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Abstract: This research optimizes the process of plywood production to determine its effectiveness
in reducing energy and adhesive consumption for more efficient production with the required
quality. The influence of selected parameters including veneer treatment (non-densified and
densified), plywood structure, temperature, time and pressure of pressing, on the bonding quality
and temperature evolution within the veneer stacks during hot pressing was investigated. Rotary-cut,
non-densified and densified birch veneers and phenol formaldehyde (PF) adhesive were used to
manufacture plywood samples. The effect of pressure and time of pressing on bonding quality of
the plywood was determined. Bonding quality was evaluated by determining the shear strength of
the plywood samples. The temperature evolution inside the veneer stacks was measured for birch
veneers for different pressing temperatures and pressures for different numbers of veneer layers.
The heating rate of the veneer stacks increased as the pressing temperature increased and decreased
markedly with an increasing number of veneer layers. At a high pressing pressure, the heating rate
of the densified veneer stacks was faster than that of non-densified veneers at the same pressure.
The use of densified veneers for the production of plywood can lead to a shorter pressing time (17–50%
reduction), lower glue consumption (33.3% reduction) and a lower pressing pressure (22.2% reduction)
without negatively impacting the bonding strength of the plywood.

Keywords: plywood; densification; core layer temperature; bonding quality; hot pressing; veneer
stack heating

1. Introduction

The structure and properties of plywood are formed in the hot-pressing process. Hot pressing
is one of the most important operations in the production of plywood, which has an impact on the
properties of plywood. This operation is also important from an economic point of view. The hot
press step determines the performance of the pressing line and defines the capacity of the factory.
Hot pressing is one of the most energy-consuming processes in plywood manufacturing after the
veneer-drying process. Hot-pressing parameters such as pressing time, pressure and temperature
are key factors that directly affect the properties of plywood panels [1–3]. Despite that plywood was
the first created wood-based composite, few individual studies have been conducted to investigate
the effect of process variables on hot-pressing of plywood [1,3–8]. The temperature evolution within
the panel during hot-pressing is important for the chemical and physical processes that contribute to
the properties of the panel. The temperature evolution within the panel depends on wood species,
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their density and moisture content, compression of the veneers, glue spreading rate, and the pressing
temperature, pressure and time. The interactions among these parameters are however, complicated
and unclear [9].

Pressing pressure depends on wood species, physical properties of the wood, characteristics of the
veneer surface and on the type of adhesive, its viscosity, the pressing temperature, etc. The application
of pressure helps the adhesive to wet and penetrate the wood surface by forcing it into the void spaces
of the wood [10,11]. However, too high of pressure should be avoided as the adhesive largely squeezes
out [12]. Bonding quality is influenced by the amount of adhesive penetration into the wood substrate
during the manufacture of wood composites, i.e., plywood [10]. Optimal adhesive penetration is
required to repair damaged wood surfaces, and it provides better contact with the inner surface for
chemical bonding or blocking and transfers stresses between the laminates [10,12], promoting a more
efficient use of adhesive and providing a reliable thickness of the adhesive layer [10].

Pressing pressure and adhesive spread rate are the main factors for determining the thickness of
the adhesive layer. The thickness of the adhesive layer should be controlled because it directly affects
the strength of the wood composites. Insufficient pressure in the production process results in a thick
adhesive layer [13]. As a rule, the thick adhesive layer of many common adhesives is characterized
by insufficient strength [11,13]. Pressure should be applied evenly and adequately because wood
adhesives based on synthetic resin, such as phenol formaldehyde (PF), are not capable of forming
strong bonds in the thick and variable thickness of the adhesive layers due to their low viscosity [12].

In low-density wood species, high pressure causes the adhesive to penetrate so deep into the
wood that there is insufficient adhesive to fill the bonding line; this excessive penetration can lead to
lower bond strength [11]. By contrast, low pressures can cause a decrease in the shear strength and do
not provide close contact between the surfaces, resulting in a poor adhesive layer [13,14].

Thermosetting PF adhesive is typically used in the manufacturing of plywood destined for use
in exterior structural applications. To harden the adhesive and form a strong adhesive bond, the
temperature inside the veneer stack (in the core layer of the stack) must be greater than 100 ◦C [14].
The heat from the hot plates of the press should be transferred to the core layer of the stack as quickly
as possible. If the heat transfer process to reach a central layer temperature greater than 100 ◦C is
prolonged, then the adhesive layers closer to the plates will be exposed to higher temperatures longer
than required, and this can lead to premature hardening of the adhesive in these layers and even
destruction of the adhesive. Therefore, for plywood, the total pressing time is determined by the time
it takes to reach a sufficient temperature in the inner glue layer to cure the resin (i.e., the temperature
at which the resin hardens) [15]. On one hand, to maximize process efficiency, the pressing time
should be as short as possible. This is enabled by increasing the pressing temperature. Even a slight
increase in the optimum pressing temperature can adversely affect the surface quality and strength
of the plywood panels. On the other hand, the pressing should be long enough to allow the glue to
harden. Furthermore, shortening the time of hot pressing can effectively reduce energy consumption
as well as time necessary for the production of wood composite materials. Therefore, choosing the
optimum pressing parameters, i.e., the temperature, pressure and pressing time, is very important,
both technologically and economically.

The possibility of reducing hot pressing time has been studied in previous works on some types of
wood composite materials, such as laminated veneer lumber (LVL) [15,16], particleboard [17], oriented
strand board (OSB) [18] and medium-density fiberboard [19]. However, there are only a few studies in
the existing literature regarding the effect of pressing time on the properties of plywood [16,20–23].
Shortening the duration of plywood pressing can be realized by steam injection [20] or by veneer
incising [16,21]. However, the rapid increase in core temperature, typical of steam-injected particleboard,
does not occur in steam-injected plywood [20]. Mirski et al. [22] demonstrated that the application of PF
resin modified with ethyl malonate enables the production of plywood with good mechanical properties
and bond quality in a pressing time shortened by 38% and can reduce the pressing temperature by
20 ◦C. Li et al. [23] investigated the effects of hot-pressing parameters (temperature, pressure, time
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and veneer layers) on the shear strength of multi-plywood using modified soy protein adhesives.
The authors found that the heating rate of the plywood core layer increased with the increase of
hot-pressing temperature and decreased noticeably with an increased number of veneer layers.

Another approach for shortening the heating time and the overall pressing time is the preliminary
thermal compression of veneers. In recent years, a number of studies have shown that introducing
a veneer preparation process via thermo-mechanical compression prior to applying the adhesive
reduces the pressure and time of pressing and also significantly reduces the consumption of adhesive
without negatively impacting the bonding quality of the plywood [24–26]. Kurowska et al. [27]
concluded that veneer densification shortened the total pressing time by 12–25% in comparison to
control samples. Bekhta and Salca [8] found that the multilayered plywood made of densified birch
veneers with an adhesive spread rate of 150 g/m2 was heated faster compared to plywood made of
non-densified veneers.

Thus, we hypothesized that thermal compression of the veneers would lead to reaching the
curing temperature of the glue in the core layer more rapidly, even at a lower adhesive spread rate,
compared with panels made from non-densified veneers, and this will subsequently shorten the
pressing time. The purpose of this study was to obtain a better understanding of the heating process of
veneer stacks and of the temperature evolution within the plywood panels during hot pressing when
using different types of veneer (non-densified and densified), different pressures, time of pressing
and pressing temperatures and different numbers of veneer layers. We also investigated the optimal
pressing parameters to reduce glue consumption and studied how this will affect the quality of the
plywood bonding and increased production efficiency.

2. Materials and Methods

2.1. Materials

In this study, we used rotary-cut birch (Betula verrucosa Ehrh.) veneers (LLC «ODEK» Ukraine)
with dimensions of 300 mm × 300 mm and thickness of 1.6 mm and density of 625 kg/m3. The average
moisture content of the non-densified veneers was 5.7%.

Half of the veneer sheets were densified by the application of heat and pressure between the
smooth and carefully cleaned heated plates of an open-system laboratory press at a temperature of
150 ◦C and a pressure of 2 MPa for 1 min. After densification, the samples were removed from the hot
press and allowed to cool to room temperature. The average thickness and moisture content of the
densified birch veneers were 1.5 mm and 1.4%, respectively.

The commercial PF adhesive Fenokol 43 EX (Chemko, a. s. Slovakia), with a solid content of 47%
(at 105 ◦C), a viscosity of 278 mPa·s, a gel time of 24 s (at 150 ◦C), a free phenol content of 0.013%, a
free formaldehyde content of 0.032% and a hydrogen ion concentration (рН11), was used to bond the
veneers. The PF resin was used for plywood panel manufacturing without any filler or additive.

2.2. Experimental Procedure

In this study, two series of experiments were performed.
During the first series of experiments, the temperature evolution of the adhesive-free plywood

samples during hot pressing was measured:

- inside a stack of common non-densified birch veneers at different pressing temperatures (100, 120,
130, 140 and 150 ◦C);

- inside a stack of either non-densified or densified birch veneers at different pressing pressures
(1.0, 1.4 and 1.8 MPa);

- inside a stack of either non-densified or densified birch veneers at different pressing temperatures
(100, 130 and 150 ◦C) and containing different numbers of veneer layers (3, 5 and 7 layers).
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In this series of experiments, the measurements of the core layer temperature inside the veneer
stacks were carried out without the presence of glue. This was done to determine the real impact of
each studied factor on the temperature evolution inside the sample. It was difficult to measure the
temperature when adhesive was used because the adhesive in a liquid or solid state would significantly
affect the result.

During the second series of experiments, the influence of the pressing parameters, in particular
the pressing time (120, 180, 240, 300 and 360 s) and the pressing pressure (1.0, 1.4 and 1.8 MPa), on the
properties of PF adhesive-bonded three-layer plywood made from either non-densified or densified
birch veneers with reduced adhesive consumption (100 g/m2) was studied.

2.3. Core Layer Temperature Testing

A thermocouple was placed inside the plywood sample to measure the glue line inner temperature.
A 5 mm × 150 mm (width × length) groove was opened in the middle of the core veneer to install the
thermocouple. The temperatures were measured with the thermocouple at the center of the central
veneer sheet (layer) of the stack and were monitored every 5 s to record the temperature evolution in the
panel during pressing. Data collection was initiated when the surface veneer began to receive pressure.
When the temperature inside the stack reached the pressing temperature, the test was completed and
the data were saved to a computer.

2.4. Preparation of Plywood Samples

The three-layer plywood samples from densified veneer were made in an electrically heated
hydraulic laboratory press under the following conditions: 150 ◦C pressing temperature; and different
specified values of pressing pressure (1.0, 1.4 and 1.8 MPa) and pressing time (120, 180, 240, 300
and 360 s) and glue spreading (100 and 150 g/m2). For comparison, plywood control samples from
non-densified veneer were made at the same pressing conditions and pressing pressure of 1.0 and
1.8 MPa. During the last 30 s of the press cycle, the pressure was continuously reduced to 0 MPa.
The adhesive was applied onto one side of every uneven ply. The plies were assembled perpendicular
to each other (veneer sheets were laid tight/loose) to form plywood of three/five/seven plies. Adhesive
was applied onto the veneer surface with a hand roller spreader.

2.5. Shear Strength Test

During the experiment, all plywood samples were conditioned prior to testing for 2 weeks at
20 ± 2 ◦C and 65% ± 5% relative humidity. The panels were cut to extract test samples according to the
standard requirements. The shear strength was determined according to methods EN 314-1 [28] and
EN 314-2 [29] after pretreatment for their intended use in exterior conditions. For the shear strength
test, PF plywood test pieces were immersed for 4 h in boiling water, followed by drying in a ventilated
oven for 16 h at 60 ± 3 ◦C, immersion in boiling water for 4 h, and finally, immersion in cool water at
20 ± 3 ◦C for at least 1 h. Ten samples were used for each variant shear strength mechanical test.

3. Results

During hot pressing, heat is first, transferred from the hot press plates to the outer veneer layers
by conduction and then continues to migrate to the middle. The effective porosity in veneer panels
was only 0.05–0.5% compared to the total panel voids, which ranged from 50% to 70%. The rate of
convection is negligible; thus, heat conduction is dominant [30]. At the same time, upon contact of
the surface veneer layers with the hot press plates, the moisture present in these layers turns into
steam. The steam migrates to the middle of the panel. However, during hot pressing of veneer panels,
it is veneer compression that results in layered and uniform barriers to moisture movement [30].
The interior vapor pressure increases as the steam continues to migrate from the hot surfaces toward
the colder middle. In the middle zone of the panel (from which moisture is virtually free to evaporate
and, under certain conditions, is contained there in the form of a superheated steam–water mixture),
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the temperature is continually increasing, approaching the temperature of the press plates [9]. However,
the rate of temperature rise in the outer and inner layers of the middle zone of the panel is different [4,9].

3.1. Influence of Pressing Temperature on the Heating Rate of the Veneer Stacks

Figure 1 shows how the core layer temperature inside the three-layer birch veneer stack depends
on the plywood pressing temperature and Table 1 presents the time required to reach a temperature of
100 ◦C inside the three-layer panel when applying the different pressing temperatures.
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Figure 1. Core layer temperature curves at different pressing temperatures and 1.8 MPa of three-layer
plywood made from non-densified birch veneers.

Table 1. Time needed for the core layer of three-layer plywood bonded with PF adhesive to reach
100 ◦C and the pressing temperature.

Pressing Temperature (◦C) Time to Reach 100 ◦C (s) Time to Reach the Pressing Temperature (s)

100 60 60
110 30 50
120 25 60
130 19 60
140 19 90
150 19 125

The core layer temperature rose from an initial temperature of 25–30 ◦C to approximately 100 ◦C in
approximately 20 s when the press was closed, but it took almost 125 s to reach a pressing temperature
of 150 ◦C.

During the gradual heating of the veneer stacks, the wood underwent a temperature change and
the water contained within the wood was also altered. At 100 ◦C, some of the moisture was converted
to steam, filling all the spaces within the wood and between the veneer sheets. The rapid heating of
the middle of the panel to 100 ◦C can be explained by the fact that at this temperature liquid water is
transformed into steam, which moves from the outer layers to the inner layers, quickly heating the
panel to 100 ◦C.

It is natural that the interior temperature reaches 100 ◦C most rapidly at the higher pressing
temperatures of 130–150 ◦C. The veneer stack heated the slowest at a pressing temperature of 100 ◦C.
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In this case, it took 60 s for the panel interior to reach 100 ◦C, which is equal to the temperature of the
press plates (pressing temperature). By contrast, at 150 ◦C, the veneer stack was heated three times
faster. These results are in good agreement with a previous study [4] that found that a considerable
amount of thermal energy is needed to cure PF adhesives, i.e., the application of high temperatures
(135–150 ◦C) or long pressing times (45–60 s/mm).

At low pressing temperatures of 100–120 ◦C, we observed gradual and slow heating of the panels.
At the higher pressing temperatures of 130–150 ◦C, during the first 20 s, the panels heated very quickly
before the moisture evaporated after which the heating rate slowed. Table 1 shows that the time
required for the core layer of the three-layer panel to reach 100 ◦C was significantly reduced when
the temperature was increased from 100 ◦C (60 s) to 120 ◦C (25 s) or 150 ◦C (19 s). After the interior
temperature reached the temperature of water evaporation, the temperature inside the panel increased
slowly until the core layer temperature was close to the pressing temperature.

Throughout the period of heat transfer between the sample and the hot press plate, the system
remained at the veneer-heating stage. The heat was transmitted from the outside to inside, and the
plywood gradually reached the pressing temperature, increasing from the surface layer to the core layer.
At high pressing temperatures, such as 150 ◦C, for a short time (approximately 20 s), the core layer
rapidly heated to 100 ◦C due to steam moving from the outer layers to the middle. However, during
this time, the panel was densified, and its density increased while the porosity decreased, making it
more difficult for the steam concentrated inside the panel to escape. If the steam cannot escape from
the center of the panel, which is compressed between the press plates, then the steam will continue to
increase the temperature of the center zone to the temperature of the press plates. A similar pattern of
heating was previously described [4]. If the temperature increases from 20 to 100 ◦C, the conductivity
slightly increases up to 14% and 24% in the longitudinal and transverse directions, respectively [31].

3.2. The Effect of Pressing Pressure on the Heating Rate of Non-Densified and Densified Veneer Stacks

Based on the results of the previous series of experiments, birch veneer and a plywood pressing
temperature of 150 ◦C were used in subsequent studies.

Figure 2 shows the dependence of the core layer temperature on the pressing pressure of the
three-layer birch non-densified and densified veneer stacks. Table 2 shows the time required to reach a
core layer temperature of 100 ◦C or a pressing temperature of 150 ◦C inside the three-layer panels when
applying different pressures. There was practically no difference between densified and non-densified
veneer stacks in the time required to reach an interior temperature of 100 ◦C when applying the
different pressing pressures.

At pressures of 1.0, 1.4 and 1.8 MPa, a core layer temperature of 150 ◦C was reached after 110 s, 85 s
and 125 s for panels made from non-densified veneers and after 115 s, 90 s and 75 s, for panels made
from densified veneers, respectively. The data show that at the lower pressing pressures of 1.0 and
1.4 MPa, the panels heated at the same rate regardless of whether they were made of non-densified or
densified veneer. The reason may be that panels have more porosity in the stack and make it relatively
easy for steam to penetrate/migrate to the core while panels pressed at 1.8 MPa may mainly rely on
heat conduction to raise the core temperature.
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Table 2. Time needed for the core layer of three-layer plywood bonded with PF adhesive to reach
100 ◦C or the temperature of pressing.

Type of Veneer Pressure of Pressing (MPa) Time to Reach 100 ◦C (s) Time to Reach 150 ◦C (s)

ND 1.0 14 110
ND 1.4 16 85
ND 1.8 19 125
D 1.0 18 115
D 1.4 17 90
D 1.8 11 75

It is believed that the moisture content of the veneer stack affects the heat transfer from the outer
layers to the panel core. Usually, higher moisture contents increase the thermal conductivity, which will
accelerate the heat transfer. This may also be valid for low-density panels. The non-densified veneer
had a higher moisture content (5.7%) than the densified veneer (1.4%). Arruda and Del Menezzi [32]
also stated that thermomechanical treatment provided lower equilibrium moisture content of veneers.
Therefore, for a panel made of non-densified veneer, we expected that its moisture content would have
a significant effect on the rate of temperature rise. Data from Table 2 shows that densified veneer under
high-pressure pressing was heated faster than the non-densified veneer at the same pressure. For the
panel made of densified veneer, core temperatures of 100 ◦C and 150 ◦C were reached after 11 and
75 s, respectively, compared with 19 and 125 s for the non-densified veneer stack. Kurowska et al. [27]
found that veneer densification shortened total pressing time by 12–25% in comparison to control
samples. This phenomenon is caused by lower total moisture content in the veneer stack. Furthermore,
faster stack internal temperature gain is caused by more dense wood substance. Wood compression
mainly causes a reduction in empty spaces between cells and cell lumen [32]. Cai et al. [33] also showed
that the panel moisture content does not have a significant effect on the time to reach the maximum
core temperature.

The effective thermal conductivity of compressed wood was found to be lower than that of
uncompressed wood [34]. On the other hand, Hrazsky and Kral [4] showed that the rate of heat
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passage increased with the increasing working pressure (within a certain pressing temperature range).
However, in our study, this was only true for densified veneer. For non-densified veneers, it took
longer to reach the pressing temperature inside the panel when applying high pressure. One of the
reasons for this finding may be the higher moisture content of non-densified veneers compared with
densified veneers. It is known that the rate of heat passage decreases with an increasing moisture
content [4].

The most rapid heat transfer occurs when steam can pass through cracks and voids in the veneer.
High pressures restrict these passages [20]. Wang et al. [30] similarly stated that during hot pressing
the small deformations of the veneer ply effectively act as barriers to gas and moisture movement
rather than the curing glue line acting in this regard. These barriers caused a sealing effect that led to a
low rate of convection within the panel [30].

3.3. The Effect of the Number of Layers on the Heating Rate of Non-Densified and Densified Veneer Stacks

Figure 3 shows the effect of the number of veneer layers (3, 5 and 7) on the heating rate of the
non-densified and densified veneer stacks at different pressing temperatures (100 ◦C, 130 ◦C and
150 ◦C). The heating rate decreased significantly with an increased number of veneer layers, not only at
the stage of rapid heating, but also at the stage of slow heating (Figure 3). With an increasing number
of veneer layers, the time required for the core layer to reach 100 ◦C increased, as did the time required
for the core layer to reach the pressing temperature (Figure 3).

With an increasing number of veneer layers, the temperature at which moisture evaporation
occurred decreased with an increasing number of layers and the time period over which moisture
evaporation occurred was prolonged, probably because the moisture evaporation required more heat
due to the increased number of layers. The heat transfer rate decreased with the increase of veneer
layers, so more time was required to reach 100 ◦C or the pressing temperature in the core layer, leading
to an increasing time difference between reaching 100 ◦C and the pressing temperature (Figure 3).
When there were too many veneer layers during hot pressing, the core layer temperature could not
reach the pressing temperature even with an unlimited increase in pressing time, although the core
layer temperature could approach the pressing temperature.

Figure 3a shows that the three-, five- and seven-layer panels of non-densified veneer heated faster
at a pressing temperature of 100 ◦C than those of densified veneers. At the pressing temperature
of 130 ◦C, the 3, 5 and 7-layer panels reached a core temperature of 100 ◦C in nearly the same time,
regardless of densification. These results were also apparent at the pressing temperature of 150 ◦C.
At pressing temperatures of 130–150 ◦C, for a further increase in core temperature above 100 ◦C, the
densified veneer stacks heated to the pressing temperature faster than the non-densified veneer stacks
and the difference between the pressing temperatures for the non-densified and densified veneers was
already quite large. For example, the pressing temperature of 130 ◦C was reached in the core after
140, 225 and 325 s for the 3-, 5- and 7-layer non-densified veneers and after 70, 135 and 325 s for the
densified veneers, respectively.

The pressing temperature of 150 ◦C was reached in the panel core after 125, 300 and 500 s for
the 3-, 5- and 7-layer non-densified veneer stacks and after 85, 210 and 400 s for the 3-, 5- and 7-layer
densified veneer stacks, respectively. Thus, the 3-, 5- and 7-layer panels of both the non-densified and
densified veneers at pressing temperatures of 130 and 150 ◦C reached a core temperature of 100 ◦C in
nearly the same time, but upon further heating, the densified panels heated much faster. The heating
rate of the 3-, 5- and 7-layer panels to a temperature of 130 ◦C at a pressing temperature of 130 ◦C was
faster by 50%, 40% and 0%, respectively, for the densified veneers compared with the non-densified
veneers. The rate of heating to 150 ◦C at a pressing temperature of 150 ◦C for the 3-, 5- and 7-layer
panels was faster by 32%, 30% and 20%, respectively, for the densified veneers compared with the
non-densified veneers.
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Figure 3. Core layer temperature curves of 3-, 5- and 7-layer plywood panels made from non-densified
(ND) or densified (D) birch veneers at different pressing temperatures: (a) 100 ◦C; (b) 130 ◦C; (c) 150 ◦C.
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The heating rate decreased markedly with an increasing number of veneer layers. The effect
of increasing the number of layers was mainly observed in the continuation of the first stage of
constant temperature and the increase in time required for the core temperature to reach the pressing
temperature. The heating rate of the core layer increased with increasing pressing temperature. In any
case, a pressing temperature of 100 ◦C cannot be recommended for PF-bonded plywood panels for both
technological and economic reasons. These findings are in good agreement with previous studies [4]
who showed that temperatures of 135–150 ◦C or longer pressing times are required to cure PF adhesives.

Considering the curves (Figures 1–3), we can conclude that the core temperature evolution can
be divided into three stages as follows: in the first stage the core temperature remains constant for
approximately 25–30 s after the platen reaches the veneer face surface; the second stage refers to the
rapid increase in the core temperature due to convective heat flow; in the third stage the temperature
remains nearly constant during the moisture vaporization. A similar core temperature distribution in
the middle layers of multi-ply veneer assemblies of either non-densified or densified veneer stacks,
as well as for when adhesives are not used, was previously observed [8]. The results of the temperature
evolution inside the plywood samples for both densified and non-densified veneers were found to be
quite similar to the heat transfer during hot pressing of particleboards and fiberboards [35,36].

3.4. The Influence of Pressing Pressure and Time on the Bonding Strength of Plywood Samples

The average shear strength values of the samples, along with the Duncan’s test results, are depicted
in Figure 4. The shear strengths of the plywood samples composed of either densified or non-densified
veneers were higher than 1.2 MPa and met the requirements of the EN 314-2 standard [29]. The highest
shear strength was obtained by plywood samples composed of densified veneers made at a pressure of
1.4 MPa and a press times of 6 min. The lowest shear capacity was observed in samples composed of
densified veneers made at a pressure 1.8 MPa using a 2 min press time. For densified veneers, the
shear strength increased with increasing press time.
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Figure 4. Shear strengths of 3-layer plywood samples made from birch veneers at various pressing
pressures (1.0 and 1.8 MPa) for various durations at 150 ◦C and 100 g/m2 of adhesive spread:
ND—non-densified veneer; D—densified veneer. Latin letters A–K indicate Duncan group.

The shear strength values of the plywood samples made at a pressure of 1.8 MPa, but with
different pressing times and at a lower adhesive spread rate (100 g/m2) were higher for the densified
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veneers than for the non-densified veneers (Figure 4). Increasing the pressing time of the samples from
120 to 360 s increased the shear strength and all shear strength values met the requirements of EN
314-2 [29]. The images of densified wood shows a significant improvement in the glue line, which
became thinner and more continuous [32].

At a pressing pressure of 1.0 MPa and a lower adhesive spread rate (100 g/m2), the shear strengths
of the plywood samples composed of densified veneers and made with pressing times of 120 s
and 240–360 s were higher than shear strengths of the samples composed of non-densified veneers.
In contrast, at a pressing time of 180 s, the shear strength values of the samples made from non-densified
veneers were higher than of the samples from densified veneers (Figure 4).

For samples composed of densified veneers, the shear strength values for samples pressed at
1.0 MPa were lower than those made at 1.8 MPa. Even at 1.0 MPa, the shear strength values were high
(>1.5 MPa) and met the requirements of EN 314-2 [29].

For plywood samples made from densified veneers at a lower glue consumption rate (100 g/m2)
and pressing times of 180–360 sec, higher pressures of 1.4 and 1.8 MPa led to higher shear strengths
than when applying a pressure of 1.0 MPa (Figure 5). In contrast, for a pressing time of 120 s, the shear
strength values of the samples at a pressure of 1.0 MPa were higher than the shear strengths of the
samples made at 1.4 and 1.8 MPa.Polymers 2020, 12, 1035 12 of 16 
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Figure 5. Shear strengths of 3-layer plywood samples made from densified birch veneers at various
pressing pressures for various durations at 150 ◦C and 100 g/m2 of adhesive spread. Latin letters A–G
indicate Duncan group.

Long pressing times at high pressing pressure can increase the veneer compression ratio and
reduce the productivity of plywood, which is unacceptable in the plywood manufacturing industry.
In terms of economics and technology, it is possible to choose a pressure of 1.4 MPa and a pressing
time of 180–300 s. This allows the pressing time to be reduced by 17–50% and the pressing pressure by
22.2% without negatively impacting the bonding strength of the plywood. In similar study it was also
found that densified veneers, except 25% pressing time shortening, allow 25% glue load reduction
without affecting glue bonds strength properties [27].

Figure 6 compares the bonding strengths of plywood samples made from either non-densified or
densified veneers at reduced (100 g/m2) and currently accepted (150 g/m2) adhesive spread rates and
at different pressing pressures. The highest bonding strength was observed for the densified veneers
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at a pressure of 1.4 MPa and the lower glue consumption of 100 g/m2. A lower bonding strength
was found for samples made from densified veneer at a pressure of 1.8 MPa and an adhesive spread
rate of 150 g/m2 than at a lower adhesive spread rate. Typically, the densification process smooths
the surface of the veneer and decreases its roughness [37,38]; therefore, less adhesive is required for
bonding. A lower adhesive consumption results in a reduced thickness of the adhesive layer and an
increased bonding strength. An adhesive spread rate of 150 g/m2 for densified veneer is too large;
the adhesive is squeezed out of the panel, the thickness of the adhesive layer increases and as a
consequence, the adhesive strength decreases. It is known [39] that with increasing glue line thickness,
the bonding strength decreases; with a thicker glue line, higher internal stress is generated during
glue shrinkage, which can lead to a lower shear strength. Moreover, at the high glue spread level, gas
pressure increased significantly due to the high MC in the glue line, which generally led to blisters or
blows, which could largely deteriorate plywood bond quality [40].
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Figure 6. Shear strengths of 3-layer plywood samples made from birch veneers at various pressing
pressures (1.0, 1.4 and 1.8 MPa) and a pressing time of 6 min for 150 and 100 g/m2 of adhesive spread:
ND—non-densified veneer; D—densified veneer.

At a pressing pressure of 1.4 MPa, the bonding strength was 2.93 MPa and was 8.5% higher than
at a pressure of 1.8 MPa (2.68 MPa). At a pressing pressure of 1.8 MPa, but with an adhesive spread
rate of 150 g/m2, the bonding strength (1.84 MPa) was 31.3% lower than with the lower adhesive
spread rate (100 g/m2) at the same pressure. Wang et al. [40] also found that shear strength decreased
as the pressing pressure increased. The high pressing pressure leads to reduced gas permeability and
high internal gas pressure causing blisters or blows, which could completely destroy shear strengths
of samples.

When comparing plywood samples made from densified and non-densified veneer made at a
pressure of 1.8 MPa and an adhesive spread rate of 100 g/m2, the bonding strength of the densified
samples was 18.7% higher (2.68 MPa) than of the non-densified samples (2.18 MPa). The opposite
pattern was observed for the adhesive spread rate of 150 g/m2. The bonding strength of the non-densified
samples was 13.6% higher (2.13 MPa) than for the densified samples (1.84 MPa). A previous study
found that surface roughness will affect gluing and bonding between two layers of panels. It was
observed that the adhesive was not distributed evenly on panels made from uncompressed veneer
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due to the effects of its rough surface in comparison with panels made from compressed veneer [41].
Non-densified veneer is rough and requires more glue, while densified veneer is smooth and has less
roughness. The adhesive spread rate of 150 g/m2 was too large for the smooth veneer, which led to
thickening of the adhesive layer and consequently reducing the bonding strength. Practice shows
that the thicker the adhesive layer, the more noticeable the influence of internal stresses and, as a rule,
the lower the bonding strength. For high-density hardwood veneers, a smooth surface is a necessity;
where there is no surface contact, there can be no adhesion [14,42].

The veneer roughness plays an important role in the depth of penetration and the uniform
distribution of the adhesive and influences the bonding quality of veneers. Arruda and Del Menezzi [37]
also found that increasing the temperature or time led to a significant reduction in roughness. According
to these authors, the veneer roughness decreased by 43.4%, which contributed to reducing the stress
points between the veneer surface and the adhesive layer. Several studies [38,43–46] also determined
that improved surface roughness of veneers increased the shear strength of the plywood made from
them. Images of thermo-mechanically treated wood show a significant improvement in the glue line,
which became thinner and more continuous [32]. Moreover, the permeability of the PF glue line
decreased during glue curing and the permeability of cured glue lines (films) decreased with increasing
glue spread [30]. The thermal conductivity of plywood increases with an increasing glue spreading
rate by using phenol formaldehyde resin adhesive [47].

4. Conclusions

As a current contribution of the performed research, we can draw the following conclusions.
The heating rate of the veneer stacks increased as the pressing temperature increased. The panels

were the slowest to heat at a pressing temperature of 100 ◦C, whereas at a pressing temperature of
150 ◦C, the panels heated to a core temperature of 100 ◦C three times faster. The heating rate of the core
layer increased with increasing pressing temperature.

Practically, there was no difference in the time required to heat the core to a temperature of 100 ◦C
for panels made of non-densified vs. densified veneers at the different pressing pressures. This pattern
changed when heating the core to the pressing temperature. In this case, the densified veneer stacks
heated faster than the non-densified panels at high pressing pressures. The heating rate of both the
non-densified and densified veneer stacks decreased markedly with an increasing number of veneer
layers. The 3-, 5- and 7-layer panels, for both the non-densified and densified veneers, reached a core
temperature of 100 ◦C in nearly the same time at pressing temperatures of 130 and 150 ◦C. However,
upon further heating, the densified veneer stacks heated much faster. The rate of heating to 150 ◦C
for the 3-, 5- and 7-layer panels at a pressing temperature of 150 ◦C was faster by 32%, 30% and 20%,
respectively, for the densified veneer than for the non-densified veneer.

When using densified veneers for the production of plywood, a shorter pressing time (17–50%
reduction), lower glue consumption (33.3% reduction) and a lower pressing pressure (22.2% reduction)
can be used without negatively impacting the bonding strength of the plywood samples.

The findings of this study provide useful information necessary for optimizing the plywood
manufacturing process by balancing product qualities and productivity.
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26. Bekhta, P.; Sedliačik, J.; Jones, D. Effect of short-term thermomechanical densification of wood veneers on the
properties of birch plywood. Eur. J. Wood Prod. 2018, 76, 549–562. [CrossRef]

27. Kurowska, A.; Borysiuk, P.; Maminski, M.; Zbiec, M. Veneer densification as a tool for shortening of plywood
pressing time. Drvna Ind. 2010, 61, 193–196.

28. EN 314-1. Plywood. Bonding Quality. Part. 1: Test. Methods; European Committee for Standardization:
Brussels, Belgium, 2004.

29. EN 314-2. Plywood. Bonding Quality. Part. 2: Requirements; European Committee for Standardization:
Brussels, Belgium, 1993.

30. Wang, B.J.; Zhou, X.; Dai, C.; Ellis, S. Air permeability of aspen veneer and glueline: Experimentation and
implications. Holzforschung 2006, 60, 304–312. [CrossRef]

31. Suleiman, B.; Larfeldt, J.; Leckner, B.; Gustavsson, M. Thermal conductivity and diffusivity of wood.
Wood Sci. Technol. 1999, 33, 465–473. [CrossRef]

32. Arruda, L.M.; Del Menezzi, C.D.S. Properties of a Laminated Wood Composite Produced with
Thermomechanically Treated Veneers. Adv. Mater. Sci. Eng. 2016, 2016, 8458065. [CrossRef]

33. Cai, Z.; Muehl, J.H.; Winandy, J.E. Effects of panel density and mat moisture content on processing medium
density fiberboard. For. Prod. J. 2006, 56, 20–25.

34. Asako, Y.H.; Kamikoga, H.; Nishimura, H.; Yamaguchi, Y. Effective thermal conductivity of compressed
woods. Int. J. Heat Mass Transfer. 2002, 45, 2243–2253. [CrossRef]

35. Liu, Z.T.; Wang, J.Y.; Yu, H. Study on factors influencing the heat-transfer process in hot-pressing of wood
particleboard. J. Beijing For. Univ. 1995, 17, 267–272.

36. Garcia, R.; Cloutier, A. Characterization of heat and mass transfer in the mat during the hot pressing of MDF
panels. Wood Fiber Sci. 2005, 37, 23–41.

37. Arruda, L.; Del Menezzi, C.H.S. Effect of thermomechanical treatment on physical properties of wood
veneers. Int. Wood Prod. J. 2013, 4, 217–224. [CrossRef]

38. Bekhta, P.; Proszyk, S.; Krystofiak, T.; Mamonova, M.; Pinkowski, G.; Lis, B. Effect of thermomechanical
densification on surface roughness of wood veneers. Wood Mater. Sci. Eng. 2014, 9, 233–245. [CrossRef]

39. Pizzi, A.; Mittal, K.L. Handbook of Adhesive Technology, 2nd ed.; Dekker: New York, NY, USA, 2003.
40. Wang, B.J.; Dai, C. Hot-pressing stress graded aspen veneer for laminated veneer lumber (LVL). Holzforschung

2005, 59, 10–17. [CrossRef]
41. Nordin, N.A.; Sulaiman, O.; Hashim, R.; Salim, N.; Sato, M.; Hiziroglu, S. Properties of laminated panels

made from compressed oil palm trunk. Compos. Part B Eng. 2013, 52, 100–105. [CrossRef]
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