
polymers

Article

Bio-Based Coatings for Food Metal Packaging
Inspired in Biopolyester Plant Cutin

José J. Benítez 1,* , Sonja Osbild 1 , Susana Guzman-Puyol 2 , Antonio Heredia 2

and José A. Heredia-Guerrero 2

1 Instituto de Ciencia de Materiales de Sevilla, Centro Mixto CSIC-Universidad de Sevilla,
Americo Vespucio 49, Isla de la Cartuja, E-41092 Sevilla, Spain; sonja.osbild@hotmail.de

2 Instituto de Hortofruticultura Subtropical y Mediterránea (ISM)-La Mayora, Departamento de Mejora
Genética y Biotecnología (CSIC), Algarrobo-Costa, E-29750 Málaga, Spain; susana.guzman@csic.es (S.G.-P.);
heredia@uma.es (A.H.); ja.heredia@csic.es (J.A.H.-G.)

* Correspondence: benitez@icmse.csic.es

Received: 9 March 2020; Accepted: 16 April 2020; Published: 18 April 2020
����������
�������

Abstract: Metals used for food canning such as aluminum (Al), chromium-coated tin-free
steel (TFS) and electrochemically tin-plated steel (ETP) were coated with a 2–3-µm-thick layer
of polyaleuritate, the polyester resulting from the self-esterification of naturally-occurring
9,10,16-trihydroxyhexadecanoic (aleuritic) acid. The kinetic of the esterification was studied by
FTIR spectroscopy; additionally, the catalytic activity of the surface layer of chromium oxide on
TFS and, in particular, of tin oxide on ETP, was established. The texture, gloss and wettability of
coatings were characterized by AFM, UV-Vis total reflectance and static water contact angle (WCA)
measurements. The resistance of the coatings to solvents was also determined and related to the
fraction of unreacted polyhydroxyacid. The occurrence of an oxidative diol cleavage reaction upon
preparation in air induced a structural modification of the polyaleuritate layer and conferred upon
it thermal stability and resistance to solvents. The promoting effect of the tin oxide layer in such
an oxidative cleavage process fosters the potential of this methodology for the design of effective
long-chain polyhydroxyester coatings on ETP.

Keywords: bio-based polymers; fatty polyhydroxyesters; can coatings; esterification kinetics;
melt-polycondensation

1. Introduction

Canned food production is a global industry with a predicted turnover of 118 billion USD by
2023 and an estimated growth of 3.8% in the 2018–2023 period [1]. Because of their airtightness and
high mechanical resistance, cans are a suitable format for long-shelf life and the long-distance logistics
of ready-to-eat meals, vegetables, meat and seafood. The sector faces the challenge of providing
chemical-free nutrients, and intensive research is being carried out to prevent the contamination of
food with harmful substances stemming from the container. One substance that has triggered concern
about canned food safety is bisphenol A (BPA). This molecule was employed in the formulation of
inner lacquers used to prevent direct contact between the metal body and the foodstuff; concerns about
its negative effects on human health arose about a decade ago [2–5]. BPA is an endocrine disruptor
that is considered to be detrimental for reproduction, development and metabolic and immunologic
functions in humans [6]. The main pathway of BPA to enter the human body is by food and beverage
intake [7,8], and many studies have linked elevated levels of BPA in urine with the consumption
of canned products [9,10]. The migration of BPA from the can coating has been demonstrated,
and instances in which it reached as much as a few hundreds of micrograms per kilogram of canned
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foodstuff have been reported [11,12]. Consequently, alternatives to BPA epoxy resins have been
recently investigated, though, to date, none of them has proven to be competitive enough in terms
of cost, corrosion resistance, fabrication, organoleptic properties and appearance to take over the
market [13]. Among them, oleoresins have regained interest [14,15]. However, some drawbacks like
poor corrosion resistance and adherence to metal remain to be addressed. Other options are acrylics
and polyester resins, though the former are brittle and impart flavor to food, while the latter are prone
to chemical attack by acidic media. Also, to be used with highly acidic foods, polyolefin coatings are
being developed [16]. To exploit their advantages and to palliate deficiencies, material combinations
have been tested. For instance, to correct the low corrosion resistance of polyesters, they have been
laminated on top of a metal-coating adhesive primer layer [13]. At this point, it is evident that there is
no option with the market share that BPA-based resins had in the past, and solutions are particularized
considering product- and fabrication-specific requirements. And, certainly, safety issues associated
with the potential migration of substances from these new formulations will be a topic in the years
to come.

Our approach to design a nontoxic coating layer for cans is based on observations of the unique
barrier properties of the plant cuticle. The cuticle is the outermost membrane that protects the epidermis
of fruits, leaves and nonlignified stems of higher plants [17]. The main component of the cuticle is
cutin (up to 80% w/w), a nontoxic, biodegradable, hydrophobic, insoluble and infusible amorphous
biopolyester mostly made of interesterified C16 polyhydroxy acids. The goal is to confirm whether a
synthetic C16 polyhydroxyester resembling cutin may be developed as an effective coating for food cans.
For this purpose, a C16 polyhydroxyacid such as aleuritic acid (9,10,16-trihydroxyhexadecanoic acid)
was polymerized. Our group has already obtained and characterized free-standing polymeric films
from aleuritic acid [18,19]. The thermal and solvent stability of the obtained polyaleuritate are promising
candidates for a can coating material to withstand contact with liquids and sterilization. The synthetic
route is self-esterification in air, which is a direct and easily scalable method using no catalyst or
hazardous solvents. Thus, a 2–3 µm thick layer of aleuritic acid was deposited and thermally cured on
three common metals used in the canning industry, i.e., Aluminum (Al), electrochemically tin-plated
steel (ETP) and chromium-coated tin-free steel (TFS)). The kinetics, as well as the chemical composition,
texture and other properties of the polyaleuritate coatings obtained were studied and evaluated.

2. Materials and Methods

2.1. Coating Preparation

Al, TFS and ETP metal plates were kindly provided by AkzoNobel Packaging Coatings S.A.
(Spain), but specific information about their composition and manufacturing process was missing.
For instance, we ignored the type of steel matrix (L or MR) and tin coating (E or D) in the ETP
substrates and the chromium plating (one or two steps) in TFS. Prior to use, plates were cleaned using
glassware soap, rinsed thoroughly with deionized water and ethanol and dried at room temperature.
Aleuritic (9,10,16-trihydroxyhexadecanoic) acid (Alfa Aesar, purity ≥ 95%) was dissolved in ethanol
(Honeywell, purity ≥ 99.8%) at a concentration of 10 mg/mL and sprayed with an airbrush (0.5 mm
nozzle) onto preheated (~100 ◦C) Al, TFS and ETP substrates. The volume of the sprayed solution
was adjusted to achieve about 0.3 mg/cm2 on square metal pieces 4.5 × 4.5 cm2. The coated specimens
were placed inside an air-forced furnace and heated at temperatures ranging from 140 ◦C to 200 ◦C
for variable periods of time (from 5 min up to 120 min). The coating thickness was calculated from
the weight difference between coated and noncoated samples, and was estimated to be about 2.5 µm.
Adhesion was qualitatively evaluated by thumb nail scratching and adhesive tape tests.

2.2. Textural Characterization

The texture of the samples was determined with a Topometrix Explorer AFM (Santa Clara, CA,
USA) equipped with a large scale scanner (130 × 130 µm2) and soft-contact silicon nitride lever
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(Budget Sensors, k = 0.06 N/m). Higher resolution images were acquired with a Nanotec AFM
(Madrid, Spain) using a 10 × 10 µm2 scanner working with a contact pyrex-nitride probe (NanoWorld,
k = 0.08 N/m). Both scanners were calibrated in the X, Y and Z directions using commercial gratings
(NT-MDT). AFM images were processed and analyzed using the WSxM software (Nanotec, Spain).
For representativeness, two to three preparations per sample were imaged at four distant points using
both the large and small scanners.

2.3. Chemical Analysis

A chemical analysis of the coatings was performed by FT-IR spectroscopy using a specular
reflectance accessory (Smart SpeculATR, Thermo Scientific) coupled to a Nicolet iS50 spectrometer
equipped with a DLaTGS detector. The accessory was continuously purged with dry N2 to reduce
the contribution of ambient CO2 and water. Specular reflectance is a very suitable mode for large
areas and deep sampling of polymer coatings thicker than 1 µm on metals. In this case, the analysis
area was ~3.1 cm2, which ensured high signal levels and sample representativeness. Fifty scans were
accumulated at 4 cm−1 resolution and clean metal supports were used as a background. Signal intensity
is quantitative when expressed as the logarithm of the inverse of the relative reflectance (log(1/R)).
Data acquisition, processing and band fitting was performed with the OMNIC 9 (Thermo Scientific)
software package.

2.4. Wettability and Solubility Measurements

Surface hydrophobicity was evaluated by means of static water contact angle (WCA) measurements
using an Attension TL100 Optical Tensiometer (KSV, Helsinki, Finland) in sessile drop mode. A 3 µL
Milli-Q grade water drop was deposited on the surface of samples and the contour was recorded
for 30 s at 12 fps. The contact angle was measured on both sides of the drop contour and averaged.
Frames with left and right values differing more than 2◦ were rejected. For reproducibility, up to five
points of each sample were tested.

Coating resistance to solvents was determined by immersing the specimen in ethanol for 48 h
under orbital agitation and recording the sample weight loss after drying with 0.1 mg precision.
The results from three samples were averaged.

2.5. UV-Visible Reflection Spectra

UV-Vis total reflection spectra were obtained with a Cary 300 (Agilent, Santa Clara, CA, USA)
spectrometer and using a integrating sphere with a 8◦ wedge (Labsphere). Clean metal substrates were
used as references for nominal 100% total reflectance.

3. Results and Discussion

3.1. Texture and Roughness of Supports and Coatings

The texture of the samples was studied by both SEM (Hitachi S4800, Duesseldorf, Germany) and
AFM. An additional EDX (Bruker-X Flash-4010, Berlin, Germany) analysis of the bare supports revealed
that the Al was quite pure, with traces of Si and Fe (~0.3% atom/each) and a passivation layer of
aluminum oxide. TFS is a Fe matrix with a thin chromium oxide layer (Cr 0.8% atom) and ETP is made
of an iron matrix covered by a crust of Sn oxide (Sn 32% atom). In the latter case, SEM micrographs
revealed the presence of some scattered uncoated pits (data not shown).

Figure 1 shows the large range (130 × 130 µm2) surface topography obtained by AFM. On the
supports, the ripples left by polishing were visible as vertical lines. The corrugation is more pronounced
on ETP, while on Al and, particularly, TFS, large holes contributing to the increment of the hmax

parameter were detected (Table 1). The AFM textural analysis was extended to the homogeneous
regions between ridges (small images in Figure 2). As can be observed, the high magnification images
characterized the porous ring-like structure of aluminum oxide in Al, similar to the one reported
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for anodized Al2O3 [20], the granular pattern exhibited by chromium oxides in TFS [21] and the
interconnected structures of SnO2 in ETP [22]. The combination of long- and short-range textural data
allowed us to calculate a specific surface area factor (SF) which indicated that the available surface of
supports had grown in the order ETP < TFS < Al; see Table 1.
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Figure 1. (top) 130 × 130 µm2 AFM topographic images of bare and (bottom) polyaleuritate-coated Al,
TFS and ETP supports. Line profiles (centre) show the surface roughness modifications upon coating.
Different coating patterns are proposed for Al, TFS and ETP, respectively.

Table 1. Large and small scale roughness obtained from AFM for bare and polyaleuritate-coated Al,
TFS and ETP. The SF parameter is the ratio between the topographic and the X-Y scanned areas; it is
related to the specific surface area.

Large Small

RMS (nm) havg. (nm) hmax. (nm) RMS (nm) SF

Uncoated

Al 203 ± 13 1083 ± 86 1676 ± 90 6.1 ± 0.2 1.0782

TFS 277 ± 63 1145 ± 141 2175 ± 128 5.3 ± 0.8 1.0453

ETP 391 ± 116 934 ± 288 1901 ± 387 3.4 ± 0.5 1.0094

Coated

p-Al 79 ± 80 494 ± 278 1054 ± 319 31 ± 2 1.0368

p-TFS 304 ± 65 1179 ± 335 1936 ± 249 28 ± 2 1.0483

p-ETP 640 ± 102 1415 ± 329 3249 ± 322 6.7 ± 0.5 1.0117

When coated with a 2–3 µm thick polyaleuritate layer, the surface topography changed,
depending on the spreading of the polyester phase on the metal support. In Figure 1, three patterns can
be observed. On Al, polyaleuritate extended evenly, covering the surface asperities and forming a quite
flat deposit. In contrast, on ETP, the trend was to build globular deposits with a height comparable
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to the average thickness of the polyaleuritate layer. TFS was a combination of both, though wide
bumps built up, and the filling of the asperities of the bare metal was also observed. Such behavior can
also be visualized from the evolution of the long-range surface roughness; see Table 1 and plot A in
Figure 2. Compared to the bare support, the formation of the flat deposit on Al caused a reduction in
the RMS value, while the generation of globular structures on ETP significantly increased the surface
roughness. In TFS, the asperity filling was compensated for by the development of the bumps and
both the uncoated and coated specimen showed a similar long-range roughness (RMS) value.
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Though the full coverage of Al and TFS supports could be inferred from the long-range textural
analysis, it was not possible to assess whether this was the case for ETP. Line profiles (Figure 1)
showed that the underlying texture of ETP was mostly unaltered by the coating. However, the size
of the globules did not seem to be enough to account for the mass of a 2–3 µm thick flat coating and,
consequently, the development of a very thin layer at the background regions of ETP was presumed.
To further investigate this issue, a higher resolution AFM analysis was carried out on the background
regions of both the coated and uncoated samples; see Figure 2. As observed, the short-range texture of
Al and TFS changed dramatically upon coating. In both cases, an interconnected, needle-like structure
developed, which was compatible with the build-up of a semicrystalline polyaleuritate film [19] that
caused a notable increase in roughness. In ETP, the modification of texture was more subtle, and the
interconnected aggregates observed on the bare metal were replaced by globular structures with a mild
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increment of roughness from 3.4 nm to 6.7 nm. Such structures suggested an amorphous polyaleuritate
coating on the ETP.

The textural evolution of the coating is a complex process that results from the dynamic
balance between surface-polyaleuritate and polyaleuritate-polyaleuritate interactions. In this sense,
the hydrophilic forces between the oxide layer and the polar groups of aleuritic acid molecule, as well
as the growing hydrophobic component arising from the formation of the polyaleuritate, should be
considered. Thus, the formation of large aggregates can be associated with the rapid development of a
hydrophobic polyaleuritate phase.

3.2. Comparative Chemical Characterization of Polyaleuritate Coatings

The coatings, produced at different temperatures and polymerization times, were characterized
by specular reflectance FTIR. In Figure 3A, samples prepared at 200 ◦C for 10 min on the three supports
are compared. The unreacted film of aleuritic acid on Al was included as a reference for the chemical
modifications observed upon heating in air. The ester formation was indicated by the development of
bands at 1177 and 1247 cm−1 corresponding to the ν(C–O–C), and ν(C=O) at 1733 cm−1. The peaks at
725 and 1465 cm−1 were due to the deflection modes of backbone methylene groups, while those at 1055
and 1060 cm−1 correspond to the deformation of (C–O) bonds of hydroxyls [23]. Specular reflectance
FTIR also revealed some differences between the three preparations. The presence of a series of
progression bands between 800 and 1300 cm−1 was an indication of crystallinity of the polyaleuritate
film on Al and TFS. This result was consistent with the textural data provided by AFM (Figure 2).
Conversely, the absence of such progression bands confirmed that the deposit on ETP was amorphous.
The formation of a crystalline polyaleuritate phase was feasible because, in the reaction conditions
used, the esterification of the primary hydroxyl to yield a linear polymer was favored [18,19].
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Figure 3. (A) Comparative specular reflectance FTIR spectra in the 1875–650 cm−1 region of a
polyaleuritate film formed on Al (p-Al), TFS (p-TFS) and ETP (p-ETP) substrates at 200 ◦C for 10 min
in air. As a reference, the spectrum of a film of unreacted aleuritic acid on Al (ale/Al) is included.
(B) Component bands and assignations used for the qualitative and quantitative analyses of specular
reflectance FTIR data of polyaleuritate coatings.
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In ETP, a band corresponding to carboxylate species (–COO− at 1548 cm−1) suggested a specific
chemical interaction between the coating and the tin oxide layer. Such an interaction was not readily
observable on Al and TFS. Furthermore, small absorptions on the high wavenumber side of the
carbonyl peak (1770 and 1800 cm−1), as well as peaks in the 1660–1670 cm−1, revealed the occurrence of
oxidation and dehydration side reactions, respectively [24]. The low wavenumber side broadening of
the ν(C=O) was due to the perturbation exerted by hydrogen-bonding and to the presence of unreacted
acid molecules.

3.3. Kinetic Analysis of the Esterification Reaction in Polyaleuritate Films on Metals

The progress of the self-esterification of aleuritic acid on the metal substrates was carried out by
monitoring and extracting the components from the ν(C=O) region; see Figure 3B. The characteristic
ester bands were those at 1733 and 1715 cm−1, corresponding to isolated and hydrogen-bonded
carbonyls groups, respectively [25]. The unreacted aleuritic acid fraction was responsible for the
contribution at 1700 cm−1.

The reaction progress (p) for the three supports, as a function of time and reaction temperature, is
shown in Figure 4. As observed, conversion values depended on the support used; therefore, the metal
background played an important active role in the reaction. In general, values increased in the
order TFS < ETP < Al. In the following sections, the kinetics of the reaction is studied by using two
different methods.
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a function of temperature and reaction time.

3.3.1. Time-Dependent Method

In this method, the reaction progression (p) was analyzed according to the reaction time (t) at a
constant temperature (T). Empirically, the best fit was obtained with a second order law (Figure 5):

p/(1− p) = 2·k·t (1)

where the rate constant (k) is the slope of the p/(1− p) vs t plots at every temperature. Rate constant
values could be fitted to an Arrhenius equation:

k = A· exp(−Eact/RT) (2)

where (A) is a pre-exponential factor, (R) the universal gas constant, (T) the absolute temperature and
(Eact) the activation energy of the reaction. The A and Eact values obtained from the ln k vs 1/T plots
(Figure 5) are compiled in Table 2.
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the activation energy (Eact) of the process.

Table 2. Pre-exponential factor (A) and Eact values for the esterification of polyaleuritate coatings on
metal substrates using the time- and temperature-dependent methods.

Support Time-dependent method Temperature-dependent method

lnA Eact (kJ/mol) lnA Eact (kJ/mol)

Al 15.5 75 ± 11 13.4
(15.7) *

67 ± 5
(76 ± 3) *

TFS 9.2 54 ± 5 9.5 52 ± 4

ETP 7.7 45 ± 3 4.3 31 ± 2

* for 30 min reaction time.

3.3.2. Temperature-Dependent Method

With this procedure, instead of monitoring the reaction progression at a constant temperature, the
samples were analyzed after a fixed reaction time at a varying temperature. Assuming the second
order kinetics described above, Equation (1), and considering Equation (2):

p/(1− p) = 2·A· exp(−Eact/RT)·t (3)

Thus, for a fixed time t = to at a given temperature (T), p = poT

ln
(
poT/

(
1− poT

))
= ln(2Ato) − Eact/RT (4)
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and, therefore, the Eact value can be calculated from the ln (poT/(1 − poT)) vs 1/T plots (Figure 6).
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The pre-exponential factors and activation energy values obtained by this second method are
also included in Table 2. The reliability of tabulated A and Eact values was supported by the
good agreement between results obtained by both the time- and temperature-dependent methods.
The temperature-dependent method is faster because it requires the preparation of a lower number of
samples, but demands knowledge of the empirical reaction order.

As observed in Table 2, there were significant differences between Eact values among the metal
substrates used. In terms of the activation energy, the reactivity increased in the order Al < TFS < ETP.
To the best of our knowledge, there is only one reference in the literature dealing with the kinetics of the
esterification of aleuritic acid in molten state [26]. By fitting the reported esterification conversion values
(p) in such a study to Equations (1) and (2), an Eact = 98.8 kJ/mol could be calculated. This estimation
could be considered as the reference for the noncatalyzed melt self-esterification of aleuritic acid.
The value was comparable to those reported for the uncatalyzed reaction between fatty acids and
alcohols (78.6–87.1 kJ/mol) [27], adipic acid and hexamethylene glycol (84.1 kJ/mol) [28] and sebacic
acid and glycerol (71.1 kJ/mol) [29] in solution. The data in Table 2 show that Eact obtained for
polyaleuritate on Al, TFS and ETP were below these references, which suggested a catalytic activity
of the substrate in the esterification reaction. In fact, the addition of catalysts such as tetra n-buthyl
titanate (TBT) caused an Eact reduction to 64.5–69.2 kJ/mol in the homogeneous esterification of fatty
acids and alcohols [27] and to 47.4–59.5 kJ/mol for the esterification of poly(alkylene) succinates [30].
Also, the use of a strong acid such as p-toluenesulfonic acid yielded an activation energy of 47.9 kJ/mol
for the melt polycondensation of 12-hydroxystearic acid [31]. The catalytic effect was associated with
the tin oxide layer on ETP and, to a lesser extent, the chromium oxide on TFS. Indeed, Al and Sn metal
complexes and oxides were used as catalysts for the ROP of lactones and the esterification of fatty
acids with methanol [32,33] and the activity of chromium and chromium mixed oxides has also been
reported in the formation of fatty acid methyl esters (FAMEs) [34]. In particular, the effectiveness of
tin-based catalysts has been reported by reducing the activation energy for the polyesterification from
84.1 kJ/mol to 33.9 kJ/mol [28].

Despite the highest Eact value of polyaleuritate on Al, the conversion values (p) were the highest
within the series; see Figure 4. Textural data revealed the particular nanostructure of the Al support
and its high specific surface (SF). Indeed, the SF parameter and the pre-exponential factor (A) showed
the same trend. Thus, when interpreting conversion values, both Eact and the availability of catalytic
reactive sites should be considered.
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3.4. Side Reactions along the Formation of the Polyaleuritate Film on Metals by Heating in Air

In addition to the esterification, other reactions were detected in the formation of the polyaleuritate
film on Al, TFS and ETP, particularly at high temperature (Figure 7). Among them were oxidation,
dehydration and proton transfer. The extent of these processes depended on the reaction time and the
type of metal support used. Thus, the formation of –COO− groups stabilized due to the saturation
of surface basic sites. The band was particularly intense on ETP because of the higher basicity of
the tin oxide layer. Dehydration was mild and progressively increased with reaction time on Al and
TFS. However, on ETP, the process seemed to be catalyzed by SnOx and the reaction rate increased
noticeably. However, after reaching a maximum, the concentration of C=C groups decreased, very
likely because of the occurrence of another reaction consuming hydroxyls (i.e., oxidation in air). In any
case, the most relevant side process was the generation of oxidized species (COox) such as peroxyesters
and diacylperoxides (bands around 1800 and 1770 cm−1). Their generation has been shown to
accompany oxidative diol cleavage and further esterification that has a strong influence of the structure
and physical properties of free-standing polyaleuritate films obtained by melt-polycondensation in
air [19]. The most relevant effect of such a process is the occurrence of branching and densification in
the ester bond polymeric framework. Both effects led to structure amorphization that increased the
insolubility and infusibility of polyaleuritate. Thermal stability and solvent resistance are positive traits
for coatings of metal food containers undergoing washing and sterilization protocols and coming into
extended contact with foodstuff fluids. The generation of COox species was particularly remarkable
on ETP; consequently, it could be concluded that SnOx acted as a catalyst for both the esterification
and the oxidative diol cleavage, as reported for other esterification catalysts such as Ti(OiPr)4 [19].
The promotion of the oxidative diol cleavage by SnOx explained the obtained amorphous polyaleuritate
films on ETP, as observed from textural and FTIR data (Figures 2 and 3).Polymers 2020, 12, x FOR PEER REVIEW 11 of 16 
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200 ◦C in air (10–50 min for Al and TFS, 5–25 min for ETP). (bottom) Time evolution of COox, C=C and
–COO− species from specular reflectance FTIR spectra.
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3.5. Surface Wettability and Solubility of Polyaleuritate Coatings

The performance of the polyaleuritate coating as a barrier between the metal and a water-based
medium were evaluated by water contact angle measurements (WCA). The WCA were sensitive to
many factors, mainly to surface chemical composition and roughness. The values observed for bare
supports were 65◦ for Al and around 80◦ for TFS and ETP, which were comparable to those reported in
the literature [35–39]. After coating, the initial WCA (WCAo) value increased slightly, i.e., about 6◦ for
Al and ~12◦ for TFS. On ETP, the value was essentially the same (Figure 8).Polymers 2020, 12, x FOR PEER REVIEW 12 of 16 
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Figure 8. (top) Water contact angle (WCA) evolution with contact time on polyaleuritate films obtained
at 200 ◦C for 20 min on Al, TFS and ETP. (bottom) Initial WCA value (WCAo) and reduction (δWCA)
after 30 s (spreading) for coatings prepared at 200 ◦C and variable time on the three metal supports.

On bare metals, no drop spreading was observed, which indicated the absence of contamination and/or
a negligible chemical interaction with water. After coating with the polyaleuritate layer, the spreading
(characterized by the parameter δWCA) was intense for TFS, while it was much more moderate for Al and
ETP. Both the low esterification degree (Figure 4) and the porous texture (Figure 2) may have contributed
to an intense interaction between water and the coating on TFS. On the other side, beside the similar
texture, the higher ester conversion led to a lower spreading on p-Al. p-ETP was characterized by
low spreading and moderate WCAo values which were associated with the low roughness and the
high esterification degree of the amorphous polyaleuritate layer developed on this support. On p-ETP,
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the oxidative diol cleavage reaction also contributed by consuming surplus polar hydroxyls from the ester
network, as deduced from the reduction of δWCA at longer heating times (Figure 8).

The resistance of the polyaleuritate coating towards lixiviation was evaluated for samples prepared
at 200 ◦C. Ethanol is a good solvent for aleuritic acid and has been used to extract nonreacted molecules
and low molecular weight oligomers from the coating. In Figure 9A, the solubility (as a weight
percentage loss) is plotted versus the nonesterified aleuritic acid fraction (1 − p) for the three supports
used. Three patterns can be distinguished: (i) coatings with moderate esterification degree (p ≈ 60–70%)
on Al and TFS (blue circle) obeyed the theoretical recovery line (dashed), (ii) those with lower conversion
in p-Al and p-TFS (green circle) were almost completely removed, and (iii) the ETP series (red circle) was
characterized by solubility values well below those expected from the extraction of the nonesterified
fraction (1 − p). Thus, it could be concluded that the esterification degree was not the only factor
conditioning the solubility of the polyaleuritate layer.

Solubility values better correlated with the presence of oxidized species (COox) (Figure 9B). It was
suggested that such species were responsible for the amorphization and reduction of the surface
specific area. Furthermore, COox were also an indicator of the side oxidative diol cleavage that led to
the densification of the ester network and the reduction of free hydroxyl groups. All of them were
positive features to improve the resistance of the polyaleuritate coating to attack from polar solvents,
and to explain the decreasing trend in Figure 9B.
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Figure 9. (A) Plot of the relative solubility of the polyaleuritate coating vs the fraction of nonesterified
aleuritic acid (1 − p). (B) Inverse correlation of solubility with the presence of oxidized species formed
upon the esterification of aleuritic acid in air. Data correspond to the coatings formed at 200 ◦C and
variable reaction time on the three supports investigated.

3.6. Light Absorption and Reflection of Polyaleuritate-Coated Metals

The interaction of the inner protective coating with visible light is irrelevant from the point of view
of the preservation of food in metal containers. However, to retain the glossy aspect of the original
metal surface is an important esthetic aspect contributing to customer satisfaction. For this reason,
the reflectivity of the coated samples was measured. Spectra of the series formed at 200 ◦C for 20 min
are shown in Figure 10.
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Figure 10. UV-Vis reflectivity of polyaleuritate-coated metal supports. Blue and orange regions
correspond to the visible and UV regions, respectively.

At the visible region (400–800 nm), the coating reduced the surface total reflectance by about
33% for p-TFS, 31% for p-ETP and only 8% for p-Al, which was visually acceptable. In the UV region
(200–320 nm), the absorption of carbonyls [40] (bonding to antibonding, π→π*, around 200 nm and
nonbonding to antibonding, n→π*at 275 nm) caused a reduction of reflectivity. The peak was broader
for p-ETP, as expected from a wider typology of carbonyl species (COox, –COO−).

4. Conclusions

Polyaleuritate coatings a few microns thick can be formed on metals commonly used in
food canning (Al, TFS and ETP) by the thermal self-esterification of a naturally-occurring fatty
polyhydroxyacid (aleuritic acid), directly in air. A kinetic analysis of the reaction revealed the catalytic
role of the metal surface, particularly the tin oxide layer on ETP. Although physical characteristics such
as adherence to the substrate, glossy appearance and wettability were acceptable, the esterification
degree achieved under the preparation conditions used was too low to yield a high molecular
polyhydroxyester withstanding the action of solvents. However, the occurrence of an oxidative diol
cleavage and further re-esterification side reactions caused a densification of the ester framework
and the amorphization of the polyester. A consequence of this exogenous process was a remarkable
increment in the resistance to lixiviation. Hence, preparation directly in air, apart from being a
cost-attractive process, was very positive for the final properties of the coating, particularly under the
promoting effect of the SnOx layer on ETP.

Due to the incomplete information available at the time of this study, the results and conclusions
obtained may be considered qualitative and subject to change, according to the specific compositional
and morphological features of the metal supports used.
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