
polymers

Article

Use of Data Mining Techniques for the Prediction of
Surface Roughness of Printed Parts in Polylactic Acid
(PLA) by Fused Deposition Modeling (FDM): A
Practical Application in Frame Glasses Manufacturing

Esther Molero, Juan Jesús Fernández, Oscar Rodríguez-Alabanda , Guillermo Guerrero-Vaca *
and Pablo E. Romero

Department of Mechanical Engineering, University of Cordoba, Medina Azahara Avenue, 14071 Cordoba, Spain;
esther.molero@uco.es (E.M.); p82feruj@uco.es (J.J.F.); orodriguez@uco.es (O.R.-A.); p62rocap@uco.es (P.E.R.)
* Correspondence: guillermo.guerrero@uco.es; Tel.: +34-957-212-230

Received: 9 March 2020; Accepted: 3 April 2020; Published: 6 April 2020
����������
�������

Abstract: In the present work, ten data mining algorithms have been used to generate models
capable of predicting the surface roughness of parts printed on polylactic acid (PLA) by using fused
deposition modeling (FDM). The models have been trained using experimental data measured on 27
horizontal (XY) and 27 vertical (XZ) specimens, printed using different values for the parameters
studied (layer height, extrusion temperature, print speed, print acceleration and flow). The models
generated by multilayer perceptron (MLP) and logistic model trees (LMT) have obtained the best
results in a cross-validation. Although it does not obtain such optimal results, the J48 algorithm
(C4.5) allows the generation of models in the form of a decision tree. These trees permit to determine
which print parameters have an influence on the surface roughness. For XY specimens, the surface
roughness measured in the direction parallel to the extrusion path (Ra,0,XY ) depends on the flow,
the print temperature and the layer height; in the direction perpendicular to the extrusion path, the
surface roughness (Ra,90,XY) depends only on the flow. For XZ specimens, the surface roughness
measured in the direction parallel to the extrusion path (Ra,0,XZ) depends only on the print speed; in
the direction perpendicular to the extrusion path (Ra,90,XZ), it depends on the layer height and the
extrusion temperature. According to the study carried out, the most suitable set up provides values
of Ra,0,XY, Ra,90,XY, Ra,0,XZ and Ra,90,XZ equal to 0.46, 1.18, 0.45 and 11.54, respectively. A practical
application of this work is the manufacture of PLA frame glasses using FDM.

Keywords: fused deposition modeling; FDM; FFF; data mining; machine learning; PLA; surface
roughness; WEKA; decision trees; C4.5; neural networks; ANN; frame glasses

1. Introduction

Currently, the industry is suffering a profound revolution. Different technological tools are being
used intensively in factories [1]: augmented reality, virtual twins, data mining, additive manufacturing,
among others. This fact is known as industry 4.0.

Additive manufacturing (AM) was initially used to manufacture prototypes in the product
development stage. Today, it is also used to manufacture: customized objects (rapid prototyping), tools
for other processes (rapid tooling), small batches of fully functional parts (rapid manufacturing) [2].

There are different technologies of AM. However, fused deposition modeling (FDM) is the most
extended technology [3–5]. The low cost of the equipment and the diversity of filaments in the market
contribute to this. Although there are many materials available, polylactic acid (PLA) is still one of
the most widely used in FDM [6,7]. There are several reasons for this [8]: it is biodegradable, easily
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printed, does not give off any vapors during printing and there are PLA formulas with mechanical
properties similar to acrylonitrile butadiene styrene (ABS) [9].

For some applications, 3D printed parts must achieve minimum mechanical properties [8,10–13].
In other cases, apart from a high tensile strength value, the parts need to have a proper aesthetic
quality [14–16]. Some authors have evaluated which factors allow achieving the best rankings in
all hedonic, tactile and visual assessments of FDM 3D printed parts [17]; in the tactile and visual
evaluations, the authors conclude that the pieces with the highest scores are those with the lowest
values of surface roughness. On the other hand, the surface finish is crucial when printed parts are in
contact with human skin, as is the case with frame glasses [18].

One of the motivations for this work is to determine which printing factors are the most influential
in the surface finish on PLA parts printed using FDM. In the literature, you can find previous works in
which the influence of different printing parameters on the surface roughness of 3D printed parts has
been studied (Table 1). However, there are printing parameters that have not yet been analyzed, such
as print acceleration or flow. This is one of the main contributions of this work.

Traditionally, the experimental study of the quality of manufactured parts has been carried out
with statistical tools, such as the Taguchi method and analysis of variance (ANOVA) [19]. However,
the large amount of data currently generated by industry 4.0 sensors and the need to use algorithms
capable of modeling non-linear problems has made it necessary to use data mining (also known as
machine learning, ML) techniques [20–22]. The second motivation for the work is to use data mining
(DM) techniques to predict the surface finish of 3D printed parts using FDM.

Razvi et al. [23] have reviewed the existing literature on the use of DM in additive manufacturing;
the papers reviewed have been grouped around four different topics: design, process optimization,
monitoring and control, inspection and testing. Amand et al. [24] have used DM techniques to predict
possible defects during the configuration step in FDM 3D printing. Wu et al. [25] have used the
random forest algorithm to generate a model to predict the surface roughness of a 3D printed part from
data collected by different sensors placed in the FDM printer. Sohnius et al. [26] have employed DM
techniques to predict the quality of printed parts using FDM from data obtained via the machine vision
method. Mahapatra and Sood [27] proposed the use of artificial neural networks (ANN) to determine
the relationship between five input FDM parameters such as layer thickness, orientation, raster angle,
raster width, and air gap with surface roughness in the top, bottom, and side surface of the acrylic
nitrile butadiene styrene (ABS) built part. Boschetto et al. [28] proposed a feed-forward neural network
to fit experimental data and to determine surface roughness parameter models reliable over the entire
part surface. Vahabli and Rahmati [29] have established a robust model using empirical data based
on optimized ANN to estimate the surface roughness distribution in fused deposition modeling ABS
parts; this work includes four medical case studies.

The aim of this work is to generate and validate models via data mining techniques that allow
predicting the surface finish of PLA printed parts according to the selected values for the following
printing parameters: layer height, extrusion temperature, print speed, print acceleration and flow. For
this purpose, 27 horizontal and 27 vertical specimens have been manufactured, according to a fractional
experiment design. The surface roughness of these specimens was measured. The results were used to
generate and test different models via data mining algorithms (Bayes Net, naïve-Bayes, multilayer
perceptron, simple logistics, sequential minimal optimization, IBk, Kstar, J48, logistic model tree and
random forest). In addition, using the J48 algorithm, decision trees were generated to determine which
printing parameters significantly influence the surface roughness of the parts.

As a practical application of the work, the manufacture of a frame glasses is proposed. There
are standard frames on the market, which are adapted to the characteristics of an average person.
However, there are people with such a facial morphology that they cannot find glasses in the optical
shops. By means of 3D printing, it is possible to manufacture customized frames [30], in biodegradable
materials such as PLA [18]. One of the most important specifications of a frame glasses is the surface
finish, for aesthetic reasons and to reduce friction with the skin of the user.
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Table 1. Previous works that have studied the surface roughness of polylactic acid (PLA) printed parts
using fused deposition modeling (FDM).

Author Layer
Height Tempe-Rature Print

Orienta-tion
Print

Speed
Filling

Density
Nozzle

Diame-ter
Wall

Thick-ness
Print
Path

García-Plaza et al. [31]
√

-
√ √

- - - -
Ramli et al. [32]

√
- - -

√
- - -

Alsoufi and Elsayed [33]
√

- - - -
√

- -
Kovan et al. [34]

√ √
- - - - - -

Perez et al. [19]
√ √

-
√

- -
√ √

2. Materials and Methods

2.1. Design of Experiments and Printing of Specimens

In this work, 54 test pieces with dimensions 25.0 mm × 25.0 mm × 2.4 mm were printed following
a fractional experiment design, with five factors and three levels (Table 2). The factors studied were:
layer height (LH), extrusion temperature (T), print speed (PS), print acceleration (PA) and flow (F).
Table 3 shows the parameters set in each test. A total of 27 specimens were printed in the XY orientation,
and others 27 in the XZ orientation (Figure 1).

Table 2. Factors and levels used in the design of experiments (DOE).

Factors Level 1 Level 2 Level 3

Layer height, LH (mm) 0.16 0.20 0.24
Temperature, T (◦C) 200 210 220

Print speed, PS (mm/s) 40 50 60
Print acceleration, PA (mm/s2) 500 1000 1500

Flow, F (%) 90 100 110

Table 3. Design of experiment L27 used in the present work.

Layer Height, LH
(mm)

Temperature, T
(◦C)

Print Speed, PS
(mm/s)

Print Acceleration,
PA (mm/s2)

Flow,
F (%)

0.16 200 40 500 900
0.16 200 40 500 100
0.16 200 40 500 110
0.16 210 50 1000 90
0.16 210 50 1000 100
0.16 210 50 1000 110
0.16 220 60 1500 90
0.16 220 60 1500 100
0.16 220 60 1500 110
0.20 200 50 1500 90
0.20 200 50 1500 100
0.20 200 50 1500 110
0.20 210 60 500 90
0.20 210 60 500 100
0.20 210 60 500 110
0.20 220 40 1000 90
0.20 220 40 1000 100
0.20 220 40 1000 110
0.24 200 60 1000 90
0.24 200 60 1000 100
0.24 200 60 1000 110
0.24 210 40 1500 90
0.24 210 40 1500 100
0.24 210 40 1500 110
0.24 220 50 500 90
0.24 220 50 500 100
0.24 220 50 500 110
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Figure 1. Print orientation: vertical (XZ) (left), and horizontal (XY) (right).

The specimens were designed using SolidWorks (Dassault Systemes, Vélizy-Villacoublay, France).
The selection of print parameter values and the generation of the numerical code (CN) was performed
using Ultimaker CURA software (version 4.0.0, Ultimaker, Utrecht, The Netherlands).

The specimens were produced on an Ender 3 printer (Creality 3D, Shenzhen, China), with a 220 ×
220 × 250 mm3 workspace and a hot bed (50 ◦C). An extrusion nozzle with a diameter of 0.4 mm was
used in the tests.

2.2. Surface Roughness Measurement

Surface roughness (Ra) of the printed specimens was measured using a Mitutoyo SJ-201
profilometer (Mitutoyo, Kawasaki, Japan). Ra was measured five times in the direction parallel
to the extrusion path (Ra,0) and five times in the direction perpendicular to the extrusion path (Ra,90)
(Figure 2). The representative value in each direction for each specimen was calculated as the arithmetic
mean of these five measurements.Polymers 2020, 12, 840 5 of 18 
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Figure 2. Directions of measurement taken in the roughness test.

2.3. Data Mining Algorithms

Data mining is a discipline that allows us to analyze data sets and extract knowledge from them. It
is a key tool in the industry to process the data that is generated daily on machines and manufacturing
lines [20].

There are many DM algorithms. These algorithms can be classified into two main groups [35]:
supervised and unsupervised. Supervised algorithms are those that work with instances that a priori
already belongs to a class. Unsupervised algorithms are used precisely to try to classify instances into
groups that were not known a priori. Regression and classification models are the most well-known
supervised models while clustering is the main technique of the unsupervised category [36].
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The data obtained from the surface roughness measurements have been categorized into two classes,
using the median value as the border: surface roughness values below the median value have been
categorized as class 1; surface roughness values above the median value have been categorized as class 2.

From these data, a total of 40 models have been generated, using ten of the most common
classification algorithms in data mining. These algorithms are briefly described in Table 4. Two
parameters have been used to evaluate each model: the percentage of correctly classified instances and
the kappa statistic. These parameters are calculated using the cross-validation procedure (10-folds).

Table 4. Description of the data mining algorithms used in the present work (elaborated from [37]).

Algorithm Description Ref.

Bayes Net
(BN)

It is a Bayesian classification algorithm that provides joint conditional probability
distributions. BN algorithm consists of a directed acyclic graph and a set of conditional
probability tables. Each random variable is expressed by a node in the directed acyclic
graph. The conditional probability table for the values of the variables indicate each
possible combination of the values of its parent nodes.

[38]

Naïve-Bayes

It is a statistical classification algorithm which is based on Bayes’ theorem. The suppositions
of accepting that predictive attributes are conditionally independent given the class and no
hidden or latent attributes influence the predictive process make the algorithm a suitable
tool for classification and learning.

[39]

Multilayer
Perceptron (MLP)

MLP is a feed-forward neural network with one or more hidden layers that uses
back-propagation to classify instances. The structure of an MLP typically consists of an
input layer, hidden layers and output layer, where the input signals are propagated in the
forward direction.

[40]

Simple Logistics

Logistic regression is a statistical model that predicts the probability of some event
occurring as a linear function of a set of predictor variables. Linear regression presents two
problems: the membership values are not proper probability values and the least-squares
regression takes errors as both statistically independent and normally distributed with the
same standard deviation. In order to get rid of these problems, logistic regression generates
a linear model based on a transformed target variable.

[35]

Sequential Minimal
Optimization
(SMO)

It is a support vector machine (SVM) classifier that employs sequential minimal
optimization for training. SVM is a method for classification of linear and nonlinear data
that uses a nonlinear mapping for transforming the original data into a higher dimension.

[38]

IBk

It is an instance-based learning algorithm which is a slightly modified version of the
K-nearest neighbor (KNN) algorithm. The algorithm can determine the appropriate value
for K based on cross-validation. It normalizes the ranges of attributes, processes instances
incrementally and has a policy for tolerating missing values.

[41]

KStar

It is an instance-based learning algorithm which uses an entropy-based distance function. It
handles with symbolic attributes, real-valued attributes and missing values properly owing
to the use of entropy as a distance function. The technique of summing probabilities over all
possible paths overcomes the problem of smoothness.

[42]

J48

J48 is a slightly modified version of C4.5 in WEKA. C4.5 is a successor of ID3 algorithm. The
test attribute selection criteria of the algorithm is information gain to overcome the attribute
bias problem of ID3. For a given set, each time the algorithm selects an attribute with the
highest information gain.

[43]

Logistic Model
Trees (LMT)

LMT is a classification algorithm that integrates decision tree induction with logistic
regression. The tree structure of the algorithm is grown in a similar manner to the C4.5
algorithm. Here, an iterative training of additive logistic regression models is performed. By
splitting, the logistic regressions of the parent node are passed to the child nodes. This
provides to have all parent models and probability estimates for each class at the leaf nodes
of the final model.

[44]

Random Forest

It is an ensemble of classification or regression trees, induced from bootstrap samples of the
training data. In this model, the generalization error of the classifier depends on the power
of the individual trees and the association between the trees. Random feature selection is
used in the tree induction process. This enables the algorithm to perform comparable to the
Adaboost algorithm and to be tolerable with noisy data.

[45]

2.4. Decision Trees

Decision trees are one of the most widely used supervised algorithms. In this category are [35]:
C4.5, CART, random forest, random tree, among others. The C4.5 algorithm was developed by
Quinlan [43]. This algorithm generates tree-shaped models that allow the classification of instances in
a simple, visual and easy to understand way.
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The C4.5 algorithm is based on the concept of entropy, understanding entropy as a measure of
data disorder [43]. The entropy of a vector and

→
y can be calculated as shown in Equation (1) iterating

over all possible values of
→
y . Conditional entropy is calculated as shown in Equation (2).

Entropy
(
→
y
)
= −

n∑
j=1

|y j|

|
→
y |

log
|y j|

|
→
y |

(1)

Entropy
(
j|
→
y
)
=
|y j|

|
→
y |

log
|y j|

|
→
y |

. (2)

Finally, the gain is defined as shown in Equation (3).

Gain
(
→
y , j

)
= Entropy(

→
y − Entropy( j|

→
y ) (3)

For each node in the tree, the algorithm chooses the attribute that most effectively divides the
original set into different smaller subsets. The attribute with the highest information gain is chosen
as a decision parameter. The WEKA data mining software, developed by the University of Waikato
(Hamilton, New Zealand), includes the J48 algorithm, based on the C4.5 [35].

2.5. Case Study: Printing a Frame Glasses

As a practical application of the work, the manufacture of a frame glasses is proposed. A frame is
made up of two main elements: front and temples. Each of these elements has been personalized for
the face/head of one of the authors, who cannot find glasses on the market that fit his morphology.
In this case, the front has been printed in a horizontal orientation (XY) and the temples in a vertical
orientation (XZ). The printing parameters chosen in each case have been selected after this study.

3. Results

3.1. Data from the Tests

The mean values and standard deviation of surface roughness in the direction parallel to extrusion
path (Ra,0) and in the direction perpendicular to extrusion path (Ra,90) for both print orientation (XY
and XZ) are shown in Tables 5 and 6. As expected, due to the deposition of the fused filament layer
after layer, the surface roughness in the direction parallel to the extrusion path is lower than the surface
roughness in the perpendicular direction.

3.2. Comparison of Models Generated via Data Mining Algorithms

To analyze the data, they have been classified into two groups (Table 7): class 1 (low surface
roughness values) and class 2 (high surface roughness values). This data has been processed by the
WEKA software. By means of this software, different classification algorithms have been used to
predict whether an instance belongs to class 1 or class 2. Each algorithm has been used to generate 4
models: Ra,0XY, Ra,90XY, Ra,0XZ, Ra,90XZ. Each model has been evaluated using two criteria: on the one
hand, the number of correctly classified instances; on the other, the value of the kappa statistic (Table 8).
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Table 5. Mean and standard deviation of surface roughness for XY specimens.

Test Ra,0,XY (µm) Ra,90,XY (µm)

Mean Std. Dev. Mean Std. Dev.

1 0.80 0.34 0.71 0.34
2 1.68 0.56 1.41 0.75
3 0.46 0.08 1.18 1.59
4 1.55 0.33 1.96 1.87
5 1.02 0.41 2.14 2.49
6 0.39 0.09 2.16 3.33
7 1.11 0.38 2.83 3.63
8 2.09 0.25 3.45 4.05
9 1.16 0.23 3.46 4.82

10 0.59 0.17 3.59 5.56
11 1.29 0.64 4.31 5.80
12 0.96 0.18 4.38 6.61
13 0.74 0.24 4.66 7.23
14 6.58 1.47 7.35 6.30
15 0.69 0.26 5.32 8.39
16 0.89 0.50 5.80 8.84
17 7.93 0.86 8.60 8.09
18 0.48 0.15 6.21 10.21
19 0.92 0.20 6.70 10.65
20 10.36 1.35 10.57 9.33
21 0.64 0.20 7.28 11.88
22 6.96 1.79 10.25 10.50
23 9.46 4.06 12.17 9.76
24 0.67 0.25 8.31 13.59
25 4.91 0.83 10.25 12.94
26 1.48 0.44 9.31 14.47
27 0.80 0.36 9.39 15.26

Table 6. Mean and standard deviation of surface roughness for XZ specimens.

Test Ra,0,XZ (µm) Ra,90,XZ (µm)

Mean Std. Dev. Mean Std. Dev.

1 0.58 0.25 13.29 1.15
2 0.57 0.21 12.63 0.66
3 0.45 0.03 11.54 0.13
4 0.39 0.13 13.04 0.25
5 0.40 0.10 12.25 0.42
6 0.60 0.23 11.55 0.05
7 0.48 0.15 12.92 0.49
8 0.66 0.11 12.87 0.51
9 1.12 1.11 12.44 0.35

10 0.76 0.24 15.31 0.20
11 0.37 0.08 15.34 0.32
12 0.34 0.10 14.89 0.16
13 0.69 0.55 16.35 0.68
14 0.71 0.16 15.81 0.61
15 0.65 0.16 14.44 0.14
16 0.63 0.18 16.91 1.00
17 0.34 0.12 16.23 0.62
18 0.42 0.06 15.58 0.77
19 0.67 0.20 19.25 0.59
20 0.56 0.25 18.93 0.33
21 0.72 0.30 17.86 0.10
22 0.58 0.27 19.19 0.55
23 0.63 0.18 19.16 0.28
24 0.46 0.16 18.94 0.88
25 0.67 0.19 20.06 1.25
26 0.74 0.25 18.80 0.33
27 0.64 0.21 18.36 0.50
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Table 7. Values used to establish the classes needed to perform data processing at WEKA.

Orientation Direction Class 1 Class 2

XY 0◦ 0.39–1.02 µm 1.03–10.36 µm
XY 90◦ 5.79–13.43 µm 13.44–18.69 µm
XZ 0◦ 0.34–0.60 µm 0.61–1.12 µm
XZ 90◦ 11.54–15.58 µm 15.59–20.06 µm

Table 8. Strenght of concordance for kappa statistic.

Kappa Statistic Strength of Concordance

0.00 Poor
0.01–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substancial
0.81–1.00 Almost perfect

The models generated from Ra,0,XY, Ra,90,XY, Ra0,XZ and Ra90,XZ data are shown in Figures 3–6,
respectively. The algorithms that achieve better results for Ra0,XY are MLP, J48, LMT and random
forest. The algorithms that achieve better for Ra90,XY results are Bayes Net and LMT. The algorithm
that achieves better results for Ra0,XZ are MLP and LMT. The algorithms that achieve better results for
Ra90,XZ are MLP, SMO, Kstar and random forest.
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3.3. Generation of Decision Trees (J48)

As seen in the previous section, except in the case of Ra0,XZ, the models generated by the J48
algorithm present adequate results. On the other hand, this algorithm is not a black box: it allows the
generation of decision trees that are easy to interpret and that provide additional information.

Figure 7 shows the decision tree generated for the surface roughness in the direction parallel to
the extrusion path for the data obtained from specimens printed in the XY orientation (Ra,0,XY). As it
can be seen in the figure, the most important parameters are flow (F), extrusion temperature (T) and
layer height (LH). According to this tree, a lower surface roughness (class 1) can be obtained in the
following cases:

• By selecting a flow value (F) higher than 100 % (directly).
• By selecting a flow value (F) equal to 90 % and a print temperature (T) equal to 200 ◦C.
• By selecting a flow (F) value equal to 90 %, a print temperature (T) higher than 200 ◦C and a layer

height (LH) equal to 0.2 mm.

Figure 8 shows the decision tree generated for the surface roughness in the direction perpendicular
to the extrusion path, for the data obtained from specimens printed in XY orientation (Ra,90,XY). In this
case, the most important parameter is the flow (F). According to this tree, a lower surface roughness
(class 1) can be obtained simply by selecting a flow value (F) higher than 100%.

Figure 9 shows the decision tree generated for surface roughness in the direction parallel to the
extrusion path from the data obtained from specimens printed in XZ position (Ra,0,XZ). As can be seen
in this figure, the most important parameter, in this case, is the print speed (PS). According to this tree,
a lower surface roughness (class 1) can be obtained simply by selecting a value for the printing speed
(PS) equal to 40 mm/s.
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on printed specimens in the XZ orientation (Ra,0,XZ).

Figure 10 shows the decision tree generated for roughness in the direction perpendicular to the
extrusion path, for the data obtained from specimens printed in XZ position (Ra,90,XZ). In this case, the
most important parameters are the layer height (LH) and the extrusion temperature (T). According to
this tree, a lower surface roughness (class 1) can be obtained in the following cases:

• By selecting a layer height (LH) equal to 0.16 mm (directly).
• By selecting a layer height (LH) equal to 0.20 mm and a print temperature (T) equal to 200 ◦C.

Table 9 shows the percentages of correctly and incorrectly classified instances, as well as the kappa
statistic for each model. According to Table 8, the models generated for Ra,0,XY and Ra,90,XY is rated as
‘moderate’; on the other hand, the model generated for Ra,90,XZ is rated as ‘almost perfect’. Finally, the
model obtained for Ra,0,XZ obtains very poor results. The results obtained from the first three models
are supported. This is not the case with the last model.
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Table 9. Information regarding decision tree models generated in this work.

Tree Correctly Classified
Instances (%)

Incorrectly Classified
Instances (%) Kappa Statistics

Ra,0,XY 70.37 29.63 0.41
Ra,90,XY 70.37 29.63 0.41
Ra,0,XZ 44.44 55.56 −0.11
Ra,90,XZ 92.59 7.41 0.85

In order to check that the information extracted from the decision trees is correct, the mean value
and the standard deviation obtained for surface roughness in each of the 27 tests carried out have been
represented. As an example, Figures 11 and 12 show the results for Ra0XY and Ra90XZ, respectively.
Figure 11 clearly shows the instances belonging to class 1 (F > 100; F ≤ 90 and T ≤ 200; F ≤ 90 and T >

200 and LH = 0.2) and the instances belonging to class 2 (the rest). Likewise, Figure 12 shows that the
instances that meet certain criteria (LH ≤ 0.16; 0.16 < LH ≤ 0.20 and T < 200) have a lower surface
roughness than the rest.
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3.4. Practical Application: Reduction of Surface Roughness in FDM 3D Printed Frame Glasses

A practical application of the results obtained in this work is the production of frame glasses
printed in PLA using FDM (Figure 7). Frames glasses are a perfect example of a product that should be
custom-made: each user has a face width, a nose width and a face-to-ear distance (Figure 13, left). The
most important dimensions of a frame glasses can be parameterized in a CAD design and adjusted
according to the needs of each customer. Once the model was customized, it was printed using an F
equal to 110% and an LH equal to 0.16 mm (Figure 13, right).
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4. Discussion

In the present work, data mining techniques have been used to generate models that allow
predicting the surface roughness of parts printed in PLA using 3D FDM printing. The classifier
algorithms used to generate the models have been: Bayes net, naïve-Bayes, multilayer perceptron
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(ANN), simple logistic, SMO (SVM), IBk (KNN), KStar, J48 (C4.5), LMT y random forest. The models
have been tested by means of a cross-validation (10-folds). The percentage of correctly classified
instances and the kappa statistic were used to compare these models with each other. The input
variables of the study have been: print orientation, layer height (LH), extrusion temperature (T), print
speed (PS), print acceleration (PA) and flow (F). The output variables have been the surface roughness
measured in the direction parallel to the extrusion path (Ra,0) and in the direction perpendicular to the
extrusion path (Ra,90). A total of 54 specimens have been printed for this purpose: 27 specimens were
printed with horizontal orientation (XY) and the other 27 with vertical orientation (XZ).

From the results shown in Figures 3–6, it can be stated that one of the models that best classify the
instances according to their surface roughness (both for horizontal and vertical specimens) is the one
generated by the multilayer perceptron (artificial neural network, ANN) algorithm. In the literature
there are works that also use different types of ANN to predict the surface roughness of printed parts
using FDM: Boschetto et al. [28] propose the use of a feed-forward neural network to predict surface
roughness on surfaces that form different angles to the vertical, obtaining errors of less than 5%; Vahabli
and Rahmati [29] propose a similar model, using another type of ANN, capable of predicting surface
roughness as a function of build angle. However, both works do not take into account the influence of
printing parameters on the surface roughness obtained.

Another algorithm that has generated in the present work models with positive results has been
the LMT. This fact is consistent with other works of literature: Landwehr et al. [46] concluded that LMT
produces more accurate classifiers than J48 (C4.5), CART, logistic regression, models tree, functional
trees, naïve Bayes trees and LOTUS. The problem with this algorithm, like ANN, is that it does not
generate a model that can be visualized or easily understood.

One algorithm that generates a model that can be represented graphically is J48. Figures 7–10
show the decision trees generated by this algorithm for the different measured surface roughness.
From the models obtained, Table 10 has been drawn up. This table summarises the printing variables
that must be taken into account in order to obtain a lower surface roughness (class 1). From these
decision trees, a basic configuration can be established to obtain a good surface finish simultaneously
on XY and XZ orientation, for perpendicular and parallel direction to extrusion path: F equal to 110 %
and LH equal to 0.16 mm.

Table 10. Parameters involved in each data tree models.

XY XZ

Ra,0 F, T, LH PS
Ra,90 F LH, T

NOTE: The most important parameters have been highlighted in bold.

In addition to the above, the following statements can be made:

• The decision tree models can be easily interpreted by any 3D printer operator (they are not
black-box models) [47]. For this reason, they are used for modeling other manufacturing
processes in literature [48]. This is important in the current industry that is very concerned with
visual management.

• Two parameters that had not been previously studied in the literature on PLA specimens were
included in this work: print acceleration and flow. While print acceleration seems not to have an
influence in any of the cases studied, the flow is revealed as an important parameter in the surface
roughness obtained in XY orientation. This result is consistent with those obtained by the authors
in similar tests performed on PETG [47].

• In Ra,90,XZ, the most influential parameters are layer height. These results coincide with those
obtained by other authors: García-Plaza et al. [31] state that the layer height parameter is the most
influential in upright and on-edge positions (similar to the XZ orientation in the present paper).
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• Three of the four models generated have achieved a ’moderate’ or ’almost perfect’ rating, according
to their kappa statistic values. This fact supports the validity of the results obtained in the present
work, as shown in Figures 11 and 12. The model generated for Ra0,XZ did not pass the evaluation.

• The results obtained in the present work have been used to print a frame glasses in PLA via FDM.
A-frame glasses is the perfect example of a customized part/assembly. There are previous works
in the literature focused on this topic [18], although they have not studied the printing parameters
that allow to achieve a better surface finish.

5. Conclusions

In the present work, data mining algorithms have been used to generate from experimental tests
models capable of predicting the surface roughness of horizontal and vertical parts printed in PLA
using FDM. MLP and LMT are the algorithms that obtain the best results in cross validation tests.

The J48 algorithm obtains almost perfect results in one of the models and moderate results in two
others. However, unlike MLP and LMT, this algorithm generates decision trees in which it is possible
to see which print parameters influence surface roughness.

Of the five parameters studied, two have proved to be the most important for obtaining a better
surface finish in XY and XZ specimens: flow and layer height. A flow equal to 110% and a layer height
equal to 0.16 mm provides the lowest values of surface roughness (Ra) in PLA printed specimens in XY
and XZ orientation. Using these values, a frame of glasses has been printed, as a practical and direct
application of this work.
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