Polypropylene/Basalt Fabric Laminates: Flexural Properties and Impact Damage Behavior
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Laminates Preparation
2.3. Experimental Techniques
2.3.1. Static Mechanical Properties
2.3.2. Impact Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fiore, V.; Scalici, T.; di Bella, G.; Valenza, A. A review on basalt fibre and its composites. Compos. Part B 2015, 74, 74–94. [Google Scholar] [CrossRef]
- Dhand, V.; Mittal, G.; Rhee, K.Y.; Park, S.-J.; Hui, D. A short review on basalt fiber reinforced polymer composites. Compos. Part B 2015, 73, 166–180. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R. A green material from rock: basalt fiber—A review. J. Text. Inst. 2016, 107, 923–937. [Google Scholar] [CrossRef]
- Volkan, A.; Cakir, F.; Alyamac, E.; Seydibeyoglu, M.O. Fiber Technology for Fiber-Reinforced Composites; Woodhead Publishing: Sawston, UK, 2017; Chapter 8; pp. 169–185. [Google Scholar]
- Lopresto, V.; Leone, C.; de Iorio, I. Mechanical characterization of basalt fiber reinforced plastic. Compos. Part B 2011, 42, 717–723. [Google Scholar] [CrossRef]
- Shokrieh, M.M.; Memar, M. Stress corrosion cracking of basalt/epoxy composites under bending load. Appl. Compos. Mater. 2010, 17, 121–135. [Google Scholar] [CrossRef]
- Varley, R.J.; Tian, W.; Leong, K.H.; Leong, A.Y.; Fredo, F.; Quaresimin, M. The effect of surface treatments on the mechanical properties of basalt-reinforced epoxy composites. Polym. Compos. 2013, 34, 320–329. [Google Scholar] [CrossRef]
- Manikandan, V.; Jappes, J.T.W.; Kumar, S.M.S.; Amuthakkannan, P. Investigation of the effect of surface modifications on the mechanical properties of basalt fibre reinforced polymer composites. Compos. Part B Eng. 2012, 43, 812–818. [Google Scholar] [CrossRef]
- Russo, P.; Simeoli, G.; Cimino, F.; Papa, I.; Lopresto, V. Impact damage behaviour of vinyl ester, epoxy and nylon 6 based basalt fiber composites. J. Mater. Eng. Perform. 2019, 28, 3256–3266. [Google Scholar] [CrossRef]
- Botev, M.; Betchev, H.; Bikiaris, D.; Panayiotou, C. Mechanical properties and viscoelastic behavior of basalt fiber-reinforced polypropylene. J. Appl. Polym. Sci. 1999, 74, 523–531. [Google Scholar] [CrossRef]
- Szabo, J.S.; Czigany, T. Static fracture and failure behavior of aligned discontinuous mineral fiber reinforced polypropylene composites. Polym. Test. 2003, 22, 711–719. [Google Scholar] [CrossRef]
- Guo, J.; Mu, S.; Yu, C.; Hu, C.; Guan, F.; Zhang, H.; Gong, Y. Mechanical and thermal properties of polypropylene/modified basalt fabric composites. J. Appl. Polym. Sci. 2015, 132, 42504. [Google Scholar] [CrossRef]
- Bashtannik, P.I.; Kabak, A.I.; Yakovchuk, Y.Y. Eff. Adhes. Interact. Mech. Prop. Thermoplast. Basalt Plast. Mech. Compos. Mater. 2003, 39, 85–88. [Google Scholar]
- Akinci, A. Mechanical and morphological properties of basalt filled polymer matrix composites. Arch. Mater. Sci. Eng. 2009, 35, 29–32. [Google Scholar]
- Song, J.; Liu, J.; Zhang, Y.; Chen, L.; Zhong, Y.; Yang, W. Basalt fiber-reinforced PA1012 composites: Morphology, mechanical properties, crystallization behaviors, structure and water contact angle. J. Compos. Mater. 2015, 49, 415–424. [Google Scholar] [CrossRef]
- Deak, T.; Czigany, T.; Marsalkova, M.; Militky, J. Manufacturing and testing of long basalt fiber reinforced thermoplastic matrix composites. Polym. Eng. Sci. 2010, 50. [Google Scholar] [CrossRef]
- Deák, T.; Czigány, T.; Tamás, P.; Németh, C. Nemeth Enhancement of interfacial properties of basalt fiber reinforced nylon 6 matrix composites with silane coupling agents. Express Polym. Lett. 2010, 4, 590–598. [Google Scholar] [CrossRef]
- Prajapati, R.S.; Jain, S.; Shit, S.C. Development of basalt fiber-reinforced thermoplastic composites and effect of PE-g-MA on composites. Polym. Compos. 2017, 38. [Google Scholar] [CrossRef]
- Ying, Z.; Wu, D.; Zhang, M.; Qiu, Y. Polylactide/basalt fiber composites with tailorable mechanical properties: Effect of surface treatment of fibers and annealing. Compos. Struct. 2017, 176, 1020–1027. [Google Scholar] [CrossRef]
- Sorrentino, L.; de Vasconcellos, D.S.; D’Auria, M.; Sarasini, F.; Iannace, S. Thermoplastic composites based on poly(ethylene 2,6-naphthalate) and basalt woven fabrics: Static and dynamic-mechanical properties. Polym. Compos. 2016, 37, 2549–2556. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Xin, Y. Mechanical properties of basalt-fiber-reinforced polyamide 6/polypropylene composites. Mech. Compos. Mater. 2014, 50, 509–514. [Google Scholar] [CrossRef]
- Bandaru, A.K.; Patel, S.; Sachan, Y.; Ahmad, S.; Alagirusamy, R.; Bhatnagar, N. Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2016, 90, 642–652. [Google Scholar] [CrossRef]
- Dehkordi, M.T.; Nosraty, H.; Shokrieh, M.M.; Minak, G.; Ghelli, D. The influence of hybridization on impact damage behaviour and residual compression strength of intraply basalt/nylon hybrid composites. Mater. Des. 2013, 43, 283–290. [Google Scholar] [CrossRef]
- Greco, A.; Maffezzoli, A.; Casciaro, G.; Caretto, F. Mechanical properties of basalt fibers and their adhesion to polypropylene matrices. Compos. Part B 2014, 67, 233–238. [Google Scholar] [CrossRef]
- Simeoli, G.; Acierno, D.; Sorrentino, L.; Iannace, S.; Sarasini, F.; Tirillò, J.; Russo, P. Comparison of Low-Velocity Impact Behavior of Thermoplastic Composites Reinforced with Glass and Basalt Woven Fabrics. In Proceedings of the 16th ECCM European Conference on Composite Materials, Seville, Spain, 22–26 June 2014. [Google Scholar]
Sample | Flexural Modulus (MPa) | Flexural Strength (MPa) |
---|---|---|
PP/Basalt | 13790 ± 820 | 39.9 ± 2.0 |
PPC/Basalt | 15940 ± 788 | 81.1 ± 2.2 |
Matrix | Fmax (N) | d (mm) |
---|---|---|
PP_gran | 1689 | 4.99 |
PP_film | 1964 | 6.25 |
Type | Fmax (N) | d (mm) | Umax (J) |
---|---|---|---|
BS/PP | 2919.58 | 14.88 | 102.88 |
BS/PPC | 3918.91 | 17.12 | 84.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russo, P.; Papa, I.; Pagliarulo, V.; Lopresto, V. Polypropylene/Basalt Fabric Laminates: Flexural Properties and Impact Damage Behavior. Polymers 2020, 12, 1079. https://doi.org/10.3390/polym12051079
Russo P, Papa I, Pagliarulo V, Lopresto V. Polypropylene/Basalt Fabric Laminates: Flexural Properties and Impact Damage Behavior. Polymers. 2020; 12(5):1079. https://doi.org/10.3390/polym12051079
Chicago/Turabian StyleRusso, Pietro, Ilaria Papa, Vito Pagliarulo, and Valentina Lopresto. 2020. "Polypropylene/Basalt Fabric Laminates: Flexural Properties and Impact Damage Behavior" Polymers 12, no. 5: 1079. https://doi.org/10.3390/polym12051079
APA StyleRusso, P., Papa, I., Pagliarulo, V., & Lopresto, V. (2020). Polypropylene/Basalt Fabric Laminates: Flexural Properties and Impact Damage Behavior. Polymers, 12(5), 1079. https://doi.org/10.3390/polym12051079