir, F.; Luckham, P. Analysis of Solvent Effect on Mechanical Properties of Poly(ether ether ketone) Using Nano-indentation. Chin. J. Chem. Phys. 2018, 31, 211–215. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.-G.; Su, J.-J.; Feng, X.-Q. Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 2008, 75, 4965–4972. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 2004, 19, 3–20. [Google Scholar] [CrossRef]
- Briscoe, B.J.; Fiori, L.; Pelillo, E. Nano-indentation of polymeric surfaces. J. Phys. D Appl. Phys. 1998, 31, 2395–2405. [Google Scholar] [CrossRef]
- Wu, K.S.; Li, S.Y.; Lo, A.C.Y.; Ngan, A.H.W.; Wong, D.S.H.; So, K.-F.; Ellis-Behnke, R.G.; Tang, B. Micro-scale Stiffness Change of Cornea Tissues Suffered from Elevated Intraocular Pressure Investigated by Nanoindentation. Soft Mater. 2013, 11, 244–253. [Google Scholar] [CrossRef]
- Tang, B.; Ngan, A.H.W. Nanoindentation Measurement of Mechanical Properties of Soft Solid Covered By a Thin Liquid Film. Soft Mater. 2007, 5, 169–181. [Google Scholar] [CrossRef]
- Tang, B.; Fong, M.K.; Wen, C.; Yan, C.H.; Chan, D.; Ngan, A.H.W.; Chiu, K.Y.; Lu, W.W. Nanostiffness of Collagen Fibrils Extracted from Osteoarthritic Cartilage Characterized with AFM Nanoindentation. Soft Mater. 2014, 12, 253–261. [Google Scholar] [CrossRef]
- Tang, B.; Ngan, A.H.W. Evaluation of the Surface Referencing Technique in Depth-Sensing Indentation of Soft Materials. Soft Mater. 2004, 2, 183–193. [Google Scholar] [CrossRef]
- Tang, B.; Ngan, A.H.W. Investigation of Viscoelastic Properties of Amorphous Selenium near Glass Transition Using Depth-Sensing Indentation. Soft Mater. 2004, 2, 125–144. [Google Scholar] [CrossRef]
- Hutchings, I.M. The contributions of David Tabor to the science of indentation hardness. J. Mater. Res. 2009, 24, 581–589. [Google Scholar] [CrossRef]
- Tze, W.; Wang, S.; Rials, T.; Pharr, G.; Kelley, S. Nanoindentation of wood cell walls: Continuous stiffness and hardness measurements. Compos. Part A Appl. Sci. Manuf. 2007, 38, 945–953. [Google Scholar] [CrossRef]
- Oliver, W.; Pharr, G. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Briscoe, B.J.; Sebastian, K.S.; Zheng, Q.-S.; Hwang, K.C. The elastoplastic response of poly(methyl methacrylate) to indentation. Proc. R. Soc. A Math. Phys. Eng. Sci. 1996, 452, 439–457. [Google Scholar]
- Chakraborty, H.; Sinha, A.; Mukherjee, N.; Ray, D.; Chattopadhyay, P.P. A study on nanoindentation and tribological behaviour of multifunctional ZnO/PMMA nanocomposite. Mater. Lett. 2013, 93, 137–140. [Google Scholar] [CrossRef]
- Golovin, Y.I.; Korenkov, V.V.; Razlivalova, S.S. The effect of small-amplitude load oscillations on the nanocontact characteristics of materials in nanoindentation. Phys. Solid State 2017, 59, 1127–1138. [Google Scholar] [CrossRef]
- Jia, Y.-F.; Cui, Y.-Y.; Xuan, F.-Z.; Yang, F. Comparison between single loading–unloading indentation and continuous stiffness indentation. RSC Adv. 2017, 7, 35655–35665. [Google Scholar] [CrossRef] [Green Version]
- Voyiadjis, G.Z.; Malekmotiei, L. Variation of the strain rate during CSM nanoindentation of glassy polymers and its implication on indentation size effect. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 2179–2187. [Google Scholar] [CrossRef]
- Zhang, L.; Shao, L.; Li, L.; Jiang, D. An abnormal displacement change during holding period in nanoindentation tests on zirconia dental ceramic. J. Adv. Ceram. 2016, 5, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Ngan, A.H.W.; Tang, B. Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 2002, 17, 2604–2610. [Google Scholar] [CrossRef] [Green Version]
- Fasce, L.; Cura, J.; Del Grosso, M.; Bermúdez, G.G.; Frontini, P. Effect of nitrogen ion irradiation on the nano-tribological and surface mechanical properties of ultra-high molecular weight polyethylene. Surf. Coatings Technol. 2010, 204, 3887–3894. [Google Scholar] [CrossRef]
- Ho, S.P.; Riester, L.; Drews, M.; Boland, T.; Laberge, M. Nanoindentation properties of compression-moulded ultra-high molecular weight polyethylene. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2003, 217, 357–366. [Google Scholar] [CrossRef]
- Mirsalehi, S.A.; Khavandi, A.; Mirdamadi, S.; Kalantari, S.M.; Naimi-Jamal, M.R. Nanomechanical and tribological behavior of hydroxyapatite reinforced ultrahigh molecular weight polyethylene nanocomposites for biomedical applications. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Bonne, M.; Briscoe, B.J.; Lawrence, C.J.; Manimaaran, S.; Parsonage, D.; Allan, A. Nano-indentation of scratched poly(methyl methacrylate) surfaces. Tribol. Lett. 2005, 18, 125–133. [Google Scholar] [CrossRef]
- McCumiskey, E.J.; Chandrasekhar, N.; Taylor, C.R. Nanomechanics of CdSe quantum dot–polymer nanocomposite films. Nanotechnology 2010, 21, 225703. [Google Scholar] [CrossRef] [PubMed]
- Katsuki, D.; Gutierrez, M. Nanoindentation approach characterizing strain rate sensitivity of compressive response of asphalt concrete. Acta Geotech. 2013, 9, 887–901. [Google Scholar] [CrossRef]
- Voyiadjis, G.Z.; Malekmotiei, L.; Samadi-Dooki, A. Indentation size effect in amorphous polymers based on shear transformation mediated plasticity. Polymer 2018, 137, 72–81. [Google Scholar] [CrossRef]
- Shen, L.; Phang, I.Y.; Liu, T.; Zeng, K. Nanoindentation and morphological studies on nylon 66/organoclay nanocomposites. II. Effect of strain rate. Polymer 2004, 45, 8221–8229. [Google Scholar]
- Argon, A. The Physics of Deformation and Fracture of Polymers; Cambridge University Press (CUP): New York, NY, USA, 2013. [Google Scholar]
- Perez, J. Physics and Mechanics of Amorphous Polymers; Routledge: London, UK, 2018. [Google Scholar]
- Malekmotiei, L.; Voyiadjis, G.Z.; Samadi-Dooki, A.; Lu, F.; Zhou, J. Effect of annealing temperature on interrelation between the microstructural evolution and plastic deformation in polymers. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1286–1297. [Google Scholar] [CrossRef]
- Chong, A.C.M.; Lam, D.C.C. Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 1999, 14, 4103–4110. [Google Scholar] [CrossRef]
- Shen, L.; Liu, T.; Lv, P. Polishing effect on nanoindentation behavior of nylon 66 and its nanocomposites. Polym. Test. 2005, 24, 746–749. [Google Scholar] [CrossRef]
- Han, C.-S.; Nikolov, S. Indentation size effects in polymers and related rotation gradients. J. Mater. Res. 2007, 22, 1662–1672. [Google Scholar] [CrossRef]
- Haasen, P. Physikalische Metallkunde; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Schulze, G.E.R. Metallphysik; Springer: Berlin/Heidelberg, Germany, 1974. [Google Scholar]
- Chudoba, T.; Richter, F. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results. Surf. Coatings Technol. 2001, 148, 191–198. [Google Scholar] [CrossRef]
- Jin, T.; Niu, X.; Xiao, G.; Wang, Z.; Zhou, Z.; Yuan, G.; Shu, X. Effects of experimental variables on PMMA nano-indentation measurements. Polym. Test. 2015, 41, 1–6. [Google Scholar] [CrossRef]
- Fischer-Cripps, A.C. Nanoindentation; Springer: New York, NY, USA, 2011. [Google Scholar]
Sr. # | Load (mN) | Parameter A (nm) | Parameter B (s−1) | R2 |
---|---|---|---|---|
1 | 30 | 1134 | 0.08 | 0.98 |
2 | 100 | 1536 | 0.13 | 0.99 |
Sr. # | Load (mN) | Recommended Holding Time (s) |
---|---|---|
1 | 30 | 1183 |
2 | 100 | 908 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, T.; Camargo, S.S., Jr.; Yasin, S.; Farooq, U.; Shakeel, A. Nano-Indentation Response of Ultrahigh Molecular Weight Polyethylene (UHMWPE): A Detailed Analysis. Polymers 2020, 12, 795. https://doi.org/10.3390/polym12040795
Iqbal T, Camargo SS Jr., Yasin S, Farooq U, Shakeel A. Nano-Indentation Response of Ultrahigh Molecular Weight Polyethylene (UHMWPE): A Detailed Analysis. Polymers. 2020; 12(4):795. https://doi.org/10.3390/polym12040795
Chicago/Turabian StyleIqbal, Tanveer, S. S. Camargo, Jr., Saima Yasin, Ujala Farooq, and Ahmad Shakeel. 2020. "Nano-Indentation Response of Ultrahigh Molecular Weight Polyethylene (UHMWPE): A Detailed Analysis" Polymers 12, no. 4: 795. https://doi.org/10.3390/polym12040795
APA StyleIqbal, T., Camargo, S. S., Jr., Yasin, S., Farooq, U., & Shakeel, A. (2020). Nano-Indentation Response of Ultrahigh Molecular Weight Polyethylene (UHMWPE): A Detailed Analysis. Polymers, 12(4), 795. https://doi.org/10.3390/polym12040795