An Eco-Effective Soybean Meal-Based Adhesive Enhanced with Diglycidyl Resorcinol Ether
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Preparation of Adhesives
2.3. Mechanical Property Measurement
2.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.5. Thermogravimetric (TG) Measurement
2.6. Scanning Electron Microscopy (SEM) Analysis
3. Results and Discussion
3.1. Mechanical Properties
3.2. Chemical Interactions Analysis
3.3. Thermal Gravimetric Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Gao, Y.; Zhou, H.; Sun, H.; Zhou, J.; Zhang, S. Pyrolysis of palm kernel shell with internal recycling of heavy oil. Bioresour. Technol. 2018, 272, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Gong, X.; Liao, C.; Geng, X.; Wang, C.; Chu, F. Preparation and Characterization of DOPO-ITA Modified Ethyl Cellulose and Its Application in Phenolic Foams. Polymers 2018, 10, 1049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- John, G.; Nagarajan, S.; Vemula, P.K.; Silverman, J.R.; Pillai, C.K.S. Natural monomers: A mine for functional and sustainable materials–Occurrence, chemical modification and polymerization. Prog. Polym. Sci. 2019, 92, 158–209. [Google Scholar] [CrossRef]
- Pizzi, A. Renewable Polymeric Adhesives. Polymers 2017, 9, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Souza, A.M.; Nascimento, M.F.; Almeida, D.H.; Lopes Silva, D.A.; Almeida, T.H.; Christoforo, A.L.; Lahr, F.A.R. Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: A cleaner production alternative. J. Clean. Prod. 2018, 193, 549–562. [Google Scholar] [CrossRef]
- Salarbashi, D.; Bazeli, J.; Tafaghodi, M. Environment-friendly green composites based on soluble soybean polysaccharide: A review. Int. J. Biol. Macromol. 2019, 122, 216–223. [Google Scholar] [CrossRef]
- Noreen, A.; Zia, K.M.; Zuber, M.; Tabasum, S.; Zahoor, A.F. Bio-based polyurethane: An efficient and environment friendly coating systems: A review. Prog. Org. Coat. 2016, 91, 25–32. [Google Scholar] [CrossRef]
- Tian, H.; Guo, G.; Fu, X.; Yao, Y.; Yuan, L.; Xiang, A. Fabrication, properties and applications of soy-protein-based materials: A review. Int. J. Biol. Macromol. 2018, 120, 475–490. [Google Scholar] [CrossRef]
- Li, R.J.; Gutierrez, J.; Chung, Y.-L.; Frank, C.W.; Billington, S.L.; Sattely, E.S. A lignin-epoxy resin derived from biomass as an alternative to formaldehyde-based wood adhesives. Green Chem. 2018, 20, 1459–1466. [Google Scholar] [CrossRef]
- Nair, S.S.; Dartiailh, C.; Levin, B.D.; Yan, N. Highly Toughened and Transparent Biobased Epoxy Composites Reinforced with Cellulose Nanofibrils. Polymers 2019, 11, 612. [Google Scholar] [CrossRef] [Green Version]
- Xin, J.; Zhang, P.; Wolcott, M.P.; Zhang, J.; Hiscox, W.C.; Zhang, X. A Novel and Formaldehyde-Free Preparation Method for Lignin Amine and Its Enhancement for Soy Protein Adhesive. J. Polym. Environ. 2017, 25, 599–605. [Google Scholar] [CrossRef]
- Mo, X.; Sun, X.S. Soy proteins as plywood adhesives: Formulation and characterization. J. Adhes. Sci. Technol. 2013, 27, 2014–2026. [Google Scholar] [CrossRef]
- Cheng, H.N.; Kilgore, K.; Ford, C.; Fortier, C.; Dowd, M.K.; He, Z. Cottonseed protein-based wood adhesive reinforced with nanocellulose. J. Adhes. Sci. Technol. 2019, 33, 1357–1368. [Google Scholar] [CrossRef]
- Jiang, W.; Kumar, A.; Adamopoulos, S. Liquefaction of lignocellulosic materials and its applications in wood adhesives—A review. Ind. Crop. Prod. 2018, 124, 325–342. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Di, M. Green Modification of Corn Stalk Lignin and Preparation of Environmentally Friendly Lignin-Based Wood Adhesive. Polymers 2018, 10, 631. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ding, L.; Gu, J.; Tan, H.; Zhu, L. Preparation and properties of a starch-based wood adhesive with high bonding strength and water resistance. Carbohydr. Polym. 2015, 115, 32–37. [Google Scholar] [CrossRef]
- Li, P.; Wu, Y.; Zhou, Y.; Zuo, Y. Preparation and characterization of resorcinol-dialdehyde starch-formaldehyde copolycondensation resin adhesive. Int. J. Biol. Macromol. 2019, 127, 12–17. [Google Scholar] [CrossRef]
- Pradyawong, S.; Qi, G.; Sun, X.S.; Wang, D. Laccase/TEMPO-modified lignin improved soy-protein-based adhesives: Adhesion performance and properties. Int. J. Adhes. Adhes. 2019, 91, 116–122. [Google Scholar] [CrossRef]
- Ghahri, S.; Pizzi, A. Improving soy-based adhesives for wood particleboard by tannins addition. Wood Sci. Technol. 2018, 52, 261–279. [Google Scholar] [CrossRef]
- Cheng, H.N.; Ford, C.; Dowd, M.K.; He, Z. Soy and cottonseed protein blends as wood adhesives. Ind. Crop. Prod. 2016, 85, 324–330. [Google Scholar] [CrossRef]
- Zheng, P.; Li, Y.; Li, F.; Ou, Y.; Lin, Q.; Chen, N. Development of Defatted Soy Flour-Based Adhesives by Acid Hydrolysis of Carbohydrates. Polymers 2017, 9, 153. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Xu, Y.; Zhu, W.; Zhang, W.; Gao, Q.; Li, J. Improve the Performance of Soy Protein-Based Adhesives by a Polyurethane Elastomer. Polymers 2018, 10, 1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Xi, X.; Lei, H.; Liang, J.; Liao, J.; Du, G. Study on Soy-Based Adhesives Enhanced by Phenol Formaldehyde Cross-Linker. Polymers 2019, 11, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, M.; Chen, M.; Luo, J.; Li, X.; Gao, Q.; Li, J. Preparation and characterization of a soy protein-based high-performance adhesive with a hyperbranched cross-linked structure. Chem. Eng. J. 2018, 354, 1032–1041. [Google Scholar] [CrossRef]
- Luo, J.; Luo, J.; Bai, Y.; Gao, Q.; Li, J. A high performance soy protein-based bio-adhesive enhanced with a melamine/epichlorohydrin prepolymer and its application on plywood. RSC Adv. 2016, 6, 67669–67676. [Google Scholar] [CrossRef]
- Luo, J.; Luo, J.; Zhang, J.; Bai, Y.; Gao, Q.; Li, J.; Li, L. A new flexible soy-based adhesive enhanced with neopentyl glycol diglycidyl ether: Properties and application. Polymers 2016, 8, 346. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, M.D.; Croll, A.B.; King, D.R.; Paret, B.M.; Irschick, D.J.; Crosby, A.J. Looking Beyond Fibrillar Features to Scale Gecko-Like Adhesion. Adv. Mater. 2012, 24, 1078–1083. [Google Scholar] [CrossRef]
- Jin, L.; Chang, Z.; Zhang, B.; Xu, L.; Sun, Z.; Huo, P.; Zhang, S.; Gao, Z. Effect of ambient aging during soybean meal storage on the performance of a soybean-based adhesive. Ind. Crop. Prod. 2019, 140, 11725. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Chen, M.; Gao, Q.; Li, J. A High-Performance and Low-Cost Soy Flour Adhesive with a Hydroxymethyl Melamine Prepolymer. Polymers 2018, 10, 909. [Google Scholar] [CrossRef] [Green Version]
- Jia, P.; Song, F.; Li, Q.; Xia, H.; Li, M.; Shu, X.; Zhou, Y. Recent Development of Cardanol Based Polymer Materials-A Review. J. Renew. Mater. 2019, 7, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhang, B.; Zhou, X.; Li, L.; Yu, L.; Liao, J.; Du, G. Influence of Single/Collective Use of Curing Agents on the Curing Behavior and Bond Strength of Soy Protein-Melamine-Urea-Formaldehyde (SMUF) Resin for Plywood Assembly. Polymers 2019, 11, 1995. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Hu, W.; Ke, Q.; Liu, H.; Li, J.; Zhao, Y. Bio-adhesives from unfolded soy protein reinforced by nano-chitosan for sustainable textile industry. Text. Res. J. 2019. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Shi, R.; Gao, Q.; Li, J.; Li, L. Determination of formaldehyde and TVOC emission behavior from interior use plywood using various post heat treatment processes. J. Appl. Polym. Sci. 2017, 134, 44909. [Google Scholar] [CrossRef]
- Kong, J.; Yu, S. Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochim. et Biophys. Sin. 2007, 39, 549–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, L.; Meng, Z.; Yi, Z.; Gao, Q.; Mao, A.; Li, J. Effects of Different Denaturants on Properties and Performance of Soy Protein-Based Adhesive. Polymers 2019, 11, 1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valand, R.; Tanna, S.; Lawson, G.; Bengtstrom, L. A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2020, 37, 19–38. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Li, X.; Zhao, Q.; Qu, Z.; Hou, Y.; Zhao, L.; Liu, S.; Chen, G. FTIR study of the photocatalytic degradation of gaseous benzene over UV-irradiated TiO2 nanoballs synthesized by hydrothermal treatment in alkaline solution. Mater. Res. Bull. 2010, 45, 1889–1893. [Google Scholar] [CrossRef]
- Abraham, A.; Chakraborty, P. A review on sources and health impacts of bisphenol A. Rev. Environ. Health 2019. [Google Scholar] [CrossRef]
- Xu, J.-L.; Thomas, K.V.; Luo, Z.; Gowen, A.A. FTIR and Raman imaging for microplastics analysis: State of the art, challenges and prospects. TrAC Trends Anal. Chem. 2019, 119, 115629. [Google Scholar] [CrossRef]
- Vnucec, D.; Kutnar, A.; Gorsek, A. Soy-based adhesives for wood-bonding-a review. J. Adhes. Sci. Technol. 2017, 31, 910–931. [Google Scholar] [CrossRef]
- Ferdosian, F.; Pan, Z.; Gao, G.; Zhao, B. Bio-Based Adhesives and Evaluation for Wood Composites Application. Polymers 2017, 9, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Adhesive | Formulation | Solids Content (%) | Viscosity (mPa·s) |
---|---|---|---|
0 (SM adhesive) | 28 g soybean meal flour (SM)/72 g water | 27.1 | 35,920 |
1 (SM/DRE-2 adhesive) | 28 g SM/72 g water/2.04 g (2 wt%) DRE | 29.5 | 26,700 |
2 (SM/DRE-4 adhesive) | 28 g SM/72 g water/4.17 g (4 wt%) DRE | 32.8 | 19,110 |
3 (SM/DRE-6 adhesive) | 28 g SM/72 g water/6.25 g (6 wt%) DRE | 33.9 | 10,500 |
4 (SM/DRE-8 adhesive) | 28 g SM/72 g water/ 8.69 g (8 wt%) DRE | 35.2 | 9970 |
Adhesive | TImax a (°C) | vI b (%/°C) | TIImax a (°C) | vII b (%/°C) | TIIImax a (°C) | vIII b (%/°C) |
---|---|---|---|---|---|---|
0 | 111.1 | 0.02 | 229.7 | 0.28 | 302.3 | 0.51 |
1 | 168.6 | 0.09 | 230.2 | 0.33 | 307.7 | 0.50 |
2 | 187.3 | 0.28 | 238.7 | 0.35 | 308.1 | 0.46 |
3 | 189.9 | 0.34 | 238.4 | 0.34 | 309.3 | 0.45 |
4 | 197.2 | 0.44 | 238.7 | 0.35 | 311.6 | 0.43 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Zhou, Y.; Zhang, Y.; Gao, Q.; Li, J. An Eco-Effective Soybean Meal-Based Adhesive Enhanced with Diglycidyl Resorcinol Ether. Polymers 2020, 12, 954. https://doi.org/10.3390/polym12040954
Luo J, Zhou Y, Zhang Y, Gao Q, Li J. An Eco-Effective Soybean Meal-Based Adhesive Enhanced with Diglycidyl Resorcinol Ether. Polymers. 2020; 12(4):954. https://doi.org/10.3390/polym12040954
Chicago/Turabian StyleLuo, Jing, Ying Zhou, Yi Zhang, Qiang Gao, and Jianzhang Li. 2020. "An Eco-Effective Soybean Meal-Based Adhesive Enhanced with Diglycidyl Resorcinol Ether" Polymers 12, no. 4: 954. https://doi.org/10.3390/polym12040954
APA StyleLuo, J., Zhou, Y., Zhang, Y., Gao, Q., & Li, J. (2020). An Eco-Effective Soybean Meal-Based Adhesive Enhanced with Diglycidyl Resorcinol Ether. Polymers, 12(4), 954. https://doi.org/10.3390/polym12040954