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Abstract: We present results, from Monte Carlo (MC) simulations, on polymer systems of freely 

jointed chains with spherical monomers interacting through the square well potential. Starting from 

athermal packings of chains of tangent hard spheres, we activate the square well potential under 

constant volume and temperature corresponding effectively to instantaneous quenching. We 

investigate how the intensity and range of pair-wise interactions affected the final morphologies by 

fixing polymer characteristics such as average chain length and tolerance in bond gaps. Due to 

attraction chains are brought closer together and they form clusters with distinct morphologies. A 

wide variety of structures is obtained as the model parameters are systematically varied: weak 

interactions lead to purely amorphous clusters followed by well-ordered ones. The latter include 

the whole spectrum of crystal morphologies: from virtually perfect hexagonal close packed (HCP) 

and face centered cubic (FCC) crystals, to random hexagonal close packed layers of single stacking 

direction of alternating HCP and FCC layers, to structures of mixed HCP/FCC character with 

multiple stacking directions and defects in the form of twins. Once critical values of interaction are 

met, fivefold-rich glassy clusters are formed. We discuss the similarities and differences between 

energy-driven crystal nucleation in thermal polymer systems as opposed to entropy-driven phase 

transition in athermal polymer packings. We further calculate the local density of each site, its 

dependence on the distance from the center of the cluster and its correlation with the 

crystallographic characteristics of the local environment. The short- and long-range conformations 

of chains are analyzed as a function of the established cluster morphologies. 

Keywords: square well; polymers; molecular simulation; Monte Carlo; crystallization; cluster; close 

packing; fivefold; ordered phase; twinning; phase transition; face centered cubic; hexagonal close 
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1. Introduction 

The phase behavior of general atomic and particulate systems has a major influence on the 

macroscopic properties of the end materials. Thus, its understanding and eventual prediction are of 

paramount importance in technology and industry [1,2]. While being in the spotlight of human 

interest and research since early times, crystal nucleation and growth are still not fully understood, 

albeit being encountered in a plethora of distinct physical and chemical systems [3–7]. The primary 

factor behind this is that crystallization spans several length scales, starting from the clustering and 

ordering of atoms at the level of nano, to the macroscopic size of the fully formed crystal. 

Accordingly, its identification and successive quantification requires advanced experimental 

techniques. In parallel, theoretical models of crystal nucleation and growth have been developed to 
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predict how the processing conditions affect phase transition so as to identify the key parameters that 

dictate final morphologies [8,9]. Towards this direction, computer simulations [10,11] can play an 

important role: subject to the accuracy of the employed molecular model and the adequacy of the 

method/algorithm to provide sufficient observation time, very helpful insights can be gained on the 

connection between structure, at the level of atoms, and macroscopic phase behavior.  

Crystallization of polymers is of special importance as chain crystals are formed under special 

processing conditions and confer unique properties to polymeric materials [12–15]. Apart from the 

obvious effect of chemical constitution of the repeat units, additional factors that affect polymer 

crystallization include chain length, molecular architecture (long- or short-chain branching), the 

presence of interfaces or nanoparticles and the processing conditions like the quench rate. In the last 

years, encouraged by the rise of polymer-based, thin-film materials, the effect of confined geometries 

on polymer crystallization has also gained a significant interest [16,17]. Despite the ever-growing 

body of published literature, there are still numerous and non-trivial open questions around this 

phenomenon, especially when complex macromolecular systems are involved. From the simulation 

perspective, the vast range of characteristic time and length scales encountered in bulk polymers adds 

a further difficulty in the modeling study. Apart from an exceptionally large collection of simulation 

works on chemically realistic macromolecular models, significant effort has been devoted to the 

modeling of chemically simpler, still physically relevant colloidal or granular polymers. In the 

simplest possible realization, polymers can be modeled as linear, freely-jointed chains of tangent hard 

spheres of uniform size [18–21].  

During recent years, advances in synthesis and characterization of colloidal and granular 

polymers have renewed an interest in understanding the structure-property relationship in 

chemically simple macromolecular systems. Motivated by this, in the past we explored the salient 

features of entropically-driven, athermal polymer crystallization through extensive Monte Carlo 

(MC) simulations [22–27] and compared it with the phase behavior of monomeric counterparts 

[28,29]. Recently, we extended the modeling studies to hard-sphere polymers under confinement in 

at least one dimension [30–32].  

In the present work we study the phase behavior of linear, freely jointed chains whose spherical 

monomers interact through the pair-wise, square well (SW) potential. Compared to hard spheres 

(HS) the SW model, apart from the excluded volume, includes attraction between atoms, or repulsion 

in the case of the square shoulder (SS) potential. Hence, the phase behavior of the corresponding 

system is expected to depend strongly on the intensity and range of such interactions. Furthermore, 

they lead to energy dominating the phase transition in thermal SW systems as opposed to entropy, 

which is the driving force in athermal HS counterparts. The SW model has been previously employed 

to study phenomena from clustering and self-assembly to crystallization. Regarding monomeric 

systems, Babu et al. [33] studied crystallization of monomeric spheres with SW potential through 

Brownian cluster dynamics. Klotsa and Jack [34] investigated self-assembly of SW monomers into 

crystals to predict phase behavior. Through Molecular Dynamics (MD), Takada and Hayakawa [35] 

showed the coalescence of particles in clusters by the application of SW potential under shear flow. 

Sevick and Monson [36] studied cluster formation of square well particles through theoretical 

considerations. Models that are more complex can be used, such as the flat-well potential used for 2D 

structural analysis [37–39], or the double-Gaussian potential applied in the characterization of 

structural collapse of monomers [40]. The sticky model is a specific case of the square well potential 

obtained by collapsing the attraction range, and has been investigated extensively in past studies [41–

45].  

Beyond monomeric systems, the SW potential/Janus dumbbell has also been applied to study 

self-assembly of dimers [46,47]. With respect to chain systems, Kuriata and Sikorski [48] adopted the 

SW potential to study the collapse transition of cyclic homopolymers and block copolymers, whereas 

Zierenber et al. [49] investigated aggregation of dilute semi flexible chains driven by temperature. 

Regarding single chains, previous works explored the thermodynamics and phase transition of single 

homopolymers under the SW potential [50–53]. Schnabel and Bachmann have presented results on 

the conformation of perfect icosahedral conformations for specific chain lengths [54–56], as well as 
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on the effect of the interaction range of SW potential in chain systems [57]. Such structural analysis 

dates back in the early works in [58–60] on how the interaction type and range govern structural 

features of model atomic systems. Prabhu et al. [61] applied a patchy SW model in the study of step-

growth polymerization. Results obtained in the present work can be further compared against the 

ones, obtained through MD simulations, on the competition between crystal and glass formation as 

a function of quench rate in bulk systems of bead-spring polymer chains [62]. The model of [62] serves 

effectively as a bridge between discontinuous models (SW and HS), as the ones presented here, and 

more realistic representations (like the Lennard-Jones (LJ)) as it incorporates tunable chain flexibility 

[63], commensurability between the average bond length and the monomer size and a truncated and 

shifted LJ potential for non-bonded interactions.  

The present work focuses on the identification and characterization, through proper structural 

metrics, of thermodynamically stable morphologies, generated in extensive Monte Carlo simulations, 

as we tune the intensity and range of the attractive SW interaction between monomers. The observed 

polymer clusters vary from completely amorphous systems, and fivefold-rich glasses all the way to 

perfect crystals in a striking similarity not only to dense hard sphere counterparts [22,23,25,27,29] but 

also to glass and crystal formation encountered in chemically more realistic polymers systems under 

quenching at various rates [62].  

The present manuscript is organized as follows: Section 2 details the model used, the simulated 

systems, the MC suite employed, and the metric used to characterize local structure. Section 3 reports 

the results on the phase behavior of the equilibrated, computer-generated system configurations and 

on the corresponding thermodynamically stable morphologies. Finally, Section 4 summarizes the 

main conclusions of the present work and discusses briefly current efforts and future plans.  

2. Molecular Model, Simulation Algorithm and Systems Studied  

In the present work we adopt the freely jointed model of linear chains of spherical monomers of 

uniform collision diameter σ1, which also serves as the characteristic length of the system. Bond 

lengths, l, can fluctuate uniformly in the interval l[σ1, σ1+dl], where dl is the gap between successive 

spheres along the chain backbone. In the case of dl→ 0 the tangent limit is reached, corresponding 

numerically to a value of 10−5. It has been found in previous works [27], [64] that allowing for bond 

gaps, as opposed to strict tangency, has a strong effect on the ability of athermal chains to crystallize. 

Here, a fixed value of dl = 6.5 × 10−4 is considered for all systems studied. Given the freely jointed 

model there is no potential governing bending or torsion angles. All pairs, including the bonded ones, 

interact with the square well (SW) / shoulder (SS) pair-wise potential [65] of the form: 

𝑣(𝑟𝑖𝑗) = { 

0                     𝑟𝑖𝑗 ≥ 𝜎2

−𝜀               𝜎1 ≤ 𝑟𝑖𝑗 < 𝜎2

∞                   𝑟𝑖𝑗 < 𝜎1

 (1) 

where rij is the distance between the centers of spheres i and j and v(rij) is the energy. Parameters σ1 

and σ2 in Equation (1) correspond to the collision distance and interaction range, respectively, while 

ε is the interaction intensity (depth of the well (SW) or height of the shoulder (SS)). Negative values 

of ε correspond to repulsion (SS) and positive ones to attraction (SW). By setting ε = 0 (and σ1 = σ2 for 

computational expedience) the SW/SS potential is reduced to the HS one. The limit of vanishing 

attraction range (setting σ2 → σ1) results in sticky interactions. Although the SW/SS model is highly 

idealized and lacks chemical information, it still allows study of the effect of short-range interactions 

on the ability of chains to crystallize. Due to its simplicity, it can be causally linked to the athermal 

HS model, effectively allowing for a direct comparison between entropy- and energy-driven 

crystallization. 

From the algorithmic perspective all simulations are based on a Monte Carlo (MC) suite [32] 

built around chain-connectivity-altering moves (CCAMs) [66,67] and a wall-wrapping algorithm. 

Very recently, it allowed the generation and equilibration of athermal polymer thin-films under 

conditions of extreme confinement [31,32]. Here, we employ a newer and extended version which 

can be employed in the simulation of polymer nanocomposites in the bulk and at interfaces. Two key 
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features of the latest code implementation, which are relevant to the present work, include: 1) the 

straightforward application of any type of isotropic, pair-wise potential, 2) the inclusion of cluster-

based MC moves. The localized moves and CCAMs at the core of the MC scheme have been 

presented in detail in [32,68] and their efficiency is well documented under a variety of simulation 

conditions even for very long and/or definitely entangled chains (N = 1000) near the maximally 

random jammed (MRJ) state and/or under extreme confinement. 

Two cluster moves are added in the current MC scheme: i) cluster displacement and ii) cluster 

rotation. For both moves to function, in the first step cluster detection is employed in the general case 

according to criteria of proximity and similarity. In the present work only proximity criteria are 

considered with a threshold distance being set at 1.2. The cluster detection algorithm proceeds 

iteratively by adding monomers in the clusters and merging them, when applicable, until no further 

additions are possible. Out of all possible clusters, one is selected randomly, and it is either randomly 

rotated or displaced. In the case that all chains form a single cluster the corresponding moves are 

automatically deactivated. At regular intervals (107 steps) cluster identification recurs; whenever 

more than one cluster is detected, cluster moves are activated again, and the cycle is repeated.  

For all systems, the MC moves and their attempt probabilities are as follows: (i) rotation (10%), 

(ii) reptation (10%), (iii) flip (34.7%), (iv) intermolecular reptation (25%), (v) configurational bias 

(20%), (vi) simplified end-bridging (0.1%), (vii) simplified intermolecular end-bridging (0.1%) and 

cluster moves (0.1%). All local MC moves are executed in a configurational bias pattern as in Refs. 

[32] and [68] with the number of trial configurations per attempt being equal to ndis = 5. 

Initial configurations correspond to fully equilibrated random packings of hard-sphere chains 

at dilute conditions. Packing density, ϕ, is defined as the volume occupied by all monomers divided 

by the total volume of the simulation cell. In all simulations to be reported below, density, and thus 

system volume, is kept constant at a value of ϕ = 0.05. The average chain size is N = 12 with chain 

lengths allowed to fluctuate with equal probability in the interval N  [6,18]. Cubic simulation cells 

are filled with 100 chains for a total of 1200 interacting monomers. Once the SW potential is activated 

the system becomes thermal and temperature, T, should be considered. For simplicity, all simulations 

conducted here are carried out at constant temperature (T = 1 / kB, where kB is the Boltzmann constant). 

Changing the initial athermal system to one at finite temperature corresponds to instantaneous 

quenching, with the intensity of the force field playing the role of an effective rate: the higher the ε 

value the higher the temperature difference; in other words, the lower the effective temperature 

reached by the quenching. This allows the comparison of the present results not only with the dense 

hard-sphere chain packings of athermal nature but further with more realistic thermal bead-spring 

LJ chain systems whose phase behavior is strongly dependent on quench rate [62,63,69]. 

Technical details on the simulation algorithm and a thorough exploration of the effect of physical 

parameters not considered here (chain length, density, temperature, bond gaps, confinement and 

nanofillers) on the short- and long-range structure of SW chains and on their phase behavior will be 

presented in the future. 

For a fixed range (σ2 = 1.2) we vary the intensity, ε, from 0.0 to 10.0; for a fixed intensity (ε = 0.5) 

we vary the range, σ2, in the interval from 1.1 to 6.0. The limiting case of ε = 0 (σ2 = σ1) corresponds to 

hard spheres. The full parameter set, as explored in the present work, is summarized in Table 1. 
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Table 1. Pairs of interaction intensity, ε, and range, σ2, as studied in the present work for the 100-chain 

N = 12 system at ϕ = 0.05 and kB T = 1. 

    ε      

σ2 = 1.2 0.0 1 × 10−5 1 × 10−4 1 × 10−3 1 × 10−2 0.1 0.2 0.3 0.4 

 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 

 1.4 1.5 1.6 1.8 2.0 4.0 6.0 8.0 10.0 

          

    σ2      

ε = 0.5 1.1 1.2 1.3 1.4 1.6 1.8 1.9 2.0 2.3 

 2.4 2.6 2.7 2.8 2.9 3.0 3.2 3.5 4.0 

 5.0 6.0        

System configurations, including energy and thermodynamic data are recorded every 107 steps 

and the corresponding simulation trajectories consist, on average, of 12 × 104 frames reaching total 

times in the order of 1012 steps. In a post-processing step recorded configurations (frames) are 

analyzed to quantify the degree of crystallinity and to identify the resulting structures. Towards this, 

we employ the Characteristic Crystallographic Element (CCE) norm [70] to gauge local structure. The 

CCE-based descriptor quantifies both orientational and radial deviations in the arrangement of atoms 

(or particles) with respect to a specific crystal structure. In a first step, the CCE norm utilizes the 

Voronoi cell (polyhedron) around each site to identify the closest neighbors. Local density, to be 

reported below, can be calculated as the reciprocal of the volume of the Voronoi polyhedron. In a 

second step, geometric symmetry operations are performed on each site and its neighbors, in order 

to identify a distinguishing set (fingerprint) of crystallographic elements (mirror planes, rotation and 

inversion axes, etc.) characteristic of each crystal type [71]. Given the expected formation of close 

packed structures, we have employed the CCE norm to identify similarity with respect to the HCP, 

and FCC crystals and to the non-crystallographic fivefold (FIV) local structure. The corresponding 

crystallographic elements and operations along with the algorithmic implementation of the CCE 

norm can be found in Refs. [23,28,29,70].  

Once the CCE descriptor is applied, a number (norm), μ, is obtained for each site j, with respect 

to a specific crystal X. The closer 𝜇𝑗
𝑋 is to zero, the greater the similarity to this specific crystal. As in 

the past works on non-overlapping spheres, we set a threshold value of 𝜇c  ≤ 0.245 below which the 

site is considered of X-type similarity (X being HCP, FCC or FIV). Due to the discriminating nature 

of the CCE metric, no site can have simultaneously low CCE norm values with respect to two different 

reference crystals (i.e., if 𝜇𝑗
𝑋 <  𝜇c then 𝜇𝑗

𝑌 >  𝜇c, 𝑌 ≠ 𝑋). Sampled over all sites in the system, we can 

further assign the corresponding probability distribution function, P(𝜇𝑋) for each recorded frame. 

The degree of crystallinity, 𝜏cryst can be considered as the sum of the order parameters, SX, for the 

HCP and FCC crystals according to the following equation: 

𝜏cryst = 𝑆HCP + 𝑆FCC = ∫ 𝑃(

𝜇c

0

𝜇HCP)𝑑𝜇HCP + ∫ 𝑃(

𝜇c

0

𝜇FCC)𝑑𝜇FCC (2) 

Phase transitions can be detected by observing the evolution of the degree of crystallinity 

(Equation (2)) as a function of MC frames; more importantly, we can label each and every site of the 

system as crystal (HCP or FCC), fivefold (FIV) or amorphous (neither HCP/FCC nor FIV). 

Visualization of the corresponding system configurations allows to further identify, with high 

precision, either crystal type and/or amorphous and fivefold-abundant, arrested (glassy) structures 

and the corresponding morphologies. 

An important difference with respect to athermal packings at high density [22–24,27] and 

quenched bulk LJ chain systems [62] is that the system studied here is highly heterogeneous and 

monomers that lie on the external surface of the cluster possess incomplete neighbor environments, 

i.e., a coordination number lower than in a crystal, so that the CCE norm attains unrealistic high 

values. This affects the calculation of the degree of crystallinity as the ratio of the close packed sites 

by the total population (Equation (2)). As an alternative one could consider only spheres with 
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complete Voronoi polyhedron, excluding the ones on the external surface of the clusters. However, 

as we are interested in the phase transition, the exact value of 𝜏cryst  is not as important as its 

qualitative evolution compared to the initial state. Accordingly, in the CCE-related calculations of 

𝜏cryst, to be presented below, all spheres, including the ones on the cluster surface, are considered.  

3. Results 

3.1. Computer-Generated System Configurations 

As mentioned above, initial configurations are generated as configurations of chains of tangent 

hard spheres in the bulk: 100-chain N = 12 at ϕ = 0.05 with molecular lengths fluctuating uniformly 

in the interval N  [6,18]. Given this structure, we activate the square well potential and vary the 

intensity and range of interactions as shown in Table 1 leading to instantaneous quenching. Due to 

the monomer attraction chains adopt coiled configurations and are brought closer together. Clusters 

containing monomers of different chains start to form. Given that the bond length (= 1) is smaller 

than the distance threshold for cluster detection (= 1.2) the minimum size of cluster cannot be lower 

than the shortest possible chain length (= 6) nor can the maximum number of clusters be higher than 

the number of chains (= 100). Depending on the values of ε and σ2 clusters may become stable and 

further aggregate into larger groups. As the cluster size increases the corresponding cluster 

population drops. At sufficiently high intensities this aggregation eventually leads to the formation 

of a single cluster consisting of all chains in the system. An important difference with respect to 

single-chain simulations is that here, as we start from a bulk chain system, cluster growth occurs 

through merging of polymer chains rather than by shell-by-shell growth accompanied by compaction 

of the inner core. From the technical perspective the inclusion of cluster-based moves (displacement 

and rotation) in the MC protocol guarantees that the cluster unification occurs within modest 

computational time. Typical snapshots of computer-generated SW chain configurations as they 

evolve with simulation time (in MC steps) are shown in Figures 1 and 2. In the panels of the former 

figure sphere centers are subjected to periodic boundary conditions while in the latter they are 

unwrapped in order to visualize the shape and size of the cluster assemblies.  

    

(a) (b) (c) (d) 

Figure 1. (a) Snapshot of the athermal polymer system (100-chain N = 12, ϕ = 0.05) serving as the initial 

configuration for all successive Monte Carlo simulations on chains interacting with the square-well 

(SW) potential. (b–d) System configurations for the SW chain system (ε = 1.0 and σ2 = 1.2) after 106, 2 

× 108 and 1.2 × 1012 Monte Carlo moves, respectively. The number of clusters is (a): 73, (b): 8, (c): 3 and 

(d): 1. The formation of a stable single cluster occurs at approximately 5 × 109 steps. Monomers are 

color-coded according to their parent chain. Coordinates of sphere centers are subjected to periodic 

boundary conditions in all dimensions. Image created with the VMD software (version 1.9.3, 

Theoretical and Computational Biophysics Group, University of Illinois, Urbana, IL, USA) [72]. 3-D, 

interactive versions of the figure panels exist in supplement material (as well as a 3-D, interactive 

version of the present manuscript). 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. Snapshots of system configurations as simulation evolves for chains interacting with the 

square well potential (ε = 1.0 and σ2 = 1.2) at (a): 105 [16], (b) 106 [8], (c) 107 [7], (d) 108 [4], (e) 109 [2] and 

(f) 1.4 × 1012 (end of simulation) [1] MC steps. Numbers in square brackets denote the number of 

distinct clusters. Monomers are color-coded according to their parent chain. Spheres of each cluster 

are shown in unwrapped coordinates. 3-D, interactive versions of the figure panels exist in 

supplement material (as well as a 3-D, interactive version of the present manuscript). 

For weak attraction and/or short-range of interactions, individual clusters are small and may lie 

far from each other. In addition, when they meet their connection points (bridges), usually in the form 

of a single monomer, they can be easily deleted in successive steps due to the reversibility of the MC 

scheme. Clusters of initial random shape and size grow either by appending individual chains or 

through merging with other clusters. Again, depending strongly on the applied interaction 

parameters, the final single cluster may become more spherical and more symmetric compared to 

clusters at intermediate stages. Visual inspection of the final single cluster, as seen wrapped in panel 

(d) of Figure 1 or unwrapped in panel (f) of Figure 2, reveals further the formation of well-ordered 

patterns. Such ordering is, in general, absent in clusters of small size.  

3.2. Crystallization 

To detect any possible phase transition we employ the CCE metric to gauge the local 

environment around each monomer, i, by calculating the corresponding HCP, FCC and FIV norms: 

𝜇𝑖
HCP, 𝜇𝑖

FCC and 𝜇𝑖
FIV. Then, the corresponding distribution functions, P(𝜇𝑖

HCP), P(𝜇𝑖
FCC) and P(𝜇𝑖

FIV) can 

be obtained by sampling over all spheres for each frame. Finally, by imposing the threshold value (μc 

= 0.245) we can calculate the corresponding order parameters SHCP, SFCC and SFIV and the degree of 

crystallinity, τc (Equation (2)).  

Figure 3 shows the CCE probability densities for the last configuration for four different SW 

chain systems: (a) ε = 0.6 and σ2 = 1.2, (b) ε = 1.0 and σ2 = 2.0, (c) ε = 2.0 and σ2 = 1.2 and (d) ε = 0.5 and 

σ2 = 2.0. All corresponding simulations start from the same initial configuration, that of hard-sphere 

chains as seen in panel (a) of Figure 1, but the final structures, as revealed by the CCE analysis, are 
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quite different. Starting from the system (ε = 0.6 and σ2 = 1.2) according to panel (a) of Figure 3 no site 

shows a CCE norm lower than the threshold value. Hence, there is no local environment with HCP-, 

FCC- or FIV- similarity. Based on this we can conclude that the assembled clusters have not 

crystallized. For comparison in the (ε = 1.0 and σ2 = 1.2) system (panel (b) of Figure 3) an appreciable 

fraction of sites has low HCP- and FCC- norms. This is a clear sign of crystallization. The amounts of 

HCP and FCC are quite similar with a small preference toward HCP. Fivefold sites also exist in 

smaller, but non-negligible, quantities. Based on the above, and before even performing a visual 

inspection of the structures, we expect random stacking of compactly packed layers of monomers. 

The final ordered morphology for (ε = 1.0 and σ2 = 1.2) should be faulted twin sectors of randomly 

alternating HCP or FCC character. This conclusion, to be supported in the continuation, is based on 

past findings that the presence of fivefolds is incompatible with extensive rhcp layering having a 

single stacking direction [26,28,29].  

By keeping constant the interaction range and by further increasing the intensity (ε = 2.0 and σ2 

= 1.2, as shown in panel (c) of Figure 3), a different behavior is exhibited: fivefold sites are now 

abundant exceeding the populations of HCP- and FCC-like sites. In fact, their presence and stability 

hinder further crystal growth. This situation does not change even if the MC simulations are 

prolonged to simulation times (steps) two or three times longer than the ones to be reported below. 

The finding that the short-range, fivefold order competes against crystallization further verifies past 

simulation-based conclusions that fivefold symmetry can inhibit crystal nucleation and growth 

especially when such sites are abundant and/or they self-assemble into organized structures in hard-

sphere [28,29] and LJ [62] chain systems. For sufficiently high attraction intensity the infinitely fast 

quench, which takes place at the start of the simulation, leads the chain cluster system to vitrification, 

instead of crystallization. This is in excellent qualitative agreement with the established MD results 

of Ref. [62]. In panel (d) of Figure 3 the system (ε = 2.0 and σ2 =1.2) is displayed. The final configuration 

shows a remarkably high fraction of sites having an HCP character with no analogous sites of FCC 

or FIV similarity. Hence, this combination of interaction parameters leads clearly to crystallization 

with the final state being a perfect HCP crystal. As will be demonstrated later, similarly perfect FCC 

morphologies are also formed for specific pairs of intensity and range of interactions. This is not 

surprising given the minute difference in the thermodynamic stability of the two crystals. 
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Figure 3. Probability distribution of the HCP- (blue), FCC- (red) and FIV- (green) CCE norm as 

obtained from structural analysis on the final system configuration for the SW chain systems: (a) ε = 

0.6 and σ2 = 1.2; (b) ε = 1.0 and σ2 = 1.2; (c) ε = 2.0 and σ2 = 1.2; (d) ε = 0.5 and σ2 = 2.0. The vertical dotted 

line denotes the threshold value (μc = 0.245) for the identification of HCP, FCC or FIV local 

environments of non-overlapping spheres. 

The evolution of the CCE order parameters, SX, (X being HCP, FCC or FIV) as a function of MC 

steps can be seen in Figure 4 for the same representative systems as in Figure 3 except for (ε = 0.6 and 

σ2 = 1.2). The latter is not shown because the corresponding order parameters do not vary with 

simulation time, as the system remains amorphous with no traces of crystalline or fivefold domains; 

thus, the Sx-versus-MC steps curves practically coincide with the x-axis. 

We should again note that according to Equation (2) by adding up the HCP and FCC order 

parameters we can estimate the degree of crystallinity, τc. Hence, by monitoring the evolution of these 

curves as simulation advances, we can identify the possible onset of phase transition and track crystal 

nucleation and growth. The trends of Figure 4 are noticeably clear: first the (ε = 1.0 and σ2 = 1.2) SW 

system (panel a) shows a clear phase transition occurring at approximately 3 × 1010 MC steps. Before 

the onset of crystallization, the population of fivefold sites increases at small rates and is 

systematically higher than the fraction of closed packed sites. At the transition point there exists a 

sharp increase of sites with HCP, FCC and FIV similarity. Immediately after the transition, the 

structure stabilizes with the fraction of close packed sites accounting for more than 50% of the total 

population. We should also remind again that spheres lying on the cluster surface have incomplete 

Voronoi polyhedra and, by definition, extremely high CCE norm (HCP or FCC). Additionally, the 

sharp increase in the number of crystal sites is accompanied by a significant drop of the fivefold 

population. In the final stable structure, fivefold sites, even in reduced numbers, co-exist with the 

established crystal morphology. Based on past studies [28,29] such trend points towards the self-

assembly of fivefold sites into specific geometric patterns. Further confirmation will be provided in 

the continuation through visual inspections of the corresponding system configurations. The (ε = 2.0 

and σ2 = 1.2) SW system (panel b) exhibits different behavior: the fraction of HCP sites remains, within 

fluctuations, constant during the simulation while the FCC and FIV ones keep increasing slowly until 

they reach plateau values. In the corresponding configurations the population of fivefold sites is 
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systematically higher than the combined population of close packed sites. In this case there is a clear 

competition between fivefold local symmetry and crystal nucleation. Strong attraction, as indicated 

by the elevated value ε = 2.0, favors local symmetry and the formation of fivefold sites. Their 

population is so abundant that effectively hinders crystallization and leads to glass formation. As 

mentioned earlier the observed trends do not change even if we appreciably extend the duration of 

the MC simulation. In system (ε = 0.5 and σ2 = 2.0), as seen in panel (c) of Figure 4 HCP population 

increases continuously until 1010 MC steps while the FIV and FCC populations remain constant. Then, 

a substantial growth occurs for the HCP population while both the FIV and FCC ones drop to zero. 

Again, the transition is sharp as it takes place within a couple of simulation frames. The final resulting 

configuration is of pure HCP character and it amounts for more than 50% of the total monomers.  

 

Figure 4. CCE-based order parameter, SX, (where X is HCP, FCC or FIV) as a function of Monte Carlo 

steps for the SW chain systems: (a) ε = 1.0 and σ2 = 1.2; (b) ε = 2.0 and σ2 = 1.2; (c) ε = 0.5 and σ2 = 2.0 in 

log-linear scale. 

With the information of the structural order parameters, accumulated over all simulated 

systems, in hand we can construct the phase diagram of the SW chains. This is quantified by the 

dependence of the degree of crystallinity and the fivefold order parameter on the interaction 

parameters. Figure 5 shows τc (left y-axis) and SFIV (right y-axis) versus ε in log-linear scale keeping 

the interaction range fixed at σ2 = 1.2. Three different phase regimes exist with the corresponding 

onsets being recognized by the dashed vertical lines. In the regime of weak attraction (0 ≤  𝜀 ≤ 0.8) 

clusters are formed but either they are unstable and do not grow further (low-ε regime) or they form 

a single cluster which remains amorphous with no traces of crystal or fivefold nuclei. As the first 

threshold is approached, we detect a small but systematic increase of fivefold symmetry: in the 

assembled cluster local configurations appear that favor short-range, non-crystallographic order. The 

second regime (0.9 ≤  𝜀 ≤ 2.0) is characterized by a very sharp increase in the degree of crystallinity. 

Hence, in this intensity range the SW chain system shows phase (amorphous to crystal) transition. 

As suggested by the fluctuations in the number of fivefold sites, the established morphologies may 

correspond to fivefold-free crystals or to crystals possessing significant structural defects in the form 

of twins. Given the competition between fivefold and close packing in the case of zero fivefold 

population perfect HCP or FCC crystals, or random hexagonal close packed (rhcp) layers with a 

single stacking direction are expected. In opposite cases, the presence of fivefolds suggests self-
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assembly into organized patterns compatible with twinning. In the final phase regime (𝜀 > 2.0) the 

situation is drastically different: fivefold population increases significantly and surpasses the one of 

close packed sites. This is a result of the high intensity, the equivalent to high quench rate in the MD-

based cooling of bead-spring chains in Ref. [62], which leads to a vitrified (glassy) structure lacking 

long-range order. From past simulation studies and from the structural point of view it has been 

established that crystal nuclei grow in regions far from ones populated by fivefolds [28,29]. Given 

that strong attraction leads to abundant fivefold symmetry in all related SW chain systems, combined 

with the fact that the formed cluster has specific and finite dimensions, crystal nuclei, once they are 

formed, do not have the necessary space to grow further. Consequently, the stable structures in this 

regime are characterized by increased numbers of fivefold sites and isolated crystal nuclei.  

 

Figure 5. (Left y-axis) Degree of crystallinity, τc, (= SHCP + SFCC) and (right y-axis) fivefold order 

parameter, SFIV, as a function of the interaction intensity, ε, of the square well potential for a fixed 

range (σ2 = 1.2) in log-linear scale. Vertical dashed, blue lines indicate the transition from amorphous 

to crystal and from crystal to fivefold-rich glassy regimes as dictated by the population of closed 

packed and fivefold sites and the corresponding established morphologies. 

The phase behavior of the SW chains as a function of the interaction range, keeping the intensity 

fixed at ε = 0.5, is presented in Figure 6. Similar trends are established with the same three distinct 

phase regimes appearing. First, for short range (1 ≤  𝜎2  ≤ 1.8) there are neither close packed nor 

fivefold sites. Close to the phase threshold, we again observe an increase of the fivefold fraction. 

Given the similarity in both plots this small but non-negligible increase in fivefold symmetry can thus 

be considered as a hindsight for the commencement of crystallization. The second regime (1.9 ≤

 𝜎2  ≤ 2.4) is again marked by crystallization. In contrast to the intensity-based phase behavior, here 

in the crystal regime all simulated systems resulted in fivefold-free ordered morphologies of perfect 

crystals. In the final phase regime of glass formation (𝜎2  ≥ 2.6) the population of fivefold symmetric 

sites equals or exceeds that of close packed crystals. Crystallization is inhibited, and a disordered, 



Polymers 2020, 12, x FOR PEER REVIEW 12 of 27 

 

vitrified structure is again obtained being intimately related to the abundance of fivefold symmetry 

leading to structural arrest.  

 

Figure 6. (Left y-axis) Degree of crystallinity, τc, (= SHCP + SFCC) and (right y-axis) fivefold order 

parameter, SFIV, as a function of the interaction range, σ2, of the square well potential for a fixed 

intensity (ε = 0.5) in log-linear scale. Vertical dashed, blue lines indicate the transition from 

amorphous to crystal and from crystal to fivefold-rich glassy regimes as dictated by the population 

of closed packed and fivefold sites and the corresponding established morphologies. 

Up to this point crystallization and glass formation and the corresponding transitions have been 

quantified through metrics related to the CCE norm. In the continuation, after quantitative 

assessment, we visually inspect the amorphous, crystalline or fivefold-abundant glassy morphologies 

at the end of the MC simulations (Figure 7). In all snapshots, monomers are color-coded according to 

their CCE norm, with amorphous sites (i.e., sites with neither HCP/FCC nor FIV character) having 

reduced radii to improve clarity. This is because, as stated earlier, the monomers lying on the surface 

of the cluster have remarkably high CCE norms with respect to all reference structures and further 

obscure the view of the inner cluster segments. In the top row of Figure 7 from left to right snapshots 

are shown with increasing intensity at fixed range (σ2 = 1.2). In the bottom row, configurations are 

ordered by increasing range at constant attraction strength (ε = 0.5).  

Both classifications show identical trends. First, weak interaction leads to a small number of 

clusters, none of which shows any traces of crystals or fivefolds (panel a). Increasing attraction leads 

to well defined ordered morphologies. These range from crystals of mixed HCP/FCC structures with 

random orientation, multiple stackings with twin defects at the boundaries (panel b) to random 

hexagonal close packed (rhcp) alternating layers of unique stacking direction (panel c). Stronger 

attraction leads to suppression of crystallization and to the appearance of numerous sites with 

fivefold symmetry randomly dispersed in the cluster (panel d). As close packed sites are in the 

minority and remain isolated, further crystal growth is hindered leading to fivefold abundant 
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vitrified clusters. Similarly, increasing interaction range drives the system from the initially 

amorphous structure (panel e) to perfect HCP (panel f) and FCC (panel g) crystals and finally to 

fivefold-dominated glassy assemblies (panel h). It is interesting to notice that the structures obtained 

by tuning the attraction range correspond to perfect close packed morphologies, while the ones 

obtained by tuning the attraction intensity result in crystals of mixed HCP/FCC character, usually 

with structural defects in the form of twins. 

 
 

 
 

(a) (b) (c) (d) 

  
 

 

(e) (f) (g) (h) 

Figure 7. Snapshots of system configurations at the end of the MC simulation corresponding to the 

following sets of interaction intensity, ε, and range, σ2. Top row: fixed range σ2 = 1.2 and (a) ε = 0.6; 

(b) ε = 1.0; (c) ε = 1.2; (d): ε = 2.0. Bottom row: fixed intensity ε = 0.5 and (e) σ2 = 1.2; (f) σ2 = 2.0; (g) σ2 

= 2.5; (h) σ2 = 3.0. Sphere monomers are color-coded according to the CCE norm: Blue, red and green 

correspond to HCP-, FCC- and FIV- like sites, respectively. Amorphous (neither HCP/FCC nor FIV) 

monomers are shown in yellow and with reduced radii to enhance clarity. 3-D, interactive versions 

of the figure panels exist in supplement material (as well as a 3-D, interactive version of the present 

manuscript). 

Figure 8 presents in more detail selected chain morphologies containing fivefold symmetry. In 

the upper panels the whole system is visualized including close packed nuclei or crystals, while in 

the lower panels only fivefold and amorphous sites are shown. Isolating the fivefold structures allows 

us to understand their possible self-assembly and organization especially when co-existing with 

crystals. In parallel, beyond visual inspection the complete information of sphere coordinates, 

considering periodic boundary conditions, allows us to perform a twin element analysis based on 

Koch’s standard International Union of Crystallography calculation [73], following the steps of Ref. 

[29]. Linear arrangements of fivefolds have a structure of multiple, cyclic twin. For the cyclic twin 

morphologies, we can observe that numerous twin sectors have been fully assembled in spite of the 

finite size of the encasing cluster. When twin boundaries meet, the corresponding boundaries consist 

of fivefold sites as imposed by the twin composition law. According to panel (ii) the axis consists of 

spheres which show pseudo fivefold symmetry. The structure can be viewed effectively as a linear 

array of parallel stacked pentagons or a pile of pentagonal bipyramids [3,74] reminiscent of concentric 

pentagons of the Bagley packing sequence [75]. 
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Figure 8. Top row (panels a–d): system snapshots of square well chains interacting with the following 

parameters: (a) ε = 1.0 and σ2 = 1.2; (b) ε = 1.3 and σ2 = 1.2; (c) ε = 2.0 and σ2 = 1.2. Sphere monomers 

are color-coded according to the CCE norm: Blue, red and green correspond to HCP-, FCC- and FIV- 

like sites, respectively. Amorphous (neither HCP/FCC nor FIV) monomers are shown in yellow and 

with reduced radii to enhance clarity. Bottom row (panels i–iii): same configurations but showing 

only fivefold and amorphous sites. 3-D, interactive versions of the figure panels exist in supplement 

material (as well as a 3-D, interactive version of the present manuscript). 

Based on the description above a point to notice is the similarity of these structures, whose 

appearance is driven by the square well interaction energy, to those of monomeric morphologies of 

hard spheres, driven by entropy [28,29], highlighting the universal character of fivefold symmetry in 

general crystallization phenomena as has been also established by MD simulations on quenched LJ 

chain systems [62].  

As a final remark we should note that independent MC simulations have been carried out 

starting from different initial hard-sphere chain configurations, especially for ε and σ values near the 

transitions between the phase regimes (amorphous → crystal → glassy). The configurations obtained 

in these independent runs confirm that the thresholds and the equilibrium morphologies coincide or 

are similar to the ones presented here. Representative structures of such simulations are available as 

supplementary material.  

3.3. Local Chain Structure 

The phase behavior of chains as a function of attraction intensity and range has been established 

in the previous section. Here we analyze the short- and long-range structure of the chains as they first 

become segments of a cluster and successively parts of the crystal morphology (where applicable). 

Given that bond gap tolerance is small (dl = 6.5 × 10−4) and bond lengths are practically constant, 

emphasis is placed on the distribution of bending (Figure 9) and torsion (Figure 10) angles. For 

comparison, the corresponding results from the hard-sphere chains (ε = 0) under the same packing 

density are also shown. Both distributions are obtained over all monomers of the system 

independently of their local structure as identified by the CCE norm. Based on this, we expect that 

(a) (b) (c) 

(i) (ii) (iii) 
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the sites belonging to the external surface of the cluster might, in principle, reduce the peaks that 

could possibly appear as a result of specific crystal morphologies or show ones that are not 

compatible with the observed ordered structures. As we demonstrate in the following sections, even 

when including the contribution of all monomers the tendencies are quite clear and easily 

identifiable. 

We start the analysis with the bending angle, θ, which corresponds to the angle formed by 

successive triplets of monomers (or equivalently by two consequent unit vectors) along the chain 

backbone. In the legend of the graph we have marked the transitions to the three different phase 

regimes (amorphous ↔ crystal ↔ glass), as identified by the CCE-based results in Section 3.2. Based 

on the distribution curves, we can clearly distinguish three different behaviors, which follow closely 

the phase behavior trends. First, focusing on the effect of attraction strength (left panel of Figure 9 

with fixed σ2 = 1.2) weak interaction (ε = 0.6) leads to a rather uniform distribution with a small peak 

at 60°. This curve follows qualitatively the uniform pattern of hard-sphere chains (ε = 0) which is turn 

agrees exceptionally well with the expected distribution of isolated chains (vanishing volume 

fraction) computed by taking into account excluded volume interactions between atoms, i-1, i and i+1 

forming triplets (see for example Figure 1 and related discussion in the appendix of Ref. [20]). The 

main change with respect to the hard sphere model settles in at an angle of approximately 106.3° 

where a sharp increase is observed until 120° degrees. The latter is the limit value corresponding to 

tangency in non-overlapping triplet of hard spheres. All SW systems of the left panel of Figure 9 

exhibit this increase. Its occurrence and position can be easily explained by taking into consideration 

that attraction range is fixed in all cases at σ2 = 1.2. Accordingly, this is the maximum distance between 

spheres i-1 and i+1 to guarantee attraction. Given that, within a negligible error, bond lengths are close 

to unity (dl = 6.5 × 10−4) and by applying the cosine rule the value for the supplement of bending angle 

is 106.3° (for σ2 = 1.2). Due to normalization and given that, due to attraction, for θ > 106.3° the SW 

distribution is significantly higher than the HS, for θ < 106.3° the SW curve should be flat and 

systematically below the HS one. This is verified by the data of Figure 9 (left panel). Curves 

corresponding to ε = 1.0 and 1.2 are similar, not only because the values of attraction lie close together 

but mainly because both systems crystallize into resembling ordered morphologies (panels b and c 

of Figure 7). Compared to the uniform sampling of dilute hard spheres and the small peak of the 

amorphous SW system, the chain crystals show prominent peaks at approximately 5, 60, 90 and 120°. 

Valleys are also observed mainly between 20 and 40°, around 70 and 100°. The similarity of the 

bending angle distribution, as obtained for SW chains forming a single energy-driven crystal cluster, 

and the one for entropy-driven HS chain crystals at high volume fractions (as seen in Figure 4 of Ref. 

[23]) is striking. The favorable local conformations are adopted due to geometric requirements as 

imposed by the established HCP and FCC crystal morphologies. Trying to explain the heights, if we 

consider the close packed crystals, the occurrence frequency of a 90° angle is calculated analytically 

as half that of 60° in the freely jointed model. In the final phase regime, where crystallization is 

inhibited, we observe significant deviations in the bending angle distribution compared to the crystal 

phase. The first maximum is shifted to slightly higher values while its intensity reduces. The second 

peak also migrates to larger bending angles (66°) but increases in strength. The most important 

departure comes in the vicinity of 90° where the corresponding maximum completely disappears. 

Another interesting point is the observed local minimum at 115° following shortly the peak at 106.3°. 

The combination of the absence of peak at 90° and the significant reduction of the global peak at 120o 

is indicative of the limited population of HCP- and FCC-like sites without resorting to the more 

refined CCE analysis. 

Similar conclusions can be drawn by studying the effect of attraction range (right panel of Figure 

9 with fixed ε = 0.5). The three distinct phase regimes are reflected in the distribution of bending 

angles. First, for the amorphous regime as range increases the observed peak, where attraction settles 

in, shifts to lower values. For example, from 106.3° (at σ2 = 1.2) the maximum reduces to 73.7° (at σ2 = 

1.6) as also confirmed by simple calculations based on the cosine rule. Entering the crystal regime the 

curve of σ2 = 2.5 (right panel) is similar to the curve of ε = 1.2 (left panel) even if one crystal is perfect 

FCC (σ2 = 2.5) while the other is of mixed FCC/HCP character with twin defects (ε = 1.2). Again, we 
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should note here that in the bending angle distribution all spheres are considered, even the ones on 

the surface of the cluster. This explains why the results between (σ2 = 2.0) and (σ2 = 2.5), leading to 

equally perfect HCP and FCC crystals, respectively, are different.  

 

Figure 9. Distribution of bending angle supplement as a function of (left panel): attraction intensity 

for fixed range (σ2 = 1.2) and (right panel): attraction range for fixed intensity (ε = 0.5). Dashed 

horizontal blue lines in legend identify transitions to different phase regimes: amorphous → 

crystalline → glassy. 
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Figure 10. Torsion angle distribution as a function of (left panel) attraction intensity for fixed range 

(σ2 = 1.2) and (right panel): attraction range for fixed intensity (ε = 0.5). Zero degrees correspond to 

trans conformation. 

The torsion angle distribution as a function of intensity (left panel of Figure 10) and of range 

(right panel of Figure 10) confirms the findings from the analysis of the bending angle. Amorphous 

systems show close resemblance to the dilute HS packing. Sharp peaks are observed for all systems 

that crystallize, similar minima and maxima are also developed for the fivefold-rich, vitrified clusters 

but with intensities nowhere near those of the ordered structures. For the latter, especially prominent 

are the peaks at 0° (corresponding to trans conformation) and 180° leading to co-planar chain 

configurations. Peaks at 0, 54.7, 70.5, 109.5 and 180° are very reminiscent of the ones observed in 

dense random [20] or ordered [23] chain packings of hard spheres. Such behavior is a consequence 

of chains trying to adopt locally the densest possible structures and can be explained through the 

polytetrahedral model of disordered sphere packings [76,77]. As the system transits to the crystal 

state peaks at 60° and 120° tend to split into two distinct maxima; for example, the one at 111° is 

divided into contributions at 109.5 and 124°. Again this trend is in excellent agreement with the ones 

observed in the crystallization of hard-sphere chains (see for example Figure 5 of Ref. [23]). 

3.4. Chain Size 

Long-range chain structure is quantified here by the mean square radius of gyration, 〈𝑅g
2〉, and 

the mean square end-to-end distance, 〈𝑅2〉. For the freely jointed model in the limit of infinitely long 

chains (𝑁 → ∞) it stands: 〈𝑅2〉 = 6〈𝑅g
2〉. Given that in the present work we model polydisperse chain 

systems (𝑁 ∈ [6,18]) within a single simulation we can extract the dependence on chain length. 

Accordingly, in the continuation angle brackets < > correspond to averaging over all chains of specific 

length N and over all recorded frames. The 〈𝑅g
2〉-vs.-N and 〈𝑅2〉-vs.-N curves are presented in the left 

(varied ε and fixed σ2) and right (varied σ2 and fixed ε) panels, respectively, of Figure 11. The first 

conclusion is that for all system studied 〈𝑅2〉 or 〈𝑅g
2〉 scale linearly with the number of monomers, 

independently of interaction type. The athermal system exhibits the largest size followed by those of 

weak interactions or short attraction range. The chain crystals are the ones that systematically show 

the shortest size especially when compared to the reference hard-sphere chain. This can be 

understood as monomers inside the compact cluster and/or crystal adopt configurations that 

minimize the local free volume, as indicated for example by the global maximum of 120o in the 

bending angle distribution.  
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Figure 11. Effect of chain length, N, on chain size. Left panel: Mean square radius of gyration, 〈𝑅g
2〉, 

for various attraction intensities, ε, with fixed range σ2 = 1.2. Right panel: Mean square end-to-end 

distance, 〈𝑅2〉, for various attraction ranges, σ2, with fixed intensity ε = 0.5. Dashed horizontal blue 

lines in legend identify transitions to different phase regimes: amorphous → crystalline → glassy. 

3.5. Local Density 

To quantify cluster compactness and its correlation with morphology we calculate the local 

density ρ(i), around each monomer i, as the inverse of the volume of the Voronoi polyhedron, Vvor(i): 

ρ(i) = 1 / Vvor(i), measured in units of 𝜎1
−3 . In the past, such information has provided valuable 

information in understanding the entropy-driven crystallization in athermal chain packings: 

Analysis of the Voronoi cell revealed that local environment becomes more spherical and more 

symmetric as the system transits to the crystal phase allowing for higher local mobility of monomers 

[22–24]. The maximum local density should correspond to the HCP or FCC perfect crystals 

(coordination number of 12) with a value approximately equal to 1.414. 

Figure 12 presents the distribution of the local density for various systems corresponding to the 

amorphous, crystal and glassy clusters. The ε and σ pairs have been selected to match the final, stable 

morphologies of Figure 7. Amorphous clusters are characterized by exceptionally low density 

compared to crystal and glassy ones with only a very small fraction of sites having dense local 

environment. Crystal clusters are much more compact: the distribution becomes very narrow and 

concentrated at high values with the long tail corresponding to sites belonging to the external surface 

and having incomplete Voronoi cell. The latter corresponds to infinite volume or equivalently zero 

density. Between the two different crystals the “perfect” HCP one (blue line, ε = 0.5 and σ = 2.0) shows 

significantly denser structure and narrower distribution than the crystal of mixed character (green 

line, ε = 1.0 and σ = 1.2). Quotes “” are used in the sentence above to avoid confusion with the perfect 

HCP crystal of 12 tangent neighbors whose arrangement leads to a packing density of 0.7404 (local 

number density of 1.414). Here, we use the term “perfect” to identify a cluster whose sites, in their 

vast majority, possess a CCE norm lower than the critical threshold of similarity: μ < μc (for example 

the crystal clusters of panels (f) and (g) in Figure 7). In strict crystallographic terms such computer-

generated sites may still show structural defects compared to the perfect reference crystal as their 

CCE norms are very low but not zero. The vitrified (glassy) clusters also display a very high level of 

compactness. The distribution maxima are significantly lower than the ones of crystals and the 

distribution is wider while keeping the symmetric shape. It is interesting to notice that there exists an 
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appreciable fraction of sites with local density higher than that of the monomers belonging to 

crystalline clusters. This confirms past findings from hard sphere chains that the combination of 

symmetric arrangement and equivalence of the local environment is a key driving factor for 

crystallization. In both cases it is also clear that the observed morphologies are compact as a 

significant fraction of local densities is around 7% lower than the maximum possible for non-

overlapping spheres in 3-D space. 

 

Figure 12. Distribution of local density for various pairs of intensity, ε, and range, σ, of the square 

well potential. Local density is calculated as the inverse of the volume of the Voronoi cell around each 

monomer. The corresponding final morphologies can be seen in Figure 7. Dashed horizontal blue 

lines in legend identify transitions to different phase regimes: amorphous → crystalline → glassy. 

Figure 13 shows the dependence of the local density on the distance from the center of mass of 

the cluster, dcm. The latter is calculated by considering all monomers having the same (unit) mass. The 

last 20,000 frames of each MC trajectory have been used to smoothen the curves with the local density 

being calculated as the average over all sites with equivalent distances from the center of mass. The 

conclusion that can be drawn from the data of Figure 13 is that up to a thickness of 6 layers (measured 

in units of the sphere diameter) the cluster remains uniformly very compact. The high local density 

starts to decrease only when we reach the outer layer and expectedly diminishes on the surface. The 

decline in density starts earlier for the imperfect crystal (of mixed HCP/FCC character), at around dcm 

= 5. The fivefold-rich glassy cluster (ε = 0.5, σ2 = 3.0) shows the same trends as the “perfect” HCP 

crystal (ε = 0.5, σ2 = 2.0) although with significantly larger fluctuations especially close to the center. 

Thus, the fivefold-abundant glassy structures are as densely packed as the ordered analogs.  
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Figure 13. Local density as a function of the distance from the center of the cluster, dcm, for SW chain 

systems corresponding to different pairs of intensity, ε, and range, σ2, of interactions. Dashed 

horizontal blue line in legend identifies transition between the crystal and glass phase regimes.  

The correlation between the compactness of the local environment and its similarity to a perfect 

crystal or fivefold local symmetry is given in Figure 14 as a parity plot between ρ(i) and the minimum 

CCE value (i.e., min[μHCP(i), μFCC(i), μFIV(i)]). For all systems including the amorphous ones, even if 

the average CCE norm is well above the threshold of μc = 0.245, there is a clear negative correlation 

between the minimum crystallographic norm value and the corresponding density: the higher the 

local density the lower the corresponding CCE norm of the site.  

For the crystal clusters there is a clear tendency for the ordered sites to be concentrated in the 

range of very high density values. A gap can be observed in the continuity near the threshold 

transition (μc = 0.245), as indicated by the dashed vertical line in the panels of Figure 14. Glassy 

systems do not show this discontinuity and the transition before and after the crystal onset is quite 

smooth. Only the glass cluster corresponding to (ε = 2.0, σ2 = 1.2) shows dispersion of density values 

as a function of the CCE-based structural similarity in the low-CCE regime of μc < 0.245.  
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Figure 14. Parity plot of the local density as a function of the minimum CCE norm for all sites of the 

last recorded configuration for: (top panel) amorphous, (middle panel) crystal, and (bottom panel) 

glassy SW chain clusters. The vertical red dashed line denotes the threshold value (μc = 0.245) for the 

identification of HCP, FCC or FIV local environments for non-overlapping spheres. 

3.6. Pair Radial Distribution Function 

Radial distribution functions provide valuable information on the structure of the cluster. The 

total pair radial distribution function, gtot(r), the intermolecular pair distribution function, ginter(r) and 

the intramolecular pair density function wintra(r) are shown in Figure 15. Systems have been selected 

to correspond to amorphous, crystalline, and glassy clusters, representative of the whole range of 

phase behavior. Strong peaks with regularity can be easily identified for the crystal systems (red lines) 

while such minima and maxima further exist in the glassy region but with reduced strength and 

regularity. For all systems, the initial extended plateau regime in all intra-, inter- and total 

distributions is related to the attraction range, σ2, of the square well potential. The well width is 

responsible for the sharp drop in density immediately after r = σ2, i.e., once the attraction range 

terminates, and for the “packing holes” in both intra- and inter-molecular contributions. Early peaks 

in wintra correspond to the distance imposed by bond tangency (at r = 1, whose full intensity is not 

shown in the graph) and to configurations adopted by the bending angles as shown in Figure 9 which 

are absent in the amorphous case. Independently of the phase regime the structural differences in the 

intramolecular density disappear once we reach distances around r = 3.5 in agreement with past 

simulation findings on dense, hard-sphere chain packings [23]. With respect to the intermolecular 

part, as expected, distinct behaviors exist depending on the cluster being amorphous, glassy or 

crystalline. In the former, regularity is absent while in the latter long-range order prevails up to 

distances that span the whole cluster. Notwithstanding the fact that the enclosing cluster is not a 

perfectly symmetric sphere the observed long-range order in the ginter-vs.-r plots provides a clear 

signature of the crystalline nature of the established chain morphologies. The fivefold-rich glasses 

show an intermediate behavior with regularity and short-range order as in the crystal counterparts 

but with significantly weakened intensity as radial distance increases. Apart from the maximum at r 

= 1 that corresponds to the nearest neighbors (coordination number) successive peaks at 
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approximately 1.41 ( √2 ) and 1.73 ( √3 ) correspond to second- and third-nearest neighbors, 

respectively, in accordance with packing structures exhibited in quenched systems of LJ chains [62]. 

 

Figure 15. (Top panels) Intramolecular density function, wintra(r); (middle panels) intermolecular pair 

distribution function, ginter(r) and (bottom panels) total pair radial distribution function, gtot(r) as 

functions of radial distance, r, for (left column) various attraction intensities, ε, for fixed range (σ2 = 

1.2) and (right column) various attraction ranges, σ2, for fixed intensity (ε = 0.5). Black, red and green 

correspond to SW chain clusters being amorphous, crystalline and glassy, respectively. Insets in the 

wintra panels correspond to zoom into short radial distances and the analogous peaks. Dashed 

horizontal blue lines in legend identify transitions to different phase regimes: amorphous → 

crystalline → glassy. 

4. Conclusions 

In the present contribution we have studied, through Monte Carlo simulations, the phase 

behavior of chains whose monomers interact via the square well potential. It is found that proper 

tuning of the attraction intensity and range can effectively control crystal nucleation and growth in 

the same way as quench rates affect crystallization or glass formation in cooling processes. For a fixed 

range, weak attraction leads to clusters that remain amorphous with very few to no signs of crystal 

or fivefold morphology. Once interaction intensity passes a specific threshold crystallization is 

observed with a wide range of resulting ordered morphologies: from perfect close packed crystal of 

pure HCP or FCC character to random hexagonal close packed either with unique or with multiple 

stacking directions, in the latter case with defects in the form of twins. For stronger intensities, the 

fraction of sites with fivefold symmetry grows and exceeds that of close packed ones. Hence, 

crystallization is inhibited because the finite dimensions of the cluster combined with the presence of 

fivefold sites leads to structural arrest and vitrification thus preventing the growth of crystal nuclei. 

Similar phase regimes are obtained by increasing attraction range. The characteristic crystal 

morphologies or the fivefold-rich domains are further accompanied by monomers adopting specific 

configurations at the local chain level as indicated by the bending and torsion angles distribution. 
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Based on the above, two main conclusions can be drawn: First, the crystallization-inhibiting role 

of fivefold sites, as originally identified in hard-sphere packings [28,29] and more realistic quenched 

LJ chains [62], is further demonstrated in chain systems interacting with the square well potential. 

Fivefold sites are thus found to effectively suppress crystallization not only in athermal, entropy-

driven packings of chains and monomers, but also in systems interacting via the square-well 

potential, whose crystallization is primarily energy-driven. Thus, this finding further underlines the 

universal character of this structural competition. Second, variation and fine tuning of the interaction 

parameters (intensity and range) can be used to effectively control the phase behavior of the 

corresponding systems. Such insights can help the design of novel colloidal and granular polymers 

with weak attractive interactions. Current efforts focus on studying the effect of the chain stiffness 

and of nanofillers on the phase behavior of polymer-based systems. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Interactive, 3-D version 

of the panels of Figures 1, 2, 7 and 8. Additional system snapshots from independent simulations. Also available 

is an interactive, 3-D version of the present manuscript. 
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The following abbreviations are used in the manuscript: 

CCE  Characteristic Crystallographic Element (norm) 

FCC  Face Center Cubic 

FIV  Fivefold 

HCP Hexagonal Close Packed 

RHCP Random Hexagonal Close Packed 

HS  Hard Sphere 

MC  Monte Carlo 

MD  Molecular Dynamics 

SW  Square Well 

SS  Square Shoulder 

LJ  Lennard-Jones 
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