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Abstract: The epoxy/clay nanocomposites have been extensively considered over years because
of their low cost and excellent performance. Halloysite nanotubes (HNTs) are unique 1D natural
nanofillers with a hollow tubular shape and high aspect ratio. To tackle poor dispersion of the
pristine halloysite (P-HNT) in the epoxy matrix, alkali surface-treated HNT (A-HNT) and epoxy silane
functionalized HNT (F-HNT) were developed and cured with epoxy resin. Nonisothermal differential
scanning calorimetry (DSC) analyses were performed on epoxy nanocomposites containing 0.1 wt.%
of P-HNT, A-HNT, and F-HNT. Quantitative analysis of the cure kinetics of epoxy/amine system
made by isoconversional Kissinger–Akahira–Sunose (KAS) and Friedman methods made possible
calculation of the activation energy (Eα) as a function of conversion (α). The activation energy
gradually increased by increasing α due to the diffusion-control mechanism. However, the average
value of Eα for nanocomposites was lower comparably, suggesting autocatalytic curing mechanism.
Detailed assessment revealed that autocatalytic reaction degree, m increased at low heating rate
from 0.107 for neat epoxy/amine system to 0.908 and 0.24 for epoxy/P-HNT and epoxy/A-HNT
nanocomposites, respectively, whereas epoxy/F-HNT system had m value of 0.072 as a signature of
dominance of non-catalytic reactions. At high heating rates, a similar behavior but not that significant
was observed due to the accelerated gelation in the system. In fact, by the introduction of nanotubes

Polymers 2020, 12, 930; doi:10.3390/polym12040930 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0003-0419-7368
https://orcid.org/0000-0002-1609-1061
https://orcid.org/0000-0003-0867-9794
https://orcid.org/0000-0002-8414-230X
https://orcid.org/0000-0001-9907-9414
http://www.mdpi.com/2073-4360/12/4/930?type=check_update&version=1
http://dx.doi.org/10.3390/polym12040930
http://www.mdpi.com/journal/polymers


Polymers 2020, 12, 930 2 of 19

the mobility of curing moieties decreased resulting in some deviation of experimental cure rate values
from the predicted values obtained using KAS and Friedman methods.

Keywords: cure kinetics; halloysite nanotubes; epoxy; isoconversional method

1. Introduction

The curing reaction of epoxy resin, so-called crosslinking, includes formation of short chains
followed by branching until formation of a cross-linked network [1–3]. Curing process of epoxy
progresses further by the occurrence of gelation and vitrification transitions that affect the ultimate
properties of the cured system [4–6]. The cure reaction of epoxy and consequently its properties
are additionally dependent on the fillers involved in the formulation and the interactions between
filler and the matrix [7–9]. The interfacial interaction between fillers and polymer matrix can be
improved by adjusting the surface chemistry of the reinforcing agents. Moreover, the morphology of
nanoparticles and their content can strongly affect cross-linking reaction of epoxy. The cure study of
epoxy containing 0D spherical cobalt doped Fe3O4 nanoparticles revealed that the amount of heat of
cure of nanocomposite was significantly higher than that for the neat epoxy system due to the catalytic
effect of nanoparticles [10]. In another study, surface modification of cobalt doped Fe3O4 nanoparticles
with ethylenediaminetetraacetic acid enhanced the curability of epoxy nanocomposite because of the
reaction between the carboxylic acid anchored to the surface of particles and the epoxide rings [11].
Nonisothermal differential scanning calorimetry (DSC) results indicated that epoxy nanocomposite
containing Ni-Al-NO3 2D layered double hydroxide platelet-like nanoparticles increased the cross-link
density of network compared to the unfilled epoxy due to the reaction of nitrate anion with epoxide
ring [12]. In a recent study, it was found that introduction of 0.1 wt.% microporous 3D metal–organic
framework into the epoxy significantly improved the heat release by 63% [13].

Among 1D nano-scale fillers, halloysite nanotubes (HNTs) are of interest of researchers because
of being inexpensive and having a highly reactive surface [14–16]. In recent years, many studies
published on the effect of HNT as filler on the thermal stability, mechanical, anticorrosion, and flame
retardant properties of polymers [17–22]. Biocompatibility and availability are two important factors
placing reason behind selection of HNTs [23,24]. However, there is still a shortage of resources in the
study of network formation and the effects of thermal phenomena on the properties of HNT/epoxy
nanocomposites. Vahedi et al. [25] studied isothermal cure behavior of epoxy/HNT nanocomposites
with two different curing agents of diaminodiphenylmethane (MDA) and diethylenetriamine (DETA).
They indicated that the curing behavior of the cured epoxy with DETA was not severely affected by the
addition of HNTs. However, HNTs showed catalytic effect on the curing behavior of MDA cured epoxy
due to the presence of hydroxyl groups on the surface of HNTs. The effect of 0.5, 1.0 and 2.0 wt.% of
HNTs on the curing behavior of epoxy/anhydride systems was also discussed by Jouyandeh et al. [26].
The results indicated that the crosslinking reaction was promoted at 0.5 and 1.0 wt.% of HNTs, while the
curing reaction was hindered at 2.0 wt.% of HNTs because of deactivation of anhydride curing agent
fueled by diffusion into the lumen of HNTs.

In a recent work, pristine HNT (P-HNT) was modified by alkali activation process (A-HNT) and
epoxy silane functionalization (F-HNT) as well. The potentials of P-HNT, A-HNT and F-HNT to cure
with epoxy and amine were studied qualitatively by nonisothermal DSC [27]. In order to gain more
information about cure reaction of epoxy containing P-HNT, A-HNT and F-HNT, Cure Index (CI) was
used [28]. However, to unravel complexities in the system, e.g., the effect of each type of nanotubes on
the autocatalytic and non-catalytic crosslinking reactions, we needed isoconversional kinetic analyses
to provide more detailed quantitative information on crosslinking reactions by patterning the evolution
of activation energy of systems as a function of conversion and the orders of the aforementioned
crosslinking reactions.
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In this work, cure kinetics of epoxy/HNT nanocomposites was comprehensively studied through
quantitative analysis of network formation in the epoxy/amine systems filled with P-HNT, A-HNT and
F-HNT. Following the previous work, we more accurately investigate the curing reaction, accomplished
by the calculations based on integral Kissinger–Akahira–Sunose (KAS) and differential Friedman
isoconversional methods.

2. Materials and Methods

2.1. Materials

Bisphenol A diglycidyl ether (EPON™ Resin 828) epoxy resin with epoxide equivalent weight of
450–550 g/eq. was provided by Hexion (Shanghai, China). The curing agent of Epikure™ F205 with
hydrogen equivalent weight (HEW) value of 105 g/eq. was provided by Hexion (Shanghai, China).
HNTs with lumen diameter of 15–70 nm, outer diameter of 50–200 nm and the length of 100–3000 nm
was purchased from Imerys Tableware Asia Limited (Auckland, New Zealand).

2.2. Preparation of Epoxy Nanocomposites

Pristine halloysite nanotubes (P-HNTs), alkali-activated HNTs (A-HNTs), and epoxy silane
(2-(3,4-epoxycyclohexyl) ethyltriethoxy silane)-functionalized A-HNTs (F-HNTs) were prepared
according to the previous work [19]. For preparation of epoxy/HNTs nanocomposites, 0.2 wt.%
P-HNTs, A-HNTs and F-HNTs were separately added to the epoxy resin under sonication for 30 min.
Then, the amine curing agent was added to the resulting nanocomposites at 2:1 resin:curing agent
ratio at room temperature and stirred for 3 min. The prepared samples were stored at −4 ◦C prior to
calorimetric measurements.

2.3. DSC Measurement

Cure reactions of epoxy in the presence of P-HNTs, A-HNTs and F-HNTs were studied by
nonisothermal DSC on a model DSC1 Mettler device (Greifensee, Switzerland). Samples of about 15 mg
were analyzed under nitrogen atmosphere at heating rates of 5, 10, 15, and 20 ◦C/min. The nonisothermal
DSC test was performed in the temperature range between the room temperature and 300 ◦C to cover
the whole curing process.

3. Results and Discussion

Based on a comprehensive protocol recommended for the analysis of cure process in thermoset
composites [29], the results of nonisothermal DSC at four heating rates of 5, 10, 15 and 20 ◦C/min were
analyzed for neat epoxy and its nanocomposites. Figure 1 shows the DSC data of the neat epoxy and
its nanocomposites including 0.2 wt.% of P-HNT, A-HNT and F-HNT. DSC thermograms for each
sample were shifted towards higher temperatures by increasing the heating rate, suggesting enhanced
kinetic energy of the system at higher heating rates [30–32]. Observation of a single exothermic peak
in the thermogram of the neat epoxy confirmed the single-step curing kinetic assumption [33,34].
The existence of a small shoulder in the case of epoxy/P-HNT nanocomposite was the characteristics of
the complexity of curing reaction in this system. In fact, the presence of hydroxyl groups on the surface
of P-HNT with less reactivity compared to the amine groups of curing agent resulted in epoxide ring
opening at the later stages of curing reaction. As a result, a small shoulder was observed in the DSC
thermograms at high temperatures. In the case of A-HNT incorporated epoxy system, this shoulder
was disappeared due to the alkali activation of HNT where some loci of the inner surface of HNT were
etched and the OH groups decreased in number compared to the P-HNT [27]. However, OH groups
were formed during the reaction of epoxy on the surface of F-HNT with amine groups of curing agent
by surface modification of HNT with epoxy silane coupling agent, and again a shoulder appeared at
higher temperatures. Therefore, P-HNT and A-HNT assisted curing agent, while F-HNT somewhat
compensated the stoichiometry for epoxy resin.
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Figure 1. DSC thermographs of the (a) neat epoxy, (b) epoxy/P-HNT, (c) epoxy/A-HNT and
(d) epoxy/F-HNT at four different heating rates of 5, 10, 15 and 20 ◦C min−1 [27].

3.1. Cure Behavior

Studying the cure behavior of epoxy nanocomposites helps one to collect information on the role
of nanoparticles on accelerating or decelerating the cure reaction rate. Curing conversion (α) is one of
the first evaluation terms for studying the cure behavior of thermosetting systems, derived from the
Equation (1) [35]:

α =
∆HT

∆H∞
(1)

where ∆HT is the heat of cure at a certain temperature and ∆H∞ is the total heat of cure reaction.
The data calculated from Equation (1) for neat epoxy and its nanocomposites as a function of curing
time are depicted in Figure 2. The sigmoidal shape of conversion curves observed for the neat epoxy,
epoxy/P-HNT, epoxy/A-HNT and epoxy/F-HNT was served as a signature of the autocatalytic nature
of curing process [36]. In the beginning of the curing reaction, αwas increased slowly until reaching
gel point where a dramatic increase in the extent of reaction was observed, and ultimately again the α

increased slowly until the complete cure [37].
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Figure 2. Fractional extent of conversion for neat epoxy and its nanocomposites at heating rates of
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3.2. Cure Kinetics

The rate of epoxy cure reaction is measured by the following equation:

dα
dt

= k(T) f (α), (2)

In Equation (2), f (α) is the reaction model and k(T) is the reaction rate constant, which is defined
based on Arrhenius equation as [38]:

k(T) = Aexp
(
−

Eα
RT

)
, (3)

where A is the pre-exponential (also known as frequency factor), R is the universal gas constant and
the Eα is the activation energy of the curing reaction.

By substituting Equation (3) into the Equation (2), the rate of cure can be obtained as:

dα
dt

= Aexp
(
−

Eα
RT

)
f (α), (4)

For nonisothermal curing reaction, Equation (4) can be reformed as follows by introducing the
heating rate (β = dT/dt):

dα
dT

=

(
A
β

)
exp

(
−

Eα
RT

)
f (α), (5)

Model-free (isoconversional) method was used for evaluating kinetic parameters of epoxy system
in the presence of P-HNT, A-HNT and F-HNT. According to the isoconversional models, the reaction
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rate at a given conversion (α) is merely a function of temperature [39]. The model-free isoconversional
method is divided into two types of differential and integral methods. Among the differential
isoconversional methods, the Friedman method is the most frequently used one, defined as [40]:

ln
(

dα
dt

)
α

= ln[ f (α)Aα] −
Eα

RTα
, (6)

The activation energy is calculated from the slope of the plot of ln(dα/dt)αagainst 1/Tαat a certain α.
The KAS is a well-known accurate integral isoconversional method, which calculates the activation

energy through the slope of the curve of ln
(
βi/T2

α,i

)
against 1/T by the following equation [41]:

ln
(

dα
dt

)
α

= ln[ f (α)Aα] −
Eα

RTα
, (7)

Figures 3 and 4 show the typical isoconversional plots based on Friedman and KAS methods,
respectively. The fitted lines in the Friedman and KAS methods are parallel with each other at
0.2 < α < 0.9, suggesting a single cure kinetics mechanism exists in this α range. This also indicates the
inaccuracy of models at the initial and final stages of curing reaction when the cure processes is under
the control of chemical reaction and diffusion, respectively [42].
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Figure 5 shows the changes in activation energy of cure reaction versus the extent of reaction for
the epoxy resin and its nanocomposites containing 0.2 wt.% P-HNT, A-HNT and F-HNT based on the
Friedman and KAS models. Besides, for explicit specification, a schematic illustration of the epoxy resin
and its nanocomposites are depicted in Figure 6.
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Figure 6. Possible reaction of (a) P-HNT and epoxy, (b) A-HNT with epoxy and amine curing agent
and (c) F-HNT with amine group of curing agent.

As expected, the data from the Friedman and KAS models are relatively alike. It should be noted that
the predicted activation energies in the range of α > 0.8 and α < 0.2 are generally unreliable. According
to Figure 5, the activation energy values for the neat epoxy are higher than the nanocomposites.
The activation energy for neat epoxy increases gradually by increasing the curing conversion due
to the decrement of the free volume of the system as the crosslinking reactions occurs. As a result,
the activation energy is increased in the late curing stage due to the gelation, glass transition and the
rise in the reaction viscosity when the reaction is controlled by the diffusion [43].

As can be observed from Figure 5, the activation energy decreased for samples including nanofillers.
Addition of P-HNT into the epoxy matrix results in growth of heat of cure and decline in activation
energy due to the increase in the number of effective interactions caused by the presence of OH
groups on the surface of HNT that facilitate the curing reaction [44]. Moreover, the activation energy is
slowly increasing at lower conversion rates, due to the reduction in free volume fueled by the gelation
phenomenon. By contrast, at higher conversions the hydroxyl groups of HNT can participate in the
epoxide ring opening at late stage of curing [45]. Amine groups of curing agent are more reactive than
the hydroxyl groups on the surface of P-HNT; therefore, they participate in epoxy ring opening in the
early stage of cure through the interaction of primary and secondary amines of curing agent with the
epoxy groups. In the presence of P-HNT with hydroxyl-rich surface, catalytic curing reaction takes
place via etherification reaction when the amine groups of curing agent are consumed or somehow
remained unreacted in the gelled network in the later stage of cure [46] (Figure 6a).

According to Figure 5, the activation energy values for samples containing active and modified
HNTs (A-HNT and F-HNT) are less than the other two samples. Reduction in activation energy for
the A-HNT/epoxy cannot principally be a signature of facilitated cure, instead springs from the lack
of evolution in the curing reaction. Alkali activation of HNT results in removal of the inner surface
of nanotube as Al(OH)3 sheets, which cause fall in the inner hydroxyl groups and rise in the inner
diameter [27]. Therefore, in the epoxy/A-HNT system the hydroxyl groups decreased compared to
P-HNT and consequently the possibility of reaction between OH groups and epoxy rings should
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be decreased. On the other hand, the amino groups that are responsible for the curing reaction are
probably trapped inside the nanoparticles and become inaccessible, resulting in an incomplete curing
reaction (Figure 6b).

Conversely, by modification of surface of HNT by silane coupling agent the activation energy
decreases beside the increases in heat of cure indicates facilitation of crosslinking reaction. Epoxy silane
coupling agent on the surface of F-HNTs can react with amine groups of curing agent which prevents
re-aggregation of nanotubes in epoxy/curing agent system and results in more stable dispersion.
Moreover, hydroxyl groups form during the reaction of epoxy groups on the surface of F-HNT with
amine groups of curing agent as shown in Figure 6c, so the etherification reaction could be more
highlighted and the cure process push towards to the reaction between hydroxyl groups and epoxy ring.

3.2.1. Determining Reaction Model

Determination of the reaction model is an important step for deeper understanding that whether
addition of P-HNT, AHNT and F-HNT can change the curing reaction mechanism. So, the goal is to
find appropriate f (α) which correlate as close as possible with the experimental data. For epoxy system
the nth order or two component autocatalytic reaction models could be considered. The nth order
reaction model is defined as follows:

f (α) = (1− α)n, (8)

Moreover, Sestak and Berggren [47] proposed an empirical kinetic model as follows:

f (α) = αm (1− α)n, (9)

where m and n are the reaction orders. Friedman and Malek methods are two common approaches for
determination of reaction model.

Friedman Method

Based on the Friedman method, the curing reaction model for epoxy system in the presence of
P-HNT, A-HNT and F-HNT can be determined using Equation (10).

ln[A f (α)] = ln
(

dα
dt

)
+

E
RT

= lnA + nln(1− α), (10)

The plot of ln[Af(α)] as a function of ln(1 − α) for neat epoxy and its nanocomposites is shown in
Figure 7 which shape denotes the deviation from nth order reaction. A straight line was obtained for
noncatalytic nth order cure mechanism as a result of plotting ln[Af(α)] vs. ln(1 − α). As it is clear in
Figure 7, the Friedman curves for both neat epoxy and its nanocomposites show a maximum with in
the conversion range between 0.2–0.4 which is indicative of autocatalytic reaction mechanism.

Malek Method

The kinetic model based on the Malek method can be determined using the following functions:

y(α) =
(

dα
dt

)
α

exp
( E0

RTα

)
= A f (α), (11)

z(α) =
(

dα
dt

)
α

T2
α

[
π(x)
βTα

]
, (12)

The term in the bracket of Equation (12) can be omitted due to its low impact on the shape of the
z(α) function. The constant E0 value in Equation (11) can be determined by FWO method (where the
activation energy does not change with variation of α as follows:
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ln (βi) = Const− 1.052
( Eα

RTα

)
, (13)

The activation energy is determined from the slope of ln(βi) vs. 1/T as shown in Figure 8.
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nanocomposites based on FWO model.

The experimental values of y(α) and z(α) for neat epoxy and its nanocomposites containing
0.2 mass% of P-HNT, A-HNT and F-HNT are shown in Figure 9 and compared with theoretical master
plots. The curing reaction model for neat epoxy and its nanocomposites can be determined as the best
match between the experimental (Figure 9) and theoretical master plots [48].
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As can be observed from Figure 9, y(α) and z(α) shows a maximum point at αm, and αp
∞,

respectively. The values of αm, αp
∞ and αp (αp can be obtained from DSC peak) for neat epoxy and

its nanocomposites at different heating rates are reported in Table 1. The shapes of y(αp) and z(αp)
in Figure 9 and the values of αm which are lower than αp and αp

∞ < 0.632 indicated two-parameter
autocatalytic kinetic model.

Table 1. The values of αp, αm and αp
∞ obtained from DSC analysis based on Malek model at various

heating rates.

Designation Heating Rate (◦C/min) αp∞ αm αp
5 0.465 0.055 0.507

10 0.868 0.023 0.596
15 0.964 0.052 0.614Epoxy

20 0.886 0.040 0.593

Epoxy/P-HNT

5 0.370 0.029 0.419

10 0.363 0.025 0.426

15 0.347 0.039 0.415

20 0.288 0.037 0.410
5 0.482 0.138 0.528

10 0.837 0.179 0.616
15 0.823 0.161 0.614Epoxy/A-HNT

20 0.611 0.174 0.546

Epoxy/F-HNT

5 0.380 0.070 0.409

10 0.318 0.052 0.400

15 0.306 0.042 0.403

20 0.329 0.046 0.399
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3.2.2. Determining Degree of Reaction

According to the Friedman and Malek methods the reaction model of neat epoxy and epoxy
containing P-HNT, A-HNT and F-HNT correlated with Sestak and Berggren empirical kinetic model.
By substituting Equation (9) in Equation (4) the curing reaction rate rewrite as follows:

dα
dt

= Aexp(−
Eα
RT

)αm(1− α)n, (14)

The kinetic parameters including the degrees of autocatalytic reaction (n and m) and the frequency
factor (A) can be determined through the following equations:

Value = ln
(

dα
dt

)
+

Eα
RT
− ln

[
d(1− α)

dt

]
−

Eα
RT′

= (n−m)ln
(1− α
α

)
, (15)

ValueI = ln
(

dα
dt

)
+

Eα
RT

+ ln
[

d(1− α)
dt

]
+

Eα
RT′

= (n + m)ln(α− α2) + 2lnA (16)

By plloting ValueI vs. ln [(1 − α)/α] a straight line is obtained which slope gives the value of n − m
(Figure 10). In addition, the value of n + m and 2lnA can be obtained from the slope and intercept of
the plot of ValueII vs. ln(α − α2) (Figure 11).Polymers 2020, 12, x FOR PEER REVIEW 13 of 20 
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Figure 11. Plots of ValueII calculated using DSC data for (a) neat epoxy, (b) epoxy/P-HNT,
(c) epoxy/A-HNT and (d) epoxy/F-HNT.

For calculating the values of m, n and lnA from equations of 15 and 16 the Eα value was used as the
average amount in different conversion based on Friedman and KAS methods and reported in Table 2.

As can be observed from Table 2, the trend of variation of kinetic parameters (n, m and lnA) of
epoxy system by addition of P-HNT, A-HNT and F-HNT obtained from Friedman and KAS methods
are in well agreement with each other. For neat epoxy and its nanocomposites in all heating rates
the overall reaction order (m + n) is higher than unity which is indicative of complexity of the curing
mechanism [49]. The results of kinetic parameters indicated an increase in autocatalytic reaction order
(m) by introduction of P-HNT into epoxy matrix. The reaction of hydroxyl groups of P-HNT with epoxy
resin push the balance to the benefit of -OH groups on the surface of P-HNT towards epoxide ring
opening via etherification autocatalytic reaction [50,51]. In the case of epoxy/A-HNT nanocomposite
autocatalytic reaction order is lower in comparison with P-HNT due to the fact that A-HNT has lower
hydroxyl groups compared to P-HNT. Because by alkali activation of HNT results inner hydroxyl
groups removes as Al(OH)3 sheets which decreased the reaction between OH groups and epoxy rings.
Moreover, addition of P-HNT, A-HNT and F-HNT decreased collisions between the curing moieties,
as reflected in a drop in pre-exponential factor. Moreover, the lower amount of activation energy in
the presence of F-HNT also reflects in the lower pre-exponential factor as can be observed in Table 2.
This reduction in the frequency factor, which is originated from the number of collisions between
curing moieties, is attributed to the reduction of the segmental diffusion rates.
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Table 2. The kinetic parameters evaluated for the curing of pristine epoxy resin and its nanocomposites
based on Friedman and KAS models at different heating rates.

Designation Heating Rate
(◦C/min)

Ēα
(kJ/mol) ln(A) (1/s) Mean (1/s) m Mean n Mean

Friedman

Epoxy

5

78.40

25.08

25.00

0.103

0.158

1.849

1.400
10 25.18 0.173 1.309

15 24.94 0.186 1.133

20 24.79 0.170 1.307
5 17.02 0.908 1.763

10 17.02 0.360 1.741
15 17.14 0.357 1.800Epoxy/P-HNT

20

57.72

17.14

17.08

0.419

0.511

1.849

1.788

Epoxy/A-HNT

5

39.17

13.40

12.74

0.240

0.213

2.407

1.401
10 12.49 0.246 0.943

15 12.56 0.186 0.978

20 12.49 0.181 1.277
5 12.76 0.072 1.620

10 12.78 0.031 1.683
15 12.63 0.045 1.623Epoxy/F-HNT

20

43.69

12.59

12.69

0.077

0.056

1.578

1.626

KAS
5 22.66 0.013 1.767

10 22.82 0.070 1.260
15 22.63 0.086 1.090Epoxy

20

71.15

22.51

22.66

0.070

0.060

1.257

1.343

Epoxy/P-HNT

5

56.50

16.62

16.70

0.911

0.515

1.743

1.768
10 16.64 0.365 1.721

15 16.76 0.362 1.780

20 16.77 0.423 1.828
5 13.29 0.220 2.401

10 12.39 0.227 0.941
15 12.45 0.169 0.976Epoxy/A-HNT

20

38.84

12.38

12.63

0.164

0.195

1.274

1.398

Epoxy/F-HNT

5

46.27

13.61

13.50

0.036

0.062

1.664

1.671
10 13.60 0.007 1.729

15 13.42 0.085 1.668

20 13.37 0.118 1.623

3.2.3. Model Validation

By estimating activation energy and kinetic parameters, the value of curing rate of epoxy systems
can be calculated from Equation (14) and compared with experimental data. Figures 12 and 13
represent the calculated curing rate for neat epoxy and its nanocomposites based on Friedman and
KAS models, respectively, in comparison with the experimental data. As apparent, both Friedman and
KAS approaches match well with each other. In the case of neat epoxy both methods coincide with
experimental curve. By contrast, some differences can be seen between experimental and predicted
curing for epoxy system in the presence of P-HNT, A-HNT and F-HNT. By introduction of nanotubes
the mobility of curing moieties decreased which results in some deviation between the predicted values
and the experimental data.
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4. Conclusions

Nonisothermal DSC was applied to study the cure kinetics of of epoxy/amine systems containing
0.2 wt.% P-HNT, A-HNT and F-HNT. The evolution of activation energy of neat epoxy as a function of
curing conversion indicated an increasing trend due to viscosity rise which hindered the mobility of
curing moieties. KAS model showed that average value of activation energy decreased from 71 kJ/mol
for neat epoxy to about 56, 39 and 46 kJ/mol for epoxy nanocomposites containing P-HNT, A-HNT and
F-HNT, respectively. The higher decline in activation energy of epoxy containing F-HNT compared to
P-HNT incorporated epoxy system is due to epoxide groups on the surface of HNT which may results
in better dispersion state and catalyzing the curing reactions between epoxy resin and curing agent by
etherification reaction. By contrast, it was observed that the activation energy of the curing reaction
calculated by Friedman and KAS methods decreased in the presence of A-HNT due to the decrease of
OH groups caused by the removal of Al(OH)3 sheets from inner surface of HNT. Detailed analysis of
cure in terms of kinetics parameters can be performed by monitoring the autocatalytic reaction degree.
At low heating rate of 5 ◦C min−1 s, the value of m increased from 0.107 for neat epoxy/amine system
to the values of 0.908 and 0.24 for the epoxy/P-HNT and epoxy/A-HNT nanocomposites, respectively,
whereas epoxy/F-HNT system had m value of 0.072 as a sign of dominance of the non-catalytic reactions.
This obviously denotes the catalytic effect of A-HNT, and more remarkably P-HNT. At high heating
rate of 5 ◦C min−1 s, a similar behavior was observed. It can be concluded that introduction of HNT
suppresses the mobility of curing moieties. As a result, deviation of experimental cure rate values
from the predicted values obtained by KAS and Friedman methods was slightly observed.
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