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Abstract: Simulation and experimental studies were performed on filling imbalance in geometrically
balanced injection molds. An original strategy for problem solving was developed to optimize the
imbalance phenomenon. The phenomenon was studied both by simulation and experimentation
using several different runner systems at various thermo-rheological material parameters and process
operating conditions. Three optimization procedures were applied, Response Surface Methodology
(RSM), Taguchi method, and Artificial Neural Networks (ANN). Operating process parameters:
the injection rate, melt temperature, and mold temperature, as well as the geometry of the runner
system were optimized. The imbalance of mold filling as well as the process parameters: the injection
pressure, injection time, and molding temperature were optimization criteria. It was concluded
that all the optimization procedures improved filling imbalance. However, the Artificial Neural
Networks approach seems to be the most efficient optimization procedure, and the Brain Construction
Algorithm (BSM) is proposed for problem solving of the imbalance phenomenon.
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1. Introduction

The imbalance of polymer flow in geometrically balanced multi-cavity injection molds is a serious
and difficult to handle problem in the injection molding process. This phenomenon may be observed in
H-type runner layouts, which are depicted in Figure 1. At present, it is established that the imbalance
results from the polymer melt flow shear gradients developed in the runner system, which in turn
lead to non-symmetrical temperature and viscosity distributions. This is influenced and complicated
by the runner’s geometry, thermo-rheological material characteristics, and injection molding process
parameters [1–7].

The imbalance phenomenon has been investigated extensively for years by scientists and
engineers [1–25]. However, there is not any commonly accepted procedure for problem solving.
A detailed discussion of the literature review has been recently presented by the authors of this
paper [1,2]. This review is summarized below.

The fundamental research was carried out by Beaumont and his co-workers [3–6] as well as by
Reifschneider [7] who tried to explain the phenomenon of filling imbalance. Beaumont et al. developed
the commercial technique called melt rotation technology to diminish the filling imbalance [3–6].
In addition to the basic design with one correction element, double corrections and a circular element
were proposed. However, these designs were not studied by simulation or experimentation. Another
approach has been proposed by Huang [8], who applied profiled channels instead of straight channels.
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Petzold [9] and Fernandes [10] developed the concepts of optimizing the temperature field of the
flowing polymer. Rhee [11,12] proposed flow balancing by using the throttle valves in the runners
which were activated when the mold temperature rises. Schwenk [13] studied the effect of mold
venting on flow balancing.

Recently, the filling imbalance has been investigated with advanced techniques. Gim et al. [14]
used a mold equipped with thermocouples and in-direct pressure sensors, and they observed that the
filling imbalance may be inverse. Li et al. [15] studied the phenomenon by direct in-mold observations
using a mold with a sight glass.

The mold filling simulation software [16–19] was not able to diagnose the shear effect on the
polymer flow for a long time. The use of simple 1D beam elements, and 2D or 2.5D approach did not
allow to predict the shear phenomena properly. Thus, new simulation concepts have been proposed to
study the problem [20,21]. These included three-dimensional non-isothermal non-Newtonian flow
and inertia effects. Convection was predicted using 3D velocity vector, and this allowed the simulation
of the temperature field around the runners properly. Moreover, a flexible meshing was applied to
provide high-resolution mesh for the runners and the cavity. Several simulation studies have confirmed
this approach [22–25].

Summarizing, so far, the filling imbalance has been studied experimentally and to a less extent by
simulation for geometrically balanced systems and for basic melt rotation solutions only.

Recently, extensive experimental and simulation studies on the filling imbalance have been
performed by the authors of this paper [1,2]. Balancing the polymer flow between cavities has been
investigated at various operating conditions using various runner systems, which are depicted in
Figure 2. The experiments indicated that the process parameters: injection rate, mold and melt
temperature as well as the runners’ layout geometry significantly affect the filling imbalance. However,
the imbalance has never been eliminated completely. A special simulation technique was developed
to simulate the phenomenon properly, including inertia effects and 3D tetrahedron meshing of at
least 12 layers as well as meshing of the nozzle. It has been concluded that the thermo-rheological
characteristics of the material, defined by the parameters of the Cross-WLF model, i.e., the index
flow, critical shear stress (relaxation time), and zero shear viscosity, as well as characterized by the
thermal diffusivity and heat transfer coefficient, significantly affect the filling imbalance. This is
strongly dependent on the runners’ layout geometry and process operating conditions: flow rate
and shear rate. The main conclusion of these studies was that there is no universal procedure to
overcome the filling imbalance, and the only reasonable approach is to optimize the process parameters
(material parameters, operating conditions, as well as runners’ geometry and layout) for the currently
implemented process.
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Figure 2. Geometry of runner layouts: (a) standard GS, (b) one correction element G1, (c) two correction
elements G2, and (d) circled element G3 [2].

In this paper, a novel optimization approach has been presented to solve the filling imbalance
problem. Three optimization procedures were applied: Response Surface Method (RSM), Taguchi
procedure, and Artificial Neural Networks (ANN).

2. Optimization Window

The phenomenon was studied both by simulation and experimentation using several different
runner systems at various thermo-rheological material parameters and process operating conditions.
Operating process parameters of the injection rate Vinj, melt temperature Tm, and mold temperature
TM, as well as the geometry of the runner system were optimized, i.e., these were the optimized process
parameters. The imbalance of the mold filling Im as well as the process parameters of injection pressure
Pinj, injection time tinj, and molding temperature Tmolding were the optimization criteria (Table 1).

Table 1. Range of optimized process parameters.

Name Symbol Unit Type Min Value Max Value

Melt temperature Tm
◦C continuous 240 260

Mold temperature TM
◦C continuous 40 80

Injection rate Vinj mm/s continuous 20 80
Runner geometry G N/A discrete 0 3

Studies have been performed for an eight-cavity injection mold of “H-type” runner layout
equipped with inserts of different geometry. A standard geometry GS have been used as well as three
overturn geometries, G1 with one correction element, G2 with two correction elements, and G3 with
circled element, these are depicted in Figure 2.

The factor of mass filling imbalance Im [2] has been applied to evaluate the degree of imbalance
which is defined as

Im = 100%·
(
1−

m2

m1

)
(1)

where Im is the factor of mass filling imbalance, m1 is the mass of polymer from the inner cavities, and
m2 is the mass of polymer from the outer cavities (Figure 3).
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Figure 3. The concept of mass filling imbalance coefficient: (a) positive imbalance, Im > 0 (m1 > m2),
faster filling of inner cavities; and (b) negative imbalance, Im < 0 (m1 < m2), faster filling of outer cavities.

The imbalance factor is positive when the inner cavities (1) fills faster (Im > 0), and it is negative
when the outer cavities (2) filled faster (Im < 0).

The optimization criteria determine the global objective function which was defined in the
following way:

F =
4∑

i=1

wi fi (2)

where F is the global objective function, i is the number of optimization criteria, wi is the weight of the
i-criterion, fi is the value of the normalized i-criterion.

The optimization criteria were specified as follows: f 1 is the filling imbalance Im, f 2 is the injection
pressure Pinj, f 3 is the injection time tinj, and f4 is the molding temperature Tmolding.

The values of the weights were as follows: w1 = 0.5 for the filling imbalance Im, w2 = 0.1 for the
injection pressure Pinj, w3 = 0.2 for the injection time tinj, and w4 = 0.2 for the molding temperature
Tmolding. These are summarized in Table 2.

Table 2. Optimization criteria.

Name Symbol Symbol of Normalized
Criterion

Weight of the
Criterion Weight Value

Filling imbalance Im f 1 w1 0.5
Injection pressure Pinj f 2 w2 0.1

Injection time tinj f 3 w3 0.2
Molding

temperature
Tmolding f 4 w4 0.2

The optimization criteria were normalized in the following way:

- when the optimization criterion is the minimum value of the output variable yi:

fi =
ymax − yi

ymax − ymin
(3)

- when the optimization criterion is the maximum value of the output variable yi:

fi =
yi − ymin

ymax − ymin
(4)
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3. Optimization Procedures

Three optimization procedures were applied: Response Surface Methodology (RSM), Taguchi
Method, and Brain Construction Algorithm (BCA) developed by STASA, which are shortly
characterized below.

Response Surface Methodology (RSM) is a widely known and recognized statistical optimization
method that explores the relationships between several input variables (independent variables) and
one or more output variables (dependent or response variables) [26–28]. The main idea of RSM is
to use a sequence of designed experiments to obtain an optimal response. However, a full factorial
design is used in RSM, which means considering all combinations of parameter interactions, and it
is time-consuming.

The RSM procedure consists of a full factorial experiment, approximation of the experimentation
results (to do this, using a second-degree polynomial model is suggested), development of an extended
set of data (to densify the response surface), and data normalization and selection based on the global
objective function.

The Taguchi method [29,30] is based on the orthogonal array experiments, which provides much
reduced variance for the study with an optimum setting of process control parameters. Thus, the
integration of design of experiments (DOE) with parametric optimization of process to obtain desired
results is achieved in the Taguchi method. Many experiments must be performed when the number of
control factors is high. Taguchi methods use a special design of orthogonal arrays to study the entire
factor space with only a small number of experiments.

The Taguchi method uses the signal-to-noise (S/N) ratio instead of the average value to convert
the trial result data into a value for the characteristic in the optimum setting analysis. The S/N ratio
reflects both the average and the variation of the quality characteristic.

The standard S/N ratios generally used are as follows: nominal is best (NB), lower the better (LB),
and higher the better (HB). The larger (higher) the better type characteristic (HB) is applied for problems
where maximization of the quality characteristic of interest is sought. The smaller (lower) the better type
characteristic (LB) is applied for problems where minimization of the characteristic is intended. The
nominal the best characteristic (NB) is used for problems where one tries to minimize the mean squared
error around a specific target value.

Brain Construction Algorithm (BCA) is based on self-generating neural networks developed by
STASA [31,32] that are linked with classical statistics. This has the flexibility and universality of neural
models and the transparency of statistical theory. STASA has implemented a D-optimal design routine
that tries to maximize the parameter space with a minimum of experiments. The result is an optimally
adapted experimental design.

This novel optimization approach is based on the combination of mold filling numerical simulation
and the BCA procedure implemented in the STASA QC software.

The procedure starts with the definition of optimization parameters and quality features
(optimization criteria). Besides continuous measurable quality features such as dimensions or
weight, also, attributive features that are evaluated in a more subjective way, e.g., surface glance, can
be defined.

In the next step, the software provides a design of experiment that is automatically created based
on the parameters’ definitions. The experimental design provides a table with different parameter
settings, which have to be set on the simulation consecutively. At every setting, the quality features of
the simulated parts have to be measured. With this experimental design, the user receives guidance
how to change the process setting systematically to receive the information about the interrelations
between parameters and quality features required to generate the models.

In practice, the number of experiments (different machine settings) in the experimental design is
limited by cost factors. In general, no more than about 10 to 20 different machine settings are acceptable
in practical applications. That is the reason the numerical calculation have been utilized. In spite of
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that, taking into account a full factorial design used in RSM, which means considering all combinations
of parameter interactions, can only be used in exceptional cases.

4. Optimization Results

4.1. Optimization by Response Surface Methodology (RSM)

The results of optimizations performed by RSM method are depicted in Figures 4 and 5. Simulation
and experimental results for optimum set of data are presented in Figure 6.Polymers 2020, 12, x FOR PEER REVIEW 7 of 21 
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Figure 4 shows the optimum values of process parameters: the mold temperature TM, the melt
temperature Tm, the injection rate Vinj, as well as the geometry of the runner system G, which are
marked in red. The graphs show the optimum solution (red line) against the background of the
desirability function (objective function). The optimum values of process parameters are listed in the
conclusion table (Table 5).

The composite (global) desirability dependence on each of the optimized parameters with the
fixed (optimum) values of the other three parameters is presented in the first line. For example, the first
graph from the left shows the dependence of the composite desirability D on the mold temperature TM
at constant values of other parameters, i.e.,

D = D(TM)
∣∣∣
Tm=Tm opt, V inj=V inj opt,G=Gopt

(5)

The individual desirability functions are shown in the next four lines with the values of these for
the optimum set of data, i.e.,

dt inj

(
tinj = 4.7947

)
= 0.95965

dTmolding

(
Tmolding = 90.1016

)
= 0.6244 (6)

dP inj

(
Pinj = 45.3085

)
= 1.0000

dIm(Im = −2.6073) = 0.87584

Figure 5 presents the dependence (by regression) of the filling imbalance Im (output parameter)
on each pair of two of the four input parameters (TM, Tm, Vinj, G) with fixed values (center of the
variation range) of the other two parameters. For example, the graph in the upper left corner shows
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the dependence of the filling imbalance Im on the mold temperature TM and the melt temperature Tm

at the constant values Vinj = 50 mm/s and G = 0.

Im = Im(TM, Tm)
∣∣∣

V inj=50 mm/s, G=0 (7)

Figure 6 presents simulation and experimental results for optimum set of data. It is clearly seen
that the imbalance is relatively low, and equal to about Im = −9%, which means the outer cavities are
filled faster.

4.2. Optimization by Taguchi Method

The Taguchi method implemented into the Moldex3D software has some limitations.
The optimization window is defined by the limited number of optimized parameters. For that
reason, we assumed (from the available data) the following parameters (control factors, optimized
parameters): the mold temperature TM, the melt temperature Tm, the filling time tfill, and the mesh
size M. In this approach, the filling time tfill corresponds to the injection rate Vinj, and the mesh size M
corresponds to the runner geometry G. The range of these data is presented in Table 3.

Table 3. Specified range of control factors (optimized process parameters) for Taguchi method.

Control Factor Level 1 Level 2 Level 3 Level 4

Mesh size M GS G1 G2 G3
Filling time, s tfill 0.5 0.75 1.2 3
Melt temperaturę, ◦C Tm 240 250 255 260
Mold temperaturę, ◦C TM 40 50 60 80

The optimization criteria (quality factors) are also limited, and were selected as follows: the
density distribution Ddistrib, the average temperature distribution Tav, and the sprue injection value
Psprue. These factors correspond to the filling imbalance Im, the molding temperature Tmolding, and the
injection pressure Pinj. The characteristics of these and their weighting is presented in Table 4.

Table 4. Definition of quality factors (optimization criteria) for Taguchi method.

Quality Factor Characteristic Weighting

Average temperature distribution Tav Smaller the better 0.4
Density distribution Ddistrib Nominal the best 0.5
Sprue injection pressure Psprue Smaller the better 0.1

The optimal setting is the parameters combination that has the highest S/N ratio. For example, the
filling time has the highest S/N ratio for the set of control factors (optimized parameters) defined by
Level 4 (Figure 7).
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In the paper, smaller the better characteristic has been used for the average temperature distribution
Tav and the sprue injection pressure Psprue, and nominal the best characteristic for the density distribution
Ddistrib (Table 4).

The results of optimizations performed by Taguchi method are depicted in Figures 7 and 8.
Simulation and experimental results for optimum set of data are presented in Figure 9.
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(a) simulation, (b) experiment.

Figure 10 shows the optimum values of process parameters: the mold temperature TM, the melt
temperature Tm, the injection rate Vinj, as well as the geometry of the runner system G, which are equal
to: TM = 40 ◦C, Tm = 257 ◦C, Vinj = 68 mm/s, G = 1, respectively. The optimum is described by the red
line that connects the optimal parameter values.

The optimum values of process parameters are listed in the conclusion table (Table 5).
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Table 5. Results of optimization.

Optimal Parameters Values of Optimization Criteria Objective
Function

Vinj
[mm/s]

Tm
[◦C]

TM
[◦C] G Im [%] Tmolding

[◦C]
tinj [s] Pinj

[MPa] F

Taguchi Simulation
20 260 60 2

−4 94.0 3.01 48.3 0.80205
Experiment −14 96.6 3.0 45.4 0.632866

RSM
Prediction

24 266 26 2
−2.6 92.0 4.9 46.0 0.725025

Simulation −6 90.8 3.5 44.3 0.760807
Experiment −9 97.3 2.4 43,0 0.755103

BCA
Prediction

68 257 40 1
5 60.0 1.2 106.9 0.886497

Simulation −15 61.3 0.9 102.1 0.74406
Experiment −9 62.0 0.8 57.4 0.951511

The values of optimization criteria for optimal setting with respect to the predefined range of
searching are presented in Figure 11. The red dots indicate the values of the criteria, the black dots
represent the predefined target values, and the green areas represent the range of searching.

Figure 12 presents simulation and experimental results for optimum set of data. It is clearly seen
that the imbalance is relatively low, and equal to about Im = −9%, which means the outer cavities are
filled faster.

5. Discussion

The optimization results are summarized in Table 5. The optimal values of process parameters
(Vinj, Tm, TM, G) and the corresponding values of optimization criteria (Im, Pinj, tinj, Tmolding), as well
as the values of global objective function F are given. The simulation results were obtained using
Moldflow software, the prediction results were received from optimization software by calculation on
the base of their own models built on the simulation data. The experimental results were obtained by
performing the experiment at the optimal process parameters.

The highest value of the global objective function has been predicted for the optimal process
parameters indicated by BCA method (STASA QC), and also for these optimal parameters, the highest
value of the experimental global objective function has been obtained. So, it seems to be justified that
the Artificial Neural Networks approach is the most efficient optimization procedure, and the Brain
Construction Algorithm (BCA) might be proposed for problem solving of imbalance phenomena.

However, it is important to note that all the optimization procedures substantially improved the
filling balance, which is also confirmed by simulations depicted in Figures 13 and 14.
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Figure 14. Temperature plots in specific cross-sections of the runner system obtained from simulations
performed on different data, and using different optimization procedures: (a) maximum positive
imbalance (GS), (b) maximum negative imbalance (G2), (c) optimum RSM (G2), (d) optimum Taguchi
(G2), (e) optimum STASA (G)1.

Temperature plots in specific cross-sections of the standard runner system (Figure 13) obtained
from simulations performed on different data, and using different optimization procedures are depicted
in Figure 14. A maximum positive imbalance and maximum negative imbalance, as well as optimum
data for RSM, Taguchi, and STASA are shown. It is clearly seen that for the standard geometry GS, the
polymer melt stream rotates to the right (cross-section C–C, Figure 14a), which results in a positive
imbalance. While, for the two overturn geometry G2 the polymer melt stream rotates to the left
(cross-section C–C, Figure 14b), which results in a negative imbalance. In the optimized cases, there
is no substantial melt stream rotation that leads to much more balanced flow and cavity filling. It is
worth noting that rotation is observed in all cases; however, the degree of rotation varies.

Velocity plots in specific cross-sections of the runner system (Figure 13) obtained from simulations
performed on the data providing a maximum positive imbalance and maximum negative imbalance as
well as optimum data for STASA system are depicted in Figure 15. The most balanced flow is clearly
seen for the data indicated by STASA (Figure 15c).
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simulation and experimentation data substantially increase when injection rate Vinj increases [1]. 

Figure 15. Velocity plots in specific cross-sections of the runner system obtained from simulations
performed on different data, and using STASA optimization procedures: (a) maximum positive
imbalance (GS), (b) maximum negative imbalance (G2), (c) optimum STASA (G1). The optimized data
obtained by simulation have been compared with the experimental values, and the relative errors have
been listed in Figure 16. This comparison is limited to the RSM method and BCM procedure since the
Taguchi method has some parameter limitations (see Section 4.2).
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Figure 16. Relative error of experimental validation of simulations performed on the optimized data:
filling imbalance Im (w1 = 0.5), injection time tinj (w4 = 0.2), molding temperature Tmolding (w3 = 0.2),
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The comparison is related to the simulation validation, not to the optimization. An accuracy of
simulation is quite good, especially in the case of BCM procedure. In this case, the optimized value
of injection rate Vinj was very high. It results from our previous studies that discrepancies between
simulation and experimentation data substantially increase when injection rate Vinj increases [1].

6. Conclusions

Three optimization techniques were used to study and optimize the filling imbalance in
geometrically balanced injection molds: Response Surface Methodology (RSM), Taguchi method, and
Artificial Neural Networks (ANN). The process parameters of injection rate Vinj, melt temperature Tm,
and mold temperature TM, as well as the geometry of the runner system G were optimized. The mold
filling imbalance Im as well as the process parameters of injection pressure Pinj, injection time tinj, and
molding temperature Tmolding were the optimization criteria.

It can be concluded that using the optimization procedures improves the filling imbalance;
however, the Artificial Neural Networks using the Brain Construction Algorithm (BCA) seems to be
the most efficient optimization procedure.

It can be also noted that a comprehensive approach to modeling of injection molding may be
useful for simulation of the flow in injection molds and for the prediction of the filling imbalance.
A global injection molding model might be considered for simulation of the polymer melt flow in the
plasticating unit of the injection molding machine as well as in the mold. Resulting parameters of the
plasticating unit simulations would be input data for the mold flow simulations. Some of the injection
molding studies with this respect were recently discussed by the authors [1,2].
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wtryskowych z układem Melt FLIPPER. Mechanik 2008, 81, 327–330.
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